Skip to main content
Top
Published in: Archives of Public Health 1/2017

Open Access 01-12-2017 | Research

Sedentary time among primary school children in south-west Germany: amounts and correlates

Authors: Belinda Hoffmann, Sarah Kettner, Tamara Wirt, Olivia Wartha, Lina Hermeling, Jürgen M. Steinacker, Susanne Kobel, the Research Group “Join the Healthy Boat”

Published in: Archives of Public Health | Issue 1/2017

Login to get access

Abstract

Background

Sedentary behaviour in children is related to different health consequences such as overweight and cardio-metabolic diseases that can track into adulthood. Previous studies have shown that children spend hours being sedentary, but no data of sedentary time (ST) among German children has been available, yet. Therefore, this study investigated objectively measured amounts and correlates of ST in a sample of German primary school children.

Methods

Children’s physical activity (PA) was objectively assessed for 6 days using a multi-sensor device (Actiheart®; CamNtech, Cambridge, UK). Activity levels were categorized on the basis of energy expenditure (MET) into sedentary, light PA (LPA), and moderate to vigorous PA (MVPA). ST excluding sleeping hours was assessed for 231 children (7.1 ± 0.6 years, male: 45.9%) and analysed for independent groups. Examined factors (parental education, household income, and migration background) were assessed by parental questionnaire. Children’s weight, height and gender were collected in schools. Weight status was calculated on the basis of BMI percentiles.

Results

On average, children spent 3.5 ± 1.5 h daily being sedentary, excluding sleeping hours. Significantly higher ST was found in girls (t = −4.6; p < 0.01), in children with migration background (t = −6.9; p < 0.01), at the weekend (t = −2.8; p < 0.01), and among inactive children (t = 6.8; p < 0.01). Additionally, significant correlations with ST in this sample were identified for MVPA (B = −0.99; [−1.09;-0.88], p < 0.01), LPA (B = −0.89; [−0.97;-0.82], p < 0.01), migration background (B = −17.64; [5.24;30.04], p < 0.01), gender (B = −13.48; [−25.94;-1.01], p < 0.05) and household income (B = −4.80; [−9.07; −0.53], p < 0.05).

Conclusion

Girls, children with migration background, and inactive children were identified as potential risk groups. A higher income was associated with less ST. In general, ST was higher at the weekend. Furthermore, as PA was found to be negatively correlated to ST, these activities may replace each other. Therefore, these findings should be considered in future health interventions.

Trial registration

German Clinical Trials Register (DRKS), DRKS-ID: DRKS00000494 DATE: 25/08/2010.
Literature
1.
go back to reference Griffiths LJ, Sera F, Cortina-Borja M, Law C, Ness A, Dezateux C. Objectively measured physical activity and sedentary time: cross-sectional and prospective associations with adiposity in the millennium cohort study. BMJ Open. 2016; doi:10.1136/bmjopen-2015-010366. Griffiths LJ, Sera F, Cortina-Borja M, Law C, Ness A, Dezateux C. Objectively measured physical activity and sedentary time: cross-sectional and prospective associations with adiposity in the millennium cohort study. BMJ Open. 2016; doi:​10.​1136/​bmjopen-2015-010366.
2.
go back to reference Tremblay MS, LeBlanc AG, Kho ME, Saunders TJ, Larouche R, Colley RC, et al. Systematic review of sedentary behaviour and health indicators in schoolaged children and youth. Int J Behav Nutr Phys Act. 2011;8:98.CrossRefPubMedPubMedCentral Tremblay MS, LeBlanc AG, Kho ME, Saunders TJ, Larouche R, Colley RC, et al. Systematic review of sedentary behaviour and health indicators in schoolaged children and youth. Int J Behav Nutr Phys Act. 2011;8:98.CrossRefPubMedPubMedCentral
3.
go back to reference Mikolajczyk RT, Richter M. Associations of behavioural, psychosocial and socioeconomic factors with over- and underweight among German adolescents. Int J Public Health. 2008;53(4):214–20.CrossRefPubMed Mikolajczyk RT, Richter M. Associations of behavioural, psychosocial and socioeconomic factors with over- and underweight among German adolescents. Int J Public Health. 2008;53(4):214–20.CrossRefPubMed
4.
go back to reference Ekelund U, Sardinha LB, Anderssen SA, Harro M, Franks PW, Brage S, et al. Associations between objectively assessed physical activity and indicators of body fatness in 9- to 10-year-old European children: a populations-based study from 4 distinct regions in Europe (the European Youth Heart Study). Am J Clin Nutr 2004; 80(3):584–590. Ekelund U, Sardinha LB, Anderssen SA, Harro M, Franks PW, Brage S, et al. Associations between objectively assessed physical activity and indicators of body fatness in 9- to 10-year-old European children: a populations-based study from 4 distinct regions in Europe (the European Youth Heart Study). Am J Clin Nutr 2004; 80(3):584–590.
5.
go back to reference Collings PJ, Westgate K, Väistö J, Wijndaele K, Atkin AJ, Haapala EA, Lintu N, Laitinen T, Ekelund, U, Brage S, Lakk TA. Cross-Sectional Associations of Objectively-Measured Physical Activity and Sedentary Time with Body Composition and Cardiorespiratory Fitness in Mid-Childhood: The PANIC Study. Sports Med. 2017;47(4):769–780. doi:10.1007/s40279-016-0606-x. Collings PJ, Westgate K, Väistö J, Wijndaele K, Atkin AJ, Haapala EA, Lintu N, Laitinen T, Ekelund, U, Brage S, Lakk TA. Cross-Sectional Associations of Objectively-Measured Physical Activity and Sedentary Time with Body Composition and Cardiorespiratory Fitness in Mid-Childhood: The PANIC Study. Sports Med. 2017;47(4):769–780. doi:10.​1007/​s40279-016-0606-x.
6.
go back to reference Ekelund U, Luan J, Sherar LB, Esliger DW, Griew P, Cooper A. Moderate to vigorous physical activity and sedentary time and cardiometabolic risk factors in children and adolescents. JAMA. 2012;307:704–12.CrossRefPubMedPubMedCentral Ekelund U, Luan J, Sherar LB, Esliger DW, Griew P, Cooper A. Moderate to vigorous physical activity and sedentary time and cardiometabolic risk factors in children and adolescents. JAMA. 2012;307:704–12.CrossRefPubMedPubMedCentral
7.
go back to reference Carson V, Hunter S, Kuzik N, Gray CE, Poitras VJ, Chaput JP, Saunders TJ, Katzmarzyk PT, Okely AD, Gorber SC, Kho ME, Sampson M, Lee H, Tremblay MS. Systematic review of sedentary behaviour and health indicators in school-aged children and youth: an update. Appl Physiol Nutr Metab. 2016;41:240–65.CrossRef Carson V, Hunter S, Kuzik N, Gray CE, Poitras VJ, Chaput JP, Saunders TJ, Katzmarzyk PT, Okely AD, Gorber SC, Kho ME, Sampson M, Lee H, Tremblay MS. Systematic review of sedentary behaviour and health indicators in school-aged children and youth: an update. Appl Physiol Nutr Metab. 2016;41:240–65.CrossRef
8.
go back to reference Chastin SF, Mandrichenko O, Skelton DA. The frequency of osteogenic activities and the pattern of intermittence between periods of physical activity and sedentary behaviour affects bone mineral content: the crosssectional NHANES study. BMC Public Health. 2014;14:4.CrossRefPubMedPubMedCentral Chastin SF, Mandrichenko O, Skelton DA. The frequency of osteogenic activities and the pattern of intermittence between periods of physical activity and sedentary behaviour affects bone mineral content: the crosssectional NHANES study. BMC Public Health. 2014;14:4.CrossRefPubMedPubMedCentral
9.
go back to reference Gracia-Marco L, Rey-Lopez JP, Santaliestra-Pasias AM, Jimenez-Pavon D, Diaz LE, Moreno LA, et al. Sedentary behaviours and its association with bone mass in adolescents: the HELENA cross-sectional study. BMC Public Health. 2012;12:971.CrossRefPubMedPubMedCentral Gracia-Marco L, Rey-Lopez JP, Santaliestra-Pasias AM, Jimenez-Pavon D, Diaz LE, Moreno LA, et al. Sedentary behaviours and its association with bone mass in adolescents: the HELENA cross-sectional study. BMC Public Health. 2012;12:971.CrossRefPubMedPubMedCentral
10.
go back to reference Herman KM, Hopman WM, Sabiston CM. Physical activity, screen time and self-rated health and mental health in Canadian adolescents. Prev Med. 2015;73C:112–6.CrossRef Herman KM, Hopman WM, Sabiston CM. Physical activity, screen time and self-rated health and mental health in Canadian adolescents. Prev Med. 2015;73C:112–6.CrossRef
11.
go back to reference Chinapaw MJ, Proper KI, Brug J, van Mechelen W, Singh AS. Relationship between young peoples’ sedentary behaviour and biomedical health indicators: a systematic review of prospective studies. Obes Rev. 2011; doi:10.1111/j.1467-789X.2011.00865.x. Chinapaw MJ, Proper KI, Brug J, van Mechelen W, Singh AS. Relationship between young peoples’ sedentary behaviour and biomedical health indicators: a systematic review of prospective studies. Obes Rev. 2011; doi:10.​1111/​j.​1467-789X.​2011.​00865.​x.
12.
go back to reference Singh AS, Mulder C, Twisk JW, Van Mechelen W, Chinapaw MJ. Tracking of childhood overweight into adulthood: a systematic review of the literature. Obes Rev. 2008;9:474–88.CrossRefPubMed Singh AS, Mulder C, Twisk JW, Van Mechelen W, Chinapaw MJ. Tracking of childhood overweight into adulthood: a systematic review of the literature. Obes Rev. 2008;9:474–88.CrossRefPubMed
13.
go back to reference Hirvensalo M, Lintunen T. Life-course perspective for physical activity and sports participation. Eur Rev Aging Phys Act. 2011;8:13–22.CrossRef Hirvensalo M, Lintunen T. Life-course perspective for physical activity and sports participation. Eur Rev Aging Phys Act. 2011;8:13–22.CrossRef
14.
go back to reference Owen N, Sugiyama T, Eakin EE, Gardiner PA, Tremblay MS, Sallis JF. Adults’ sedentary behavior determinants and interventions. Am J Prev Med. 2011;41:189–96.CrossRefPubMed Owen N, Sugiyama T, Eakin EE, Gardiner PA, Tremblay MS, Sallis JF. Adults’ sedentary behavior determinants and interventions. Am J Prev Med. 2011;41:189–96.CrossRefPubMed
15.
go back to reference Arundell L, Fletcher E, Salmon J, Veitch J, Hinkley T. A Systematic review of the prevalence of sedentary behavior during the after-school period among children aged 5-18 years. Int J Behav Nutr Phys Act. 2016; doi:10.1186/s12966-016-0419-1. Arundell L, Fletcher E, Salmon J, Veitch J, Hinkley T. A Systematic review of the prevalence of sedentary behavior during the after-school period among children aged 5-18 years. Int J Behav Nutr Phys Act. 2016; doi:10.​1186/​s12966-016-0419-1.
16.
go back to reference Tremblay MS, LeBlanc AG, Janssen I, Kho ME, Hicks A, Murumets K, et al. Canadian sedentary behaviour guidelines for children and youth. Appl Physiol Nutr Metab. 2011;36:59–64.CrossRefPubMed Tremblay MS, LeBlanc AG, Janssen I, Kho ME, Hicks A, Murumets K, et al. Canadian sedentary behaviour guidelines for children and youth. Appl Physiol Nutr Metab. 2011;36:59–64.CrossRefPubMed
17.
go back to reference Lipinowski S, LeBlanc CM. Canadian Paediatric society, healthy active living and sports medicine committee. Healthy active living: physical activity guidelines for children and adolescents. Paediatr Child Health. 2012;17(4):209–10.CrossRef Lipinowski S, LeBlanc CM. Canadian Paediatric society, healthy active living and sports medicine committee. Healthy active living: physical activity guidelines for children and adolescents. Paediatr Child Health. 2012;17(4):209–10.CrossRef
19.
go back to reference Steele RM, Van Sluijs EM, Sharp SJ, Landsbaugh JR, Ekelund U, Griffin SJ. An investigation of patterns of children’s sedentary and vigorous physical activity throughout the week. Int J Behav Nutr Phys. 2010;7:88.CrossRef Steele RM, Van Sluijs EM, Sharp SJ, Landsbaugh JR, Ekelund U, Griffin SJ. An investigation of patterns of children’s sedentary and vigorous physical activity throughout the week. Int J Behav Nutr Phys. 2010;7:88.CrossRef
20.
go back to reference Nilsson A, Anderssen SA, Andersen LB, Froberg K, Riddoch C, Sardinha LB, et al. Between- and within-day variability in physical activity and inactivity in 9- and 15-year-old European children. Scand J Med Sci Sports. 2009;19:10–8.CrossRefPubMed Nilsson A, Anderssen SA, Andersen LB, Froberg K, Riddoch C, Sardinha LB, et al. Between- and within-day variability in physical activity and inactivity in 9- and 15-year-old European children. Scand J Med Sci Sports. 2009;19:10–8.CrossRefPubMed
21.
go back to reference Mathews CE, Chen KY, Freedson PS, Buchowski MS, Beech BM, Pate RR, et al. Amount of time spent in sedentary behaviors in the United States, 2003–2004. Am J Epidemiol. 2008; doi:10.1093/aje/kwm390. Mathews CE, Chen KY, Freedson PS, Buchowski MS, Beech BM, Pate RR, et al. Amount of time spent in sedentary behaviors in the United States, 2003–2004. Am J Epidemiol. 2008; doi:10.​1093/​aje/​kwm390.
22.
go back to reference Griffiths LJ, Cortina-Borja M, Sera F, Pouliou T, Geraci M, Rich C, et al. How active are our children? Findings from the millennium cohort study. BMJ Open. 2013; doi:10.1136/bmjopen-2013-002893. Griffiths LJ, Cortina-Borja M, Sera F, Pouliou T, Geraci M, Rich C, et al. How active are our children? Findings from the millennium cohort study. BMJ Open. 2013; doi:10.​1136/​bmjopen-2013-002893.
23.
go back to reference Verloigne M, Van LW, Maes L, Yildirim M, Chinapaw M, Manios Y, et al. Self-reported TV and computer time do not represent accelerometer-derived total sedentary time in 10 to 12-year-olds. Eur J Pub Health. 2013;23:30–2.CrossRef Verloigne M, Van LW, Maes L, Yildirim M, Chinapaw M, Manios Y, et al. Self-reported TV and computer time do not represent accelerometer-derived total sedentary time in 10 to 12-year-olds. Eur J Pub Health. 2013;23:30–2.CrossRef
24.
go back to reference Nagel G, Wabitsch M, Galm C, Berg S, Brandstetter S, Fritz M, et al. Determinants of obesity in the Ulm research on metabolism, exercise and lifestyle in children (URMEL-ICE). Eur J Pediatr. 2009; doi:10.1007/s00431-009-1016-y. Nagel G, Wabitsch M, Galm C, Berg S, Brandstetter S, Fritz M, et al. Determinants of obesity in the Ulm research on metabolism, exercise and lifestyle in children (URMEL-ICE). Eur J Pediatr. 2009; doi:10.​1007/​s00431-009-1016-y.
25.
go back to reference Network SBR. Standardized use of the terms “sedentary” and “sedentary behaviours”. Appl Physiol Nutr Metab. 2012;37:540–2.CrossRef Network SBR. Standardized use of the terms “sedentary” and “sedentary behaviours”. Appl Physiol Nutr Metab. 2012;37:540–2.CrossRef
26.
go back to reference Biddle SJH, Bengoechea EG, Wiesner G. Sedentary behaviour and adiposity in youth: a systematic review of reviews and analysis of causality. Int J Behav Nutr Phys Act. 2017; doi:10.1186/s12966-017-0497-8. Biddle SJH, Bengoechea EG, Wiesner G. Sedentary behaviour and adiposity in youth: a systematic review of reviews and analysis of causality. Int J Behav Nutr Phys Act. 2017; doi:10.​1186/​s12966-017-0497-8.
27.
go back to reference Arundell L, Fletcher L, Salmon J, Veitch J, Hinkley T. The correlates of after-school sedentary behavior among children aged 5–18 years: a systematic review. BMC Public Health. 2016;16:58.CrossRefPubMedPubMedCentral Arundell L, Fletcher L, Salmon J, Veitch J, Hinkley T. The correlates of after-school sedentary behavior among children aged 5–18 years: a systematic review. BMC Public Health. 2016;16:58.CrossRefPubMedPubMedCentral
28.
go back to reference Pearson N, Braithwaite RE, Biddle SJH, van Sluijs EMF, Atkin AJ. Associations between sedentary behaviour and physical activity in children and adolescents: a meta-analysis. Obes Rev. 2014;15:666–75.CrossRefPubMedPubMedCentral Pearson N, Braithwaite RE, Biddle SJH, van Sluijs EMF, Atkin AJ. Associations between sedentary behaviour and physical activity in children and adolescents: a meta-analysis. Obes Rev. 2014;15:666–75.CrossRefPubMedPubMedCentral
29.
go back to reference Janssen X, Basterfield L, Parkinsonb KN, Pearce M, Reilly JK, Adamson AJ, et al. Determinants of changes in sedentary time and breaks in sedentary time among 9 and 12 year old children. Prev Med Rep. 2015;2:880–85.CrossRefPubMedPubMedCentral Janssen X, Basterfield L, Parkinsonb KN, Pearce M, Reilly JK, Adamson AJ, et al. Determinants of changes in sedentary time and breaks in sedentary time among 9 and 12 year old children. Prev Med Rep. 2015;2:880–85.CrossRefPubMedPubMedCentral
30.
31.
go back to reference Stierlin AS, De Lepeleere S, Cardon G, Dargent-Molina P, Hoffmann B, Murphy MH, et al. A systematic review of determinants of sedentary behaviour in youth: a DEDIPAC-study. Int J Behav Nutr Phys Act. 2015; doi:10.1186/s12966-015-0291-4. Stierlin AS, De Lepeleere S, Cardon G, Dargent-Molina P, Hoffmann B, Murphy MH, et al. A systematic review of determinants of sedentary behaviour in youth: a DEDIPAC-study. Int J Behav Nutr Phys Act. 2015; doi:10.​1186/​s12966-015-0291-4.
32.
go back to reference Kettner S, Kobel S, Fischbach N, Drenowatz C, Dreyhaupt J, Wirt T, et al. Objectively determined physical activity levels of primary school children in south-west Germany. BMC Public Health. 2013;13:895.CrossRefPubMedPubMedCentral Kettner S, Kobel S, Fischbach N, Drenowatz C, Dreyhaupt J, Wirt T, et al. Objectively determined physical activity levels of primary school children in south-west Germany. BMC Public Health. 2013;13:895.CrossRefPubMedPubMedCentral
33.
go back to reference World Health Organization. Global recommendations on physical activity for health. Geneva: World Health Organization; 2010. World Health Organization. Global recommendations on physical activity for health. Geneva: World Health Organization; 2010.
35.
go back to reference Dreyhaupt J, Koch B, Wirt T, Schreiber A, Brandstetter S, Kesztyüs D, et al. Evaluation of a health promotion program in children: study protocol and Design of the Cluster-Randomized Baden-Württemberg Primary School Study [DRKS-ID: DRKS00000494]. BMC Public Health 2013;12:157. Dreyhaupt J, Koch B, Wirt T, Schreiber A, Brandstetter S, Kesztyüs D, et al. Evaluation of a health promotion program in children: study protocol and Design of the Cluster-Randomized Baden-Württemberg Primary School Study [DRKS-ID: DRKS00000494]. BMC Public Health 2013;12:157.
36.
37.
go back to reference Addy CL, Trilk JL, Marsha D, Won B, Pate RR. Assessing preschool children's physical activity: how many days of accelerometry measurement. Pediatr Exerc Sci. 2014;26(1):103–9.CrossRefPubMed Addy CL, Trilk JL, Marsha D, Won B, Pate RR. Assessing preschool children's physical activity: how many days of accelerometry measurement. Pediatr Exerc Sci. 2014;26(1):103–9.CrossRefPubMed
39.
go back to reference Schofield WN. Predicting basal metabolic rate, new standards and review of previous work. Hum Nutr Clin Nutr. 1985;39:5–41.PubMed Schofield WN. Predicting basal metabolic rate, new standards and review of previous work. Hum Nutr Clin Nutr. 1985;39:5–41.PubMed
40.
go back to reference Pate RR, O’Neill JR, Lobelo F. The evolving definition of “sedentary”. Exerc Sport Sci. 2008;36(4):173–8.CrossRef Pate RR, O’Neill JR, Lobelo F. The evolving definition of “sedentary”. Exerc Sport Sci. 2008;36(4):173–8.CrossRef
41.
go back to reference Stewart A, Marfell-Jones M, Olds T, de Ridder H. International standards for anthropometric assessment. Lower Hutt: ISAK; 2011. Stewart A, Marfell-Jones M, Olds T, de Ridder H. International standards for anthropometric assessment. Lower Hutt: ISAK; 2011.
42.
go back to reference Kromeyer-Hauschild K, Wabitsch M, Kunze D, Geller F, Geiß HC, Hesse V, et al. Percentiles of body mass index in children and adolescents evaluated from different regional German studies. Monatsschr Kinderheilkd. 2001;149:807–18.CrossRef Kromeyer-Hauschild K, Wabitsch M, Kunze D, Geller F, Geiß HC, Hesse V, et al. Percentiles of body mass index in children and adolescents evaluated from different regional German studies. Monatsschr Kinderheilkd. 2001;149:807–18.CrossRef
43.
go back to reference Brauns H, Scherer S, Steinmann S. The CASMIN educational classification in international comparative research. In: Hoffmeyer-Zlotnik JHP, Wolf C, editors. Advances in cross-National Comparison: a European working book for demographic and socio-economic variables. New York: Kluwer Academic/Plenum Publishers; 2003. p. 221–44.CrossRef Brauns H, Scherer S, Steinmann S. The CASMIN educational classification in international comparative research. In: Hoffmeyer-Zlotnik JHP, Wolf C, editors. Advances in cross-National Comparison: a European working book for demographic and socio-economic variables. New York: Kluwer Academic/Plenum Publishers; 2003. p. 221–44.CrossRef
44.
go back to reference Winkler J, Stolzenberg H. Adjustment of the used social-class-index in the children and youth health survey (KiGGS) 2003/2006. Wismar Discussion Papers. 2009;7 Winkler J, Stolzenberg H. Adjustment of the used social-class-index in the children and youth health survey (KiGGS) 2003/2006. Wismar Discussion Papers. 2009;7
46.
go back to reference Sasaki JE, Howe CA, John D, Hickey A, Steeves J, Conger S, et al. Energy expenditure for 70 activities in children and adolescents. J Phys Act Health. 2016;13(1):24–8.CrossRef Sasaki JE, Howe CA, John D, Hickey A, Steeves J, Conger S, et al. Energy expenditure for 70 activities in children and adolescents. J Phys Act Health. 2016;13(1):24–8.CrossRef
47.
go back to reference Saint-Maurice PF, Kim Y, Welk JG, Gaesser GA. Kids are not little adults: what MET threshold captures sedentary behavior in children? Eur J Appl Physiol. 2016; doi:10.1007/s00421-015-3238-1. Saint-Maurice PF, Kim Y, Welk JG, Gaesser GA. Kids are not little adults: what MET threshold captures sedentary behavior in children? Eur J Appl Physiol. 2016; doi:10.​1007/​s00421-015-3238-1.
48.
go back to reference Cooper AR, Goodman A, Page AS, Sherar LB, Esliger DW, van Sluijs EMF, et al. Objectively measured physical activity and sedentary time in youth: the international children’s accelerometry database (ICAD). Int J Behav Nutr Phys Act. 2015; doi:10.1186/s12966-015-0274-5. Cooper AR, Goodman A, Page AS, Sherar LB, Esliger DW, van Sluijs EMF, et al. Objectively measured physical activity and sedentary time in youth: the international children’s accelerometry database (ICAD). Int J Behav Nutr Phys Act. 2015; doi:10.​1186/​s12966-015-0274-5.
49.
go back to reference Ekstaedt M, Nyberg G, Ingre M, Ekblom Ö, Marcus C. Sleep, physical activity and BMI in six to ten year-old children measured by accelerometry: a cross-sectional study. Int J Behav Nutr Phys Act. 2013;10:82.CrossRef Ekstaedt M, Nyberg G, Ingre M, Ekblom Ö, Marcus C. Sleep, physical activity and BMI in six to ten year-old children measured by accelerometry: a cross-sectional study. Int J Behav Nutr Phys Act. 2013;10:82.CrossRef
50.
go back to reference Erkelenz N, Kobel S, Kettner S, Drenowatz C, Steinacker JM, the Research Group “Join the Healthy Boat – Primary School”. Parental activity as influence on Children’s BMI percentiles and physical activity. J Sports Sci Med. 2014;13:645–50.PubMedPubMedCentral Erkelenz N, Kobel S, Kettner S, Drenowatz C, Steinacker JM, the Research Group “Join the Healthy Boat – Primary School”. Parental activity as influence on Children’s BMI percentiles and physical activity. J Sports Sci Med. 2014;13:645–50.PubMedPubMedCentral
51.
go back to reference Van der Horst K, Paw MCA, Twisk JWR, Van Mechelen WA. Brief review on correlates of physical activity and Sedentariness in youth. Med Sci Sports Exerc. 2007;39(8):1241–50.CrossRef Van der Horst K, Paw MCA, Twisk JWR, Van Mechelen WA. Brief review on correlates of physical activity and Sedentariness in youth. Med Sci Sports Exerc. 2007;39(8):1241–50.CrossRef
52.
go back to reference Feierabend S, Plankenhorn T, KIM-Studie RT. Kindheit, Internet, Medien. Basisuntersuchung zum Medienumgang 6- bis 13-Jähriger in Deutschland. Stuttgart: Medienpädagogischer Forschungsverbund Südwest (mpfs); 2017. Feierabend S, Plankenhorn T, KIM-Studie RT. Kindheit, Internet, Medien. Basisuntersuchung zum Medienumgang 6- bis 13-Jähriger in Deutschland. Stuttgart: Medienpädagogischer Forschungsverbund Südwest (mpfs); 2017.
53.
go back to reference Pulsford RM, Griew P, Page AS, Cooper AR, Hillsdon MM. Socioeconomic position and childhood sedentary time: evidence from the PEACH project. Int J Behav Nutr Phys Act. 2013;10:105.CrossRefPubMedPubMedCentral Pulsford RM, Griew P, Page AS, Cooper AR, Hillsdon MM. Socioeconomic position and childhood sedentary time: evidence from the PEACH project. Int J Behav Nutr Phys Act. 2013;10:105.CrossRefPubMedPubMedCentral
54.
go back to reference Schmitz KH, Lytle LA, Phillips GA, Murray DM, Birnbaum AS, Kubik MY. Psychosocial correlates of physical activity and sedentary leisure habits in young adolescents: the teens eating for energy and nutrition at school study. Prev Med. 2002;34:266–78.CrossRefPubMed Schmitz KH, Lytle LA, Phillips GA, Murray DM, Birnbaum AS, Kubik MY. Psychosocial correlates of physical activity and sedentary leisure habits in young adolescents: the teens eating for energy and nutrition at school study. Prev Med. 2002;34:266–78.CrossRefPubMed
55.
go back to reference Schenk L, Neuhauser H, Ellert U, Poethko-Müller C, Kleiser C, Mesnik G. Kinder- und Jugendgesundheitssurvey (KiGGS) 2003–2006: Kinder und Jugendliche mit Migrationshintergrund in Deutschland. Berlin: Robert Koch Institution (RKI); 2008. Schenk L, Neuhauser H, Ellert U, Poethko-Müller C, Kleiser C, Mesnik G. Kinder- und Jugendgesundheitssurvey (KiGGS) 2003–2006: Kinder und Jugendliche mit Migrationshintergrund in Deutschland. Berlin: Robert Koch Institution (RKI); 2008.
56.
go back to reference Labree W, Lotters F, van de Mheen D, Rutten F, Chavarria AR, Neve M, et al. Physical activity differences between children from migrant and native origin. BMC Public Health. 2014;14:819.CrossRefPubMedPubMedCentral Labree W, Lotters F, van de Mheen D, Rutten F, Chavarria AR, Neve M, et al. Physical activity differences between children from migrant and native origin. BMC Public Health. 2014;14:819.CrossRefPubMedPubMedCentral
57.
58.
go back to reference Kobel S, Kettner S, Erkelenz N, Kesztyüs D, Steinacker JM. Does a higher incidence of break times in primary schools result in children being more physically active? J Sch Health. 2015;85:3.CrossRef Kobel S, Kettner S, Erkelenz N, Kesztyüs D, Steinacker JM. Does a higher incidence of break times in primary schools result in children being more physically active? J Sch Health. 2015;85:3.CrossRef
59.
go back to reference Stratton G, Ridgers ND, Fairclough SJ, Richardson DJ. Physical activity levels of normal-weight and overweight girls and boys during primary school recess. Obesity. 2007;15(6):1513–9.CrossRefPubMed Stratton G, Ridgers ND, Fairclough SJ, Richardson DJ. Physical activity levels of normal-weight and overweight girls and boys during primary school recess. Obesity. 2007;15(6):1513–9.CrossRefPubMed
60.
go back to reference Kobel S, Kettner S, Lämmle C, Steinacker JM. Physical activity of German children during different segments of the school day. J Public Health. 2016; doi:10.1007/s10389-016-0755-2. Kobel S, Kettner S, Lämmle C, Steinacker JM. Physical activity of German children during different segments of the school day. J Public Health. 2016; doi:10.​1007/​s10389-016-0755-2.
61.
go back to reference Bailey RC, Olson J, Pepper SL, Porszasz J, Barstow TJ, Cooper DM. The level and tempo of children’s physical activities: an observational study. Med Sci Sports Exerc. 1995;27:1033–41.CrossRefPubMed Bailey RC, Olson J, Pepper SL, Porszasz J, Barstow TJ, Cooper DM. The level and tempo of children’s physical activities: an observational study. Med Sci Sports Exerc. 1995;27:1033–41.CrossRefPubMed
Metadata
Title
Sedentary time among primary school children in south-west Germany: amounts and correlates
Authors
Belinda Hoffmann
Sarah Kettner
Tamara Wirt
Olivia Wartha
Lina Hermeling
Jürgen M. Steinacker
Susanne Kobel
the Research Group “Join the Healthy Boat”
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Archives of Public Health / Issue 1/2017
Electronic ISSN: 2049-3258
DOI
https://doi.org/10.1186/s13690-017-0230-8

Other articles of this Issue 1/2017

Archives of Public Health 1/2017 Go to the issue