Skip to main content
Top
Published in: Antimicrobial Resistance & Infection Control 1/2018

Open Access 01-12-2018 | Research

Chlorhexidine-coated surgical gloves influence the bacterial flora of hands over a period of 3 hours

Authors: Miranda Suchomel, Markus Brillmann, Ojan Assadian, Karen J. Ousey, Elisabeth Presterl

Published in: Antimicrobial Resistance & Infection Control | Issue 1/2018

Login to get access

Abstract

Background

The risk of SSI increases in the presence of foreign materials and may be caused by organisms with low pathogenicity, such as skin flora derived from hands of surgical team members in the event of a glove breach. Previously, we were able to demonstrate that a novel antimicrobial surgical glove coated chlorhexidine-digluconate as the active ingredient on its inner surface was able to suppress surgeons’ hand flora during operative procedures by a magnitude of 1.7 log10 cfu/mL. Because of the clinical design of that study, we were not able to measure the full magnitude of the possible antibacterial suppression effect of antimicrobial gloves over a full 3 h period.

Methods

The experimental procedure followed the method for assessment of the 3-h effects of a surgical hand rub’s efficacy to reduce the release of hand flora as described in the European Norm EN 12791. Healthy volunteers tested either an antimicrobial surgical glove or non-antimicrobial surgical latex gloves in a standardized laboratory-based experiment over a wear time of 3 h.

Results

Wearing antimicrobial surgical glove after a surgical hand rub with 60% (v/v) n-propanol resulted in the highest 3-h reduction factor of 2.67 log10. Non-antimicrobial surgical gloves demonstrated significantly lower (p ≤ 0.01) 3-h reduction factors at 1.96 log10 and 1.68 log10, respectively. Antibacterial surgical gloves are able to maintain a sustainable bacterial reduction on finger tips in a magnitude of almost 3 log10 (log10 2.67 cfu) over 3 h wear time.

Conclusion

It was demonstrated that wear of an antibacterial surgical glove coated with chlorhexidine-digluconate is able to suppress resident hand flora significantly over a period of 3-h.
Literature
1.
go back to reference Smyth ET, McIlvenny G, Enstone JE, Emmerson AM, Humphreys H, Fitzpatrick F, et al. Four country healthcare associated infection prevalence survey 2006: overview of the results. J Hosp Infect. 2008;69:230–48.CrossRefPubMed Smyth ET, McIlvenny G, Enstone JE, Emmerson AM, Humphreys H, Fitzpatrick F, et al. Four country healthcare associated infection prevalence survey 2006: overview of the results. J Hosp Infect. 2008;69:230–48.CrossRefPubMed
2.
go back to reference Prospero E, Cavicchi A, Bacelli S, Barbadoro P, Tantucci L, D’Errico MM. Surveillance for surgical site infection after hospital discharge: a surgical procedure-specific perspective. Infect Control Hosp Epidemiol. 2006;27:1313–7.CrossRefPubMed Prospero E, Cavicchi A, Bacelli S, Barbadoro P, Tantucci L, D’Errico MM. Surveillance for surgical site infection after hospital discharge: a surgical procedure-specific perspective. Infect Control Hosp Epidemiol. 2006;27:1313–7.CrossRefPubMed
3.
go back to reference Astagneau P, Rioux C, Golliot F, Brückner G, INCISO Network Study Group. Morbidity and mortality associated with surgical site infections: results from the 1997–1999 INCISO surveillance. J Hosp Infect. 2001;48:267–74.CrossRefPubMed Astagneau P, Rioux C, Golliot F, Brückner G, INCISO Network Study Group. Morbidity and mortality associated with surgical site infections: results from the 1997–1999 INCISO surveillance. J Hosp Infect. 2001;48:267–74.CrossRefPubMed
4.
go back to reference Bayat A, McGrouther DA, Ferguson MW. Skin scarring. Br Med J. 2003;326:88–92.CrossRef Bayat A, McGrouther DA, Ferguson MW. Skin scarring. Br Med J. 2003;326:88–92.CrossRef
5.
go back to reference McGarry SA, Engemann JJ, Schmader K, et al. Surgical-site infection due to staphylococcus aureus among elderly patients: mortality, duration of hospitalization and cost. Infect Control Hosp Epidemiol. 2004;25:461–7.CrossRefPubMed McGarry SA, Engemann JJ, Schmader K, et al. Surgical-site infection due to staphylococcus aureus among elderly patients: mortality, duration of hospitalization and cost. Infect Control Hosp Epidemiol. 2004;25:461–7.CrossRefPubMed
6.
go back to reference Allegranzi B, Bischoff P, de Jonge S, Kubilay NZ, Zayed B, Gomes SM, et al. New WHO recommendations on preoperative measures for surgical site infection prevention: an evidence-based global perspective. Lancet Infect Dis. 2016;16:e276–e87.CrossRefPubMed Allegranzi B, Bischoff P, de Jonge S, Kubilay NZ, Zayed B, Gomes SM, et al. New WHO recommendations on preoperative measures for surgical site infection prevention: an evidence-based global perspective. Lancet Infect Dis. 2016;16:e276–e87.CrossRefPubMed
7.
go back to reference Berríos-Torres SI, Umscheid CA, Bratzler DW, Leas B, Stone EC, Kelz RR, et al. Centers for Disease Control and Prevention guideline for the prevention of surgical site infection, 2017. JAMA Surg. 2017;152:784–91.CrossRefPubMed Berríos-Torres SI, Umscheid CA, Bratzler DW, Leas B, Stone EC, Kelz RR, et al. Centers for Disease Control and Prevention guideline for the prevention of surgical site infection, 2017. JAMA Surg. 2017;152:784–91.CrossRefPubMed
8.
go back to reference Misteli H, Weber WP, Reck S, Rosenthal R, Zwahlen M, Fueglistaler P, et al. Surgical glove perforation and the risk of surgical site infection. Arch Surg. 2009;144:553–8.CrossRefPubMed Misteli H, Weber WP, Reck S, Rosenthal R, Zwahlen M, Fueglistaler P, et al. Surgical glove perforation and the risk of surgical site infection. Arch Surg. 2009;144:553–8.CrossRefPubMed
9.
go back to reference Hübner NO, Goerdt AM, Stanislawski N, Assadian O, Heidecke CD, Kramer A, Partecke LI. Bacterial migration through punctured surgical gloves under real surgical conditions. BMC Infect Dis. 2010;10:192.CrossRefPubMedPubMedCentral Hübner NO, Goerdt AM, Stanislawski N, Assadian O, Heidecke CD, Kramer A, Partecke LI. Bacterial migration through punctured surgical gloves under real surgical conditions. BMC Infect Dis. 2010;10:192.CrossRefPubMedPubMedCentral
10.
go back to reference Pittet D, Allegranzi B, Boyce J. World Health Organization world alliance for patient safety first global patient safety challenge Core Group of experts. The World Health Organization guidelines on hand hygiene in health care and their consensus recommendations. Infect Control Hosp Epidemiol. 2009;30:611–22.CrossRefPubMed Pittet D, Allegranzi B, Boyce J. World Health Organization world alliance for patient safety first global patient safety challenge Core Group of experts. The World Health Organization guidelines on hand hygiene in health care and their consensus recommendations. Infect Control Hosp Epidemiol. 2009;30:611–22.CrossRefPubMed
11.
go back to reference Peterson AF, Rosenberg A, Alatary SD. Comperative evaluation of surgical scrub preparations. Surg Gynecol Obstet. 1978;146:63–5.PubMed Peterson AF, Rosenberg A, Alatary SD. Comperative evaluation of surgical scrub preparations. Surg Gynecol Obstet. 1978;146:63–5.PubMed
12.
go back to reference Rotter ML, Kampf G, Suchomel M, Kundi M. Population kinetics of the skin flora on gloved hands following surgical hand disinfection within 3 propanol-based hand rubs: a prospective, randomize, double-blinded trial. Infect Control Hosp Epidemiol. 2007;28:346–50.CrossRefPubMed Rotter ML, Kampf G, Suchomel M, Kundi M. Population kinetics of the skin flora on gloved hands following surgical hand disinfection within 3 propanol-based hand rubs: a prospective, randomize, double-blinded trial. Infect Control Hosp Epidemiol. 2007;28:346–50.CrossRefPubMed
13.
go back to reference Partecke LI, Goerdt AM, Langner I, Jaeger B, Assadian O, Heidecke CD, et al. Incidence of microperforation for surgical gloves depends on duration of wear. Infect Control Hosp Epidemiol. 2009;30:409–14.CrossRefPubMed Partecke LI, Goerdt AM, Langner I, Jaeger B, Assadian O, Heidecke CD, et al. Incidence of microperforation for surgical gloves depends on duration of wear. Infect Control Hosp Epidemiol. 2009;30:409–14.CrossRefPubMed
14.
go back to reference Assadian O, Kramer A, Ouriel K, Suchomel M, McLaws ML, Rottman M, et al. Suppression of surgeons’ bacterial hand flora during surgical procedures using a new antimicrobial surgical glove. Surg Infect. 2014;15:43–9.CrossRef Assadian O, Kramer A, Ouriel K, Suchomel M, McLaws ML, Rottman M, et al. Suppression of surgeons’ bacterial hand flora during surgical procedures using a new antimicrobial surgical glove. Surg Infect. 2014;15:43–9.CrossRef
15.
go back to reference European Norm (EN) 12791. Chemical disinfectants and antiseptics. Surgical hand disinfection – test method and requirement (phase 2/step 2). Brussels: Comité Européen de Normalisation; 2009. European Norm (EN) 12791. Chemical disinfectants and antiseptics. Surgical hand disinfection – test method and requirement (phase 2/step 2). Brussels: Comité Européen de Normalisation; 2009.
16.
go back to reference EN ISO/IEC 17025. General requirements for the competence of testing and calibration laboratories. Brussels: Comité Européen de Normalisation; 2005. EN ISO/IEC 17025. General requirements for the competence of testing and calibration laboratories. Brussels: Comité Européen de Normalisation; 2005.
17.
go back to reference Suchomel M, Weinlich M, Kundi M. Influence of glycerol and an alternative humectant on the immediate and 3-hours bactericidal efficacies of two isopropanol-based antiseptics in laboratory experiments in vivo according to EN 12791. Antimicrob Resist Infect Control. 2017;6:72.CrossRefPubMedPubMedCentral Suchomel M, Weinlich M, Kundi M. Influence of glycerol and an alternative humectant on the immediate and 3-hours bactericidal efficacies of two isopropanol-based antiseptics in laboratory experiments in vivo according to EN 12791. Antimicrob Resist Infect Control. 2017;6:72.CrossRefPubMedPubMedCentral
18.
go back to reference Mangram AJ, Horan TC, Pearson ML, Silver LC, Jarvis WR. Guideline for prevention of surgical site infection, 1999. Hospital infection control practices advisory committee. Infect Control Hosp Epidemiol. 1999;20:250–78.CrossRefPubMed Mangram AJ, Horan TC, Pearson ML, Silver LC, Jarvis WR. Guideline for prevention of surgical site infection, 1999. Hospital infection control practices advisory committee. Infect Control Hosp Epidemiol. 1999;20:250–78.CrossRefPubMed
19.
go back to reference Laine T, Kaipia A, Santavirta J, Aarnio P. Glove perforations in open and laparoscopic abdominal surgery: the feasibility of double gloving. Scand J Surg. 2004;93:73–6.CrossRefPubMed Laine T, Kaipia A, Santavirta J, Aarnio P. Glove perforations in open and laparoscopic abdominal surgery: the feasibility of double gloving. Scand J Surg. 2004;93:73–6.CrossRefPubMed
21.
go back to reference Kojima Y, Ohashi M. Unnoticed glove perforation during thoracoscopic and open thoracic surgery. Ann Thorac Surg. 2005;80:1078–80.CrossRefPubMed Kojima Y, Ohashi M. Unnoticed glove perforation during thoracoscopic and open thoracic surgery. Ann Thorac Surg. 2005;80:1078–80.CrossRefPubMed
22.
go back to reference Pitten FA, Herdemann G, Kramer A. The integrity of latex gloves in clinical dental practice. Infection. 2000;28:388–92.CrossRefPubMed Pitten FA, Herdemann G, Kramer A. The integrity of latex gloves in clinical dental practice. Infection. 2000;28:388–92.CrossRefPubMed
23.
go back to reference Manjunath AP, Shepherd JH, Barton DP, Bridges JE, Ind TE. Glove perforations during open surgery for gynaecological malignancies. BJOG. 2008;115:1015–9.CrossRefPubMed Manjunath AP, Shepherd JH, Barton DP, Bridges JE, Ind TE. Glove perforations during open surgery for gynaecological malignancies. BJOG. 2008;115:1015–9.CrossRefPubMed
Metadata
Title
Chlorhexidine-coated surgical gloves influence the bacterial flora of hands over a period of 3 hours
Authors
Miranda Suchomel
Markus Brillmann
Ojan Assadian
Karen J. Ousey
Elisabeth Presterl
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Antimicrobial Resistance & Infection Control / Issue 1/2018
Electronic ISSN: 2047-2994
DOI
https://doi.org/10.1186/s13756-018-0395-0

Other articles of this Issue 1/2018

Antimicrobial Resistance & Infection Control 1/2018 Go to the issue