Skip to main content
Top
Published in: Annals of Intensive Care 1/2020

Open Access 01-12-2020 | Acute Respiratory Distress-Syndrome | Research

Transpulmonary thermodilution detects rapid and reversible increases in lung water induced by positive end-expiratory pressure in acute respiratory distress syndrome

Authors: Francesco Gavelli, Jean-Louis Teboul, Danila Azzolina, Alexandra Beurton, Temistocle Taccheri, Imane Adda, Christopher Lai, Gian Carlo Avanzi, Xavier Monnet

Published in: Annals of Intensive Care | Issue 1/2020

Login to get access

Abstract

Purpose

It has been suggested that, by recruiting lung regions and enlarging the distribution volume of the cold indicator, increasing the positive end-expiratory pressure (PEEP) may lead to an artefactual overestimation of extravascular lung water (EVLW) by transpulmonary thermodilution (TPTD).

Methods

In 60 ARDS patients, we measured EVLW (PiCCO2 device) at a PEEP level set to reach a plateau pressure of 30 cmH2O (HighPEEPstart) and 15 and 45 min after decreasing PEEP to 5 cmH2O (LowPEEP15′ and LowPEEP45′, respectively). Then, we increased PEEP back to the baseline level (HighPEEPend). Between HighPEEPstart and LowPEEP15′, we estimated the degree of lung derecruitment either by measuring changes in the compliance of the respiratory system (Crs) in the whole population, or by measuring the lung derecruited volume in 30 patients. We defined patients with a large derecruitment from the other ones as patients in whom the Crs changes and the measured derecruited volume were larger than the median of these variables observed in the whole population.

Results

Reducing PEEP from HighPEEPstart (14 ± 2 cmH2O) to LowPEEP15′ significantly decreased EVLW from 20 ± 4 to 18 ± 4 mL/kg, central venous pressure (CVP) from 15 ± 4 to 12 ± 4 mmHg, the arterial oxygen tension over inspired oxygen fraction (PaO2/FiO2) ratio from 184 ± 76 to 150 ± 69 mmHg and lung volume by 144 [68–420] mL. The EVLW decrease was similar in “large derecruiters” and the other patients. When PEEP was re-increased to HighPEEPend, CVP, PaO2/FiO2 and EVLW significantly re-increased. At linear mixed effect model, EVLW changes were significantly determined only by changes in PEEP and CVP (p < 0.001 and p = 0.03, respectively, n = 60). When the same analysis was performed by estimating recruitment according to lung volume changes (n = 30), CVP remained significantly associated to the changes in EVLW (p < 0.001).

Conclusions

In ARDS patients, changing the PEEP level induced parallel, small and reversible changes in EVLW. These changes were not due to an artefact of the TPTD technique and were likely due to the PEEP-induced changes in CVP, which is the backward pressure of the lung lymphatic drainage.
Trial registration ID RCB: 2015-A01654-45. Registered 23 October 2015
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Kushimoto S, Endo T, Yamanouchi S, Sakamoto T, Ishikura H, Kitazawa Y, et al. Relationship between extravascular lung water and severity categories of acute respiratory distress syndrome by the Berlin definition. Crit Care. 2013;17:R132.PubMedPubMedCentralCrossRef Kushimoto S, Endo T, Yamanouchi S, Sakamoto T, Ishikura H, Kitazawa Y, et al. Relationship between extravascular lung water and severity categories of acute respiratory distress syndrome by the Berlin definition. Crit Care. 2013;17:R132.PubMedPubMedCentralCrossRef
3.
go back to reference Toung T, Saharia P, Permutt S, Zuidema GD, Cameron JL. Aspiration pneumonia: beneficial and harmful effects of positive end-expiratory pressure. Surgery. 1977;82:279–83.PubMed Toung T, Saharia P, Permutt S, Zuidema GD, Cameron JL. Aspiration pneumonia: beneficial and harmful effects of positive end-expiratory pressure. Surgery. 1977;82:279–83.PubMed
4.
go back to reference Carlile PV, Lowery DD, Gray BA. Effect of PEEP and type of injury on thermal-dye estimation of pulmonary edema. J Appl Physiol. 1985;1986(60):22–31. Carlile PV, Lowery DD, Gray BA. Effect of PEEP and type of injury on thermal-dye estimation of pulmonary edema. J Appl Physiol. 1985;1986(60):22–31.
5.
go back to reference Nieman GF, Bredenberg CE, Paskanik AM. Positive end-expiratory pressure accelerates lung water accumulation in high surface tension edema. Surgery. 1990;107:156–62.PubMed Nieman GF, Bredenberg CE, Paskanik AM. Positive end-expiratory pressure accelerates lung water accumulation in high surface tension edema. Surgery. 1990;107:156–62.PubMed
6.
go back to reference Szakmany T, Heigl P, Molnar Z. Correlation between extravascular lung water and oxygenation in ALI/ARDS patients in septic shock: possible role in the development of atelectasis? Anaesth Intensive Care. 2004;32:196–201.PubMedCrossRef Szakmany T, Heigl P, Molnar Z. Correlation between extravascular lung water and oxygenation in ALI/ARDS patients in septic shock: possible role in the development of atelectasis? Anaesth Intensive Care. 2004;32:196–201.PubMedCrossRef
7.
go back to reference Krebs J, Pelosi P, Tsagogiorgas C, Alb M, Luecke T. Effects of positive end-expiratory pressure on respiratory function and hemodynamics in patients with acute respiratory failure with and without intra-abdominal hypertension: a pilot study. Crit Care. 2009;13:R160.PubMedPubMedCentralCrossRef Krebs J, Pelosi P, Tsagogiorgas C, Alb M, Luecke T. Effects of positive end-expiratory pressure on respiratory function and hemodynamics in patients with acute respiratory failure with and without intra-abdominal hypertension: a pilot study. Crit Care. 2009;13:R160.PubMedPubMedCentralCrossRef
8.
go back to reference Wu X, Zheng R, Zhuang Z. Effect of transpulmonary pressure-guided positive end-expiratory pressure titration on lung injury in pigs with acute respiratory distress syndrome. J Clin Monit Comput. 2020;34:151–9.PubMedCrossRef Wu X, Zheng R, Zhuang Z. Effect of transpulmonary pressure-guided positive end-expiratory pressure titration on lung injury in pigs with acute respiratory distress syndrome. J Clin Monit Comput. 2020;34:151–9.PubMedCrossRef
9.
go back to reference Dunegan LJ, Knight DC, Harken A, O’Conner N, Morgan A. Lung thermal volume in pulmonary edema: effect of positive end expiratory pressure. Ann Surg. 1975;181:809–12.PubMedPubMedCentralCrossRef Dunegan LJ, Knight DC, Harken A, O’Conner N, Morgan A. Lung thermal volume in pulmonary edema: effect of positive end expiratory pressure. Ann Surg. 1975;181:809–12.PubMedPubMedCentralCrossRef
10.
go back to reference Russell JA, Hoeffel J, Murray JF. Effect of different levels of positive end-expiratory pressure on lung water content. J Appl Physiol. 1982;53:9–15.PubMedCrossRef Russell JA, Hoeffel J, Murray JF. Effect of different levels of positive end-expiratory pressure on lung water content. J Appl Physiol. 1982;53:9–15.PubMedCrossRef
11.
go back to reference Myers JC, Reilley TE, Vento JM, McDonald JS, Carey LC, Cloutier CT. Does compliance reflect oxygen delivery in porcine septic respiratory failure treated with positive end-expiratory pressure? Crit Care Med. 1987;15:38–40.PubMedCrossRef Myers JC, Reilley TE, Vento JM, McDonald JS, Carey LC, Cloutier CT. Does compliance reflect oxygen delivery in porcine septic respiratory failure treated with positive end-expiratory pressure? Crit Care Med. 1987;15:38–40.PubMedCrossRef
12.
go back to reference Borg T, Modig J. Intermittent and continuous positive-pressure ventilation in the prophylaxis of endotoxin-induced lung insufficiency. A study in pigs. Acta Anaesthesiol Scand. 1987;31:67–72.PubMedCrossRef Borg T, Modig J. Intermittent and continuous positive-pressure ventilation in the prophylaxis of endotoxin-induced lung insufficiency. A study in pigs. Acta Anaesthesiol Scand. 1987;31:67–72.PubMedCrossRef
13.
go back to reference Myers JC, Reilley TE, Cloutier CT. Effect of positive end-expiratory pressure on extravascular lung water in porcine acute respiratory failure. Crit Care Med. 1988;16:52–4.PubMedCrossRef Myers JC, Reilley TE, Cloutier CT. Effect of positive end-expiratory pressure on extravascular lung water in porcine acute respiratory failure. Crit Care Med. 1988;16:52–4.PubMedCrossRef
14.
go back to reference Corbridge TC, Wood LD, Crawford GP, Chudoba MJ, Yanos J, Sznajder JI. Adverse effects of large tidal volume and low PEEP in canine acid aspiration. Am Rev Respir Dis. 1990;142:311–5.PubMedCrossRef Corbridge TC, Wood LD, Crawford GP, Chudoba MJ, Yanos J, Sznajder JI. Adverse effects of large tidal volume and low PEEP in canine acid aspiration. Am Rev Respir Dis. 1990;142:311–5.PubMedCrossRef
15.
go back to reference Colmenero-Ruiz M, Fernández-Mondéjar E, Fernández-Sacristán MA, Rivera-Fernández R, Vazquez-Mata G. PEEP and low tidal volume ventilation reduce lung water in porcine pulmonary edema. Am J Respir Crit Care Med. 1997;155:964–70.PubMedCrossRef Colmenero-Ruiz M, Fernández-Mondéjar E, Fernández-Sacristán MA, Rivera-Fernández R, Vazquez-Mata G. PEEP and low tidal volume ventilation reduce lung water in porcine pulmonary edema. Am J Respir Crit Care Med. 1997;155:964–70.PubMedCrossRef
16.
go back to reference Ruiz-Bailén M, Fernández-Mondéjar E, Hurtado-Ruiz B, Colmenero-Ruiz M, Rivera-Fernández R, Guerrero-López F, et al. Immediate application of positive-end expiratory pressure is more effective than delayed positive-end expiratory pressure to reduce extravascular lung water. Crit Care Med. 1999;27:380–4.PubMedCrossRef Ruiz-Bailén M, Fernández-Mondéjar E, Hurtado-Ruiz B, Colmenero-Ruiz M, Rivera-Fernández R, Guerrero-López F, et al. Immediate application of positive-end expiratory pressure is more effective than delayed positive-end expiratory pressure to reduce extravascular lung water. Crit Care Med. 1999;27:380–4.PubMedCrossRef
17.
go back to reference Luecke T, Roth H, Herrmann P, Joachim A, Weisser G, Pelosi P, et al. PEEP decreases atelectasis and extravascular lung water but not lung tissue volume in surfactant-washout lung injury. Intensive Care Med. 2003;29:2026–33.PubMedCrossRef Luecke T, Roth H, Herrmann P, Joachim A, Weisser G, Pelosi P, et al. PEEP decreases atelectasis and extravascular lung water but not lung tissue volume in surfactant-washout lung injury. Intensive Care Med. 2003;29:2026–33.PubMedCrossRef
18.
go back to reference Hopewell PC. Failure of positive end-expiratory pressure to decrease lung water content in alloxan-induced pulmonary edema. Am Rev Respir Dis. 1979;120:813–9.PubMed Hopewell PC. Failure of positive end-expiratory pressure to decrease lung water content in alloxan-induced pulmonary edema. Am Rev Respir Dis. 1979;120:813–9.PubMed
19.
go back to reference Miller WC, Rice DL, Unger KM, Bradley BL. Effect of PEEP on lung water content in experimental noncardiogenic pulmonary edema. Crit Care Med. 1981;9:7–9.PubMedCrossRef Miller WC, Rice DL, Unger KM, Bradley BL. Effect of PEEP on lung water content in experimental noncardiogenic pulmonary edema. Crit Care Med. 1981;9:7–9.PubMedCrossRef
20.
go back to reference Peitzman AB, Corbett WA, Shires GT, Lynch NJ, Shires GT. The effect of increasing end-expiratory pressure on extravascular lung water. Surgery. 1981;90:439–45.PubMed Peitzman AB, Corbett WA, Shires GT, Lynch NJ, Shires GT. The effect of increasing end-expiratory pressure on extravascular lung water. Surgery. 1981;90:439–45.PubMed
21.
go back to reference Peitzman AB, Shires GT, Illner H, Shires GT. Pulmonary acid injury: effects of positive end-expiratory pressure and crystalloid vs colloid fluid resuscitation. Arch Surg. 1960;1982(117):662–8. Peitzman AB, Shires GT, Illner H, Shires GT. Pulmonary acid injury: effects of positive end-expiratory pressure and crystalloid vs colloid fluid resuscitation. Arch Surg. 1960;1982(117):662–8.
22.
go back to reference Luce JM, Robertson HT, Huang T, Colley PS, Gronka R, Nessly ML, et al. The effects of expiratory positive airway pressure on the resolution of oleic acid-induced lung injury in dogs. Am Rev Respir Dis. 1982;125:716–22.PubMed Luce JM, Robertson HT, Huang T, Colley PS, Gronka R, Nessly ML, et al. The effects of expiratory positive airway pressure on the resolution of oleic acid-induced lung injury in dogs. Am Rev Respir Dis. 1982;125:716–22.PubMed
23.
go back to reference Saul GM, Feeley TW, Mihm FG. Effect of graded administration of PEEP on lung water in noncardiogenic pulmonary edema. Crit Care Med. 1982;10:667–9.PubMedCrossRef Saul GM, Feeley TW, Mihm FG. Effect of graded administration of PEEP on lung water in noncardiogenic pulmonary edema. Crit Care Med. 1982;10:667–9.PubMedCrossRef
24.
go back to reference Luce JM, Huang TW, Robertson HT, Colley PS, Gronka R, Nessly ML, et al. The effects of prophylactic expiratory positive airway pressure on the resolution of oleic acid-induced lung injury in dogs. Ann Surg. 1983;197:327–36.PubMedPubMedCentralCrossRef Luce JM, Huang TW, Robertson HT, Colley PS, Gronka R, Nessly ML, et al. The effects of prophylactic expiratory positive airway pressure on the resolution of oleic acid-induced lung injury in dogs. Ann Surg. 1983;197:327–36.PubMedPubMedCentralCrossRef
25.
go back to reference Slutsky RA. Reduction in pulmonary blood volume during positive end-expiratory pressure. J Surg Res. 1983;35:181–7.PubMedCrossRef Slutsky RA. Reduction in pulmonary blood volume during positive end-expiratory pressure. J Surg Res. 1983;35:181–7.PubMedCrossRef
26.
go back to reference Helbert C, Paskanik A, Bredenberg CE. Effect of positive end-expiratory pressure on lung water in pulmonary edema caused by increased membrane permeability. Ann Thorac Surg. 1983;36:42–8.PubMedCrossRef Helbert C, Paskanik A, Bredenberg CE. Effect of positive end-expiratory pressure on lung water in pulmonary edema caused by increased membrane permeability. Ann Thorac Surg. 1983;36:42–8.PubMedCrossRef
27.
go back to reference Malo J, Ali J, Wood LD. How does positive end-expiratory pressure reduce intrapulmonary shunt in canine pulmonary edema? J Appl Physiol. 1984;57:1002–10.PubMedCrossRef Malo J, Ali J, Wood LD. How does positive end-expiratory pressure reduce intrapulmonary shunt in canine pulmonary edema? J Appl Physiol. 1984;57:1002–10.PubMedCrossRef
28.
go back to reference Toth I, Leiner T, Mikor A, Szakmany T, Bogar L, Molnar Z. Hemodynamic and respiratory changes during lung recruitment and descending optimal positive end-expiratory pressure titration in patients with acute respiratory distress syndrome. Crit Care Med. 2007;35:787–93.PubMedCrossRef Toth I, Leiner T, Mikor A, Szakmany T, Bogar L, Molnar Z. Hemodynamic and respiratory changes during lung recruitment and descending optimal positive end-expiratory pressure titration in patients with acute respiratory distress syndrome. Crit Care Med. 2007;35:787–93.PubMedCrossRef
29.
go back to reference ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307:2526–33. ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307:2526–33.
30.
go back to reference Dufour N, Delville M, Teboul J-L, Camous L, Favier du Noyer A, Richard C, et al. Transpulmonary thermodilution measurements are not affected by continuous veno-venous hemofiltration at high blood pump flow. Intensive Care Med. 2012;38:1162–8.PubMedCrossRef Dufour N, Delville M, Teboul J-L, Camous L, Favier du Noyer A, Richard C, et al. Transpulmonary thermodilution measurements are not affected by continuous veno-venous hemofiltration at high blood pump flow. Intensive Care Med. 2012;38:1162–8.PubMedCrossRef
31.
go back to reference Sakka SG, Hanusch T, Thuemer O, Wegscheider K. The influence of venovenous renal replacement therapy on measurements by the transpulmonary thermodilution technique. Anesth Analg. 2007;105:1079–82 (table of contents).PubMedCrossRef Sakka SG, Hanusch T, Thuemer O, Wegscheider K. The influence of venovenous renal replacement therapy on measurements by the transpulmonary thermodilution technique. Anesth Analg. 2007;105:1079–82 (table of contents).PubMedCrossRef
32.
go back to reference Monnet X, Persichini R, Ktari M, Jozwiak M, Richard C, Teboul J-L. Precision of the transpulmonary thermodilution measurements. Crit Care. 2011;15:R204.PubMedPubMedCentralCrossRef Monnet X, Persichini R, Ktari M, Jozwiak M, Richard C, Teboul J-L. Precision of the transpulmonary thermodilution measurements. Crit Care. 2011;15:R204.PubMedPubMedCentralCrossRef
34.
go back to reference Chen L, Chen G-Q, Shore K, Shklar O, Martins C, Devenyi B, et al. Implementing a bedside assessment of respiratory mechanics in patients with acute respiratory distress syndrome. Crit Care. 2017;21:84.PubMedPubMedCentralCrossRef Chen L, Chen G-Q, Shore K, Shklar O, Martins C, Devenyi B, et al. Implementing a bedside assessment of respiratory mechanics in patients with acute respiratory distress syndrome. Crit Care. 2017;21:84.PubMedPubMedCentralCrossRef
35.
go back to reference Dellamonica J, Lerolle N, Sargentini C, Beduneau G, Di Marco F, Mercat A, et al. PEEP-induced changes in lung volume in acute respiratory distress syndrome. Two methods to estimate alveolar recruitment. Intensive Care Med. 2011;37:1595–604.PubMedCrossRef Dellamonica J, Lerolle N, Sargentini C, Beduneau G, Di Marco F, Mercat A, et al. PEEP-induced changes in lung volume in acute respiratory distress syndrome. Two methods to estimate alveolar recruitment. Intensive Care Med. 2011;37:1595–604.PubMedCrossRef
36.
go back to reference Sahetya SK, Goligher EC, Brower RG. Fifty years of research in ARDS. Setting positive end-expiratory pressure in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;195:1429–38.PubMedPubMedCentralCrossRef Sahetya SK, Goligher EC, Brower RG. Fifty years of research in ARDS. Setting positive end-expiratory pressure in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;195:1429–38.PubMedPubMedCentralCrossRef
37.
go back to reference Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017;43:304–77.PubMedCrossRef Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017;43:304–77.PubMedCrossRef
38.
go back to reference Jozwiak M, Silva S, Persichini R, Anguel N, Osman D, Richard C, et al. Extravascular lung water is an independent prognostic factor in patients with acute respiratory distress syndrome. Crit Care Med. 2013;41:472–80.PubMedCrossRef Jozwiak M, Silva S, Persichini R, Anguel N, Osman D, Richard C, et al. Extravascular lung water is an independent prognostic factor in patients with acute respiratory distress syndrome. Crit Care Med. 2013;41:472–80.PubMedCrossRef
39.
go back to reference Tagami T, Kushimoto S, Yamamoto Y, Atsumi T, Tosa R, Matsuda K, et al. Validation of extravascular lung water measurement by single transpulmonary thermodilution: human autopsy study. Crit Care. 2010;14:R162.PubMedPubMedCentralCrossRef Tagami T, Kushimoto S, Yamamoto Y, Atsumi T, Tosa R, Matsuda K, et al. Validation of extravascular lung water measurement by single transpulmonary thermodilution: human autopsy study. Crit Care. 2010;14:R162.PubMedPubMedCentralCrossRef
40.
go back to reference Dres M, Teboul J-L, Guerin L, Anguel N, Amilien V, Clair M-P, et al. Transpulmonary thermodilution enables to detect small short-term changes in extravascular lung water induced by a bronchoalveolar lavage. Crit Care Med. 2014;42:1869–73.PubMedCrossRef Dres M, Teboul J-L, Guerin L, Anguel N, Amilien V, Clair M-P, et al. Transpulmonary thermodilution enables to detect small short-term changes in extravascular lung water induced by a bronchoalveolar lavage. Crit Care Med. 2014;42:1869–73.PubMedCrossRef
41.
go back to reference Cordemans C, De Laet I, Van Regenmortel N, Schoonheydt K, Dits H, Huber W, et al. Fluid management in critically ill patients: the role of extravascular lung water, abdominal hypertension, capillary leak, and fluid balance. Ann Intensive Care. 2012;2:S1.PubMedPubMedCentralCrossRef Cordemans C, De Laet I, Van Regenmortel N, Schoonheydt K, Dits H, Huber W, et al. Fluid management in critically ill patients: the role of extravascular lung water, abdominal hypertension, capillary leak, and fluid balance. Ann Intensive Care. 2012;2:S1.PubMedPubMedCentralCrossRef
42.
go back to reference Huber W, Höllthaler J, Schuster T, Umgelter A, Franzen M, Saugel B, et al. Association between different indexations of extravascular lung water (EVLW) and PaO2/FiO2: a two-center study in 231 patients. PLoS ONE. 2014;9:e103854.PubMedPubMedCentralCrossRef Huber W, Höllthaler J, Schuster T, Umgelter A, Franzen M, Saugel B, et al. Association between different indexations of extravascular lung water (EVLW) and PaO2/FiO2: a two-center study in 231 patients. PLoS ONE. 2014;9:e103854.PubMedPubMedCentralCrossRef
43.
44.
go back to reference Mallat J, Pepy F, Lemyze M, Barrailler S, Gasan G, Tronchon L, et al. Extravascular lung water indexed or not to predicted body weight is a predictor of mortality in septic shock patients. J Crit Care. 2012;27:376–83.PubMedCrossRef Mallat J, Pepy F, Lemyze M, Barrailler S, Gasan G, Tronchon L, et al. Extravascular lung water indexed or not to predicted body weight is a predictor of mortality in septic shock patients. J Crit Care. 2012;27:376–83.PubMedCrossRef
45.
go back to reference Tagami T, Nakamura T, Kushimoto S, Tosa R, Watanabe A, Kaneko T, et al. Early-phase changes of extravascular lung water index as a prognostic indicator in acute respiratory distress syndrome patients. Ann Intensive Care. 2014;4:27.PubMedPubMedCentralCrossRef Tagami T, Nakamura T, Kushimoto S, Tosa R, Watanabe A, Kaneko T, et al. Early-phase changes of extravascular lung water index as a prognostic indicator in acute respiratory distress syndrome patients. Ann Intensive Care. 2014;4:27.PubMedPubMedCentralCrossRef
46.
go back to reference Fan E, Brodie D, Slutsky AS. Acute respiratory distress syndrome: advances in diagnosis and treatment. JAMA. 2018;319:698–710.PubMedCrossRef Fan E, Brodie D, Slutsky AS. Acute respiratory distress syndrome: advances in diagnosis and treatment. JAMA. 2018;319:698–710.PubMedCrossRef
47.
go back to reference Chiumello D, Coppola S, Froio S, Mietto C, Brazzi L, Carlesso E, et al. Time to reach a new steady state after changes of positive end expiratory pressure. Intensive Care Med. 2013;39:1377–85.PubMedCrossRef Chiumello D, Coppola S, Froio S, Mietto C, Brazzi L, Carlesso E, et al. Time to reach a new steady state after changes of positive end expiratory pressure. Intensive Care Med. 2013;39:1377–85.PubMedCrossRef
48.
go back to reference Pelosi P, Bottino N, Chiumello D, Caironi P, Panigada M, Gamberoni C, et al. Sigh in supine and prone position during acute respiratory distress syndrome. Am J Respir Crit Care Med. 2003;167:521–7.PubMedCrossRef Pelosi P, Bottino N, Chiumello D, Caironi P, Panigada M, Gamberoni C, et al. Sigh in supine and prone position during acute respiratory distress syndrome. Am J Respir Crit Care Med. 2003;167:521–7.PubMedCrossRef
49.
go back to reference Jozwiak M, Teboul J-L, Anguel N, Persichini R, Silva S, Chemla D, et al. Beneficial hemodynamic effects of prone positioning in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2013;188:1428–33.PubMedCrossRef Jozwiak M, Teboul J-L, Anguel N, Persichini R, Silva S, Chemla D, et al. Beneficial hemodynamic effects of prone positioning in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2013;188:1428–33.PubMedCrossRef
50.
go back to reference Teboul JL, Pinsky MR, Mercat A, Anguel N, Bernardin G, Achard JM, et al. Estimating cardiac filling pressure in mechanically ventilated patients with hyperinflation. Crit Care Med. 2000;28:3631–6.PubMedCrossRef Teboul JL, Pinsky MR, Mercat A, Anguel N, Bernardin G, Achard JM, et al. Estimating cardiac filling pressure in mechanically ventilated patients with hyperinflation. Crit Care Med. 2000;28:3631–6.PubMedCrossRef
51.
go back to reference Hedenstierna G, Lattuada M. Lymphatics and lymph in acute lung injury. Curr Opin Crit Care. 2008;14:31–6.PubMedCrossRef Hedenstierna G, Lattuada M. Lymphatics and lymph in acute lung injury. Curr Opin Crit Care. 2008;14:31–6.PubMedCrossRef
52.
go back to reference Frostell C, Blomqvist H, Wickerts CJ. Effects of PEEP on extravascular lung water and central blood volume in the dog. Acta Anaesthesiol Scand. 1987;31:711–6.PubMedCrossRef Frostell C, Blomqvist H, Wickerts CJ. Effects of PEEP on extravascular lung water and central blood volume in the dog. Acta Anaesthesiol Scand. 1987;31:711–6.PubMedCrossRef
53.
go back to reference Effros RM, Pornsuriyasak P, Porszasz J, Casaburi R. Indicator dilution measurements of extravascular lung water: basic assumptions and observations. Am J Physiol Lung Cell Mol Physiol. 2008;294:L1023–31.PubMedCrossRef Effros RM, Pornsuriyasak P, Porszasz J, Casaburi R. Indicator dilution measurements of extravascular lung water: basic assumptions and observations. Am J Physiol Lung Cell Mol Physiol. 2008;294:L1023–31.PubMedCrossRef
54.
go back to reference Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40:1795–815.PubMedPubMedCentralCrossRef Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40:1795–815.PubMedPubMedCentralCrossRef
Metadata
Title
Transpulmonary thermodilution detects rapid and reversible increases in lung water induced by positive end-expiratory pressure in acute respiratory distress syndrome
Authors
Francesco Gavelli
Jean-Louis Teboul
Danila Azzolina
Alexandra Beurton
Temistocle Taccheri
Imane Adda
Christopher Lai
Gian Carlo Avanzi
Xavier Monnet
Publication date
01-12-2020
Publisher
Springer International Publishing
Published in
Annals of Intensive Care / Issue 1/2020
Electronic ISSN: 2110-5820
DOI
https://doi.org/10.1186/s13613-020-0644-2

Other articles of this Issue 1/2020

Annals of Intensive Care 1/2020 Go to the issue