Skip to main content
Top
Published in: European Journal of Medical Research 1/2017

Open Access 01-12-2017 | Research

A novel system for continuous, real-time monitoring of heart motion signals

Authors: Guy Dori, Jorge E. Schliamser, Oscar Lichtenstein, Ilia Anshelevich, Moshe Y. Flugelman

Published in: European Journal of Medical Research | Issue 1/2017

Login to get access

Abstract

Background

Understanding cardiac mechanics is important for developing cardiac therapies. Current modalities for assessing cardiac mechanics sample patient’s heart at specific heart rate, contractility, preload, and afterload. The objective of this study was to test the feasibility of a novel system composed of intra-cardiac leads equipped with an inertial module chip (3D accelerometers and 3D gyroscopes) in monitoring continuous heart motion.

Methods

In this descriptive study, four healthy pigs were anesthetized and instrumented with motion-sensitive intra-cardiac leads; the temporal correlation between signals from motion sensors and tissue Doppler from the chest wall were studied; changes in real-time heart accelerations (ACC) and angular velocity (ANGV) were reported as percentages of change from baseline.

Results

Heart motion signals were sensed continuously from the right ventricular apex (RVa) and coronary sinus (CS). Volume expansion did not produce significant changes in the ACC and ANGV signals. Increasing heart rate increased the peak systolic ACC signal recorded from RVa and CS by 94 and 76%, respectively, and increased both peak systolic (61% RVa and 27% CS) and diastolic ANGV (200% CS vs. 31% RVa). Epinephrine administration increased peak systolic ACC signals at both sites (246% RVa; 331% CS). Peak systolic and diastolic ANGV increased in response to epinephrine (systolic: 198% RVa and 175% CS; diastolic: 723% CS and 89% RVa) (p = 0.125 for all changes expressed in percent). Temporal correlation between the ANGV signal and tissue Doppler signal was detected throughout all interventions.

Conclusions

A novel system for continuously monitoring heart motion signals from within the heart was presented. Heart motion signals in response to physiologic manipulations were characterized.
Appendix
Available only for authorised users
Literature
1.
go back to reference Buckberg G, Hoffman JI, Mahajan A, Saleh S, Coghlan C. Cardiac mechanics revisited: the relationship of cardiac architecture to ventricular function. Circulation. 2008;118:2571–87.CrossRefPubMed Buckberg G, Hoffman JI, Mahajan A, Saleh S, Coghlan C. Cardiac mechanics revisited: the relationship of cardiac architecture to ventricular function. Circulation. 2008;118:2571–87.CrossRefPubMed
2.
go back to reference Katz AM. Influence of altered inotropy and lusitropy on ventricular pressure–volume loops. J Am Coll Cardiol. 1988;11:438–45.CrossRefPubMed Katz AM. Influence of altered inotropy and lusitropy on ventricular pressure–volume loops. J Am Coll Cardiol. 1988;11:438–45.CrossRefPubMed
3.
go back to reference Notomi Y, Popovic ZB, Yamada H, Wallick DW, Martin MG, Oryszak SJ, Shiota T, Greenberg NL, Thomas JD. Ventricular untwisting: a temporal link between left ventricular relaxation and suction. Am J Physiol Heart Circ Physiol. 2008;294:H505–13.CrossRefPubMed Notomi Y, Popovic ZB, Yamada H, Wallick DW, Martin MG, Oryszak SJ, Shiota T, Greenberg NL, Thomas JD. Ventricular untwisting: a temporal link between left ventricular relaxation and suction. Am J Physiol Heart Circ Physiol. 2008;294:H505–13.CrossRefPubMed
4.
go back to reference Sengupta PP, Korinek J, Belohlavek M, Narula J, Vannan MA, Jahangir A, Khandheria BK. Left ventricular structure and function: basic science for cardiac imaging. J Am Coll Cardiol. 2006;48:1988–2001.CrossRefPubMed Sengupta PP, Korinek J, Belohlavek M, Narula J, Vannan MA, Jahangir A, Khandheria BK. Left ventricular structure and function: basic science for cardiac imaging. J Am Coll Cardiol. 2006;48:1988–2001.CrossRefPubMed
5.
go back to reference Dong SJ, Hees PS, Siu CO, Weiss JL, Shapiro EP. MRI assessment of LV relaxation by untwisting rate: a new isovolumic phase measure of tau. Am J Physiol Heart Circ physiol. 2001;281:H2002–9.PubMed Dong SJ, Hees PS, Siu CO, Weiss JL, Shapiro EP. MRI assessment of LV relaxation by untwisting rate: a new isovolumic phase measure of tau. Am J Physiol Heart Circ physiol. 2001;281:H2002–9.PubMed
6.
go back to reference Thomas JD, Popovic ZB. Assessment of left ventricular function by cardiac ultrasound. J Am Coll Cardiol. 2006;48:2012–25.CrossRefPubMed Thomas JD, Popovic ZB. Assessment of left ventricular function by cardiac ultrasound. J Am Coll Cardiol. 2006;48:2012–25.CrossRefPubMed
7.
go back to reference Geerts L, Bovendeerd P, Nicolay K, Arts T. Characterization of the normal cardiac myofiber field in goat measured with MR-diffusion tensor imaging. Am J Physiol Heart Circ Physiol. 2002;283:H139–45.CrossRefPubMed Geerts L, Bovendeerd P, Nicolay K, Arts T. Characterization of the normal cardiac myofiber field in goat measured with MR-diffusion tensor imaging. Am J Physiol Heart Circ Physiol. 2002;283:H139–45.CrossRefPubMed
8.
go back to reference Ritter P, Delnoy PP, Padeletti L, Lunati M, Naegele H, Borri-Brunetto A, Silvestre J. A randomized pilot study of optimization of cardiac resynchronization therapy in sinus rhythm patients using a peak endocardial acceleration sensor vs. standard methods. Europace. 2012;14:1324–33.CrossRefPubMed Ritter P, Delnoy PP, Padeletti L, Lunati M, Naegele H, Borri-Brunetto A, Silvestre J. A randomized pilot study of optimization of cardiac resynchronization therapy in sinus rhythm patients using a peak endocardial acceleration sensor vs. standard methods. Europace. 2012;14:1324–33.CrossRefPubMed
9.
go back to reference Hyler S, Espinoza A, Skulstad H, Fosse E, Halvorsen PS. Left ventricular function can be continuously monitored with an epicardially attached accelerometer sensor. Eur J Cardiothorac Surg. 2014;46:313–20.CrossRefPubMed Hyler S, Espinoza A, Skulstad H, Fosse E, Halvorsen PS. Left ventricular function can be continuously monitored with an epicardially attached accelerometer sensor. Eur J Cardiothorac Surg. 2014;46:313–20.CrossRefPubMed
10.
go back to reference Grymyr OH, Nguyen AT, Tjulkins F, Espinoza A, Remme EW, Skulstad H, Fosse E, Imenes K, Halvorsen PS. Continuous monitoring of cardiac function by 3-dimensional accelerometers in a closed-chest pig model. Interact Cardiovasc Thorac Surg. 2015;21:573–82.CrossRefPubMed Grymyr OH, Nguyen AT, Tjulkins F, Espinoza A, Remme EW, Skulstad H, Fosse E, Imenes K, Halvorsen PS. Continuous monitoring of cardiac function by 3-dimensional accelerometers in a closed-chest pig model. Interact Cardiovasc Thorac Surg. 2015;21:573–82.CrossRefPubMed
11.
go back to reference Fujimoto N, Borlaug BA, Lewis GD, Hastings JL, Shafer KM, Bhella PS, Carrick-Ranson G, Levine BD. Hemodynamic responses to rapid saline loading: the impact of age, sex, and heart failure. Circulation. 2013;127:55–62.CrossRefPubMed Fujimoto N, Borlaug BA, Lewis GD, Hastings JL, Shafer KM, Bhella PS, Carrick-Ranson G, Levine BD. Hemodynamic responses to rapid saline loading: the impact of age, sex, and heart failure. Circulation. 2013;127:55–62.CrossRefPubMed
12.
go back to reference Prinzen FW, Vernooy K, Auricchio A. Cardiac resynchronization therapy. State-of-the-art of current applications, guidelines, ongoing trials, and areas of controversy. Circulation. 2013;128:2407–18.CrossRefPubMed Prinzen FW, Vernooy K, Auricchio A. Cardiac resynchronization therapy. State-of-the-art of current applications, guidelines, ongoing trials, and areas of controversy. Circulation. 2013;128:2407–18.CrossRefPubMed
13.
go back to reference Chung CS, Karamanoglu M, Kovacs SJ. Duration of diastole and its phases as a function of heart rate during supine bicycle exercise. Am J Physiol Heart Circ Physiol. 2004;287:2003–8.CrossRef Chung CS, Karamanoglu M, Kovacs SJ. Duration of diastole and its phases as a function of heart rate during supine bicycle exercise. Am J Physiol Heart Circ Physiol. 2004;287:2003–8.CrossRef
Metadata
Title
A novel system for continuous, real-time monitoring of heart motion signals
Authors
Guy Dori
Jorge E. Schliamser
Oscar Lichtenstein
Ilia Anshelevich
Moshe Y. Flugelman
Publication date
01-12-2017
Publisher
BioMed Central
Published in
European Journal of Medical Research / Issue 1/2017
Electronic ISSN: 2047-783X
DOI
https://doi.org/10.1186/s40001-017-0252-2

Other articles of this Issue 1/2017

European Journal of Medical Research 1/2017 Go to the issue