Skip to main content
Top
Published in: EJNMMI Research 1/2021

Open Access 01-12-2021 | Original research

A dedicated paediatric [18F]FDG PET/CT dosage regimen

Authors: Christina P. W. Cox, Daniëlle M. E. van Assema, Frederik A. Verburg, Tessa Brabander, Mark Konijnenberg, Marcel Segbers

Published in: EJNMMI Research | Issue 1/2021

Login to get access

Abstract

Background

The role of 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG) positron emission tomography/computed tomography (PET/CT) in children is still expanding. Dedicated paediatric dosage regimens are needed to keep the radiation dose as low as reasonably achievable and reduce the risk of radiation-induced carcinogenesis. The aim of this study is to investigate the relation between patient-dependent parameters and [18F]FDG PET image quality in order to propose a dedicated paediatric dose regimen.

Methods

In this retrospective analysis, 102 children and 85 adults were included that underwent a diagnostic [18F]FDG PET/CT scan. The image quality of the PET scans was measured by the signal-to-noise ratio (SNR) in the liver. The SNR liver was normalized (SNRnorm) for administered activity and acquisition time to apply curve fitting with body weight, body length, body mass index, body weight/body length and body surface area. Curve fitting was performed with two power fits, a nonlinear two-parameter model α p−d and a linear single-parameter model α p−0.5. The fit parameters of the preferred model were combined with a user preferred SNR to obtain at least moderate or good image quality for the dosage regimen proposal.

Results

Body weight demonstrated the highest coefficient of determination for the nonlinear (R2 = 0.81) and linear (R2 = 0.80) models. The nonlinear model was preferred by the Akaike’s corrected information criterion. We decided to use a SNR of 6.5, based on the expert opinion of three nuclear medicine physicians. Comparison with the quadratic adult protocol confirmed the need for different dosage regimens for both patient groups. In this study, the amount of administered activity can be considerably reduced in comparison with the current paediatric guidelines.

Conclusion

Body weight has the strongest relation with [18F]FDG PET image quality in children. The proposed nonlinear dosage regimen based on body mass will provide a constant and clinical sufficient image quality with a significant reduction of the effective dose compared to the current guidelines. A dedicated paediatric dosage regimen is necessary, as a universal dosing regimen for paediatric and adult is not feasible.
Literature
1.
go back to reference Masselli G, De Angelis C, Sollaku S, Casciani E, Gualdi G. PET/CT in pediatric oncology. Am J Nucl Med Mol Imaging. 2020;10(2):83.PubMedPubMedCentral Masselli G, De Angelis C, Sollaku S, Casciani E, Gualdi G. PET/CT in pediatric oncology. Am J Nucl Med Mol Imaging. 2020;10(2):83.PubMedPubMedCentral
2.
go back to reference Parisi MT, Otjen JP, Stanescu AL, Shulkin BL. Radionuclide imaging of infection and inflammation in children: a review. Semin Nucl Med. 2018;48(2):148–65.PubMedCrossRef Parisi MT, Otjen JP, Stanescu AL, Shulkin BL. Radionuclide imaging of infection and inflammation in children: a review. Semin Nucl Med. 2018;48(2):148–65.PubMedCrossRef
3.
go back to reference Ozasa K, Shimizu Y, Suyama A, Kasagi F, Soda M, Grant EJ, et al. Studies of the mortality of atomic bomb survivors, Report 14, 1950–2003: an overview of cancer and noncancer diseases. Radiat Res. 2012;177(3):229–43.PubMedCrossRef Ozasa K, Shimizu Y, Suyama A, Kasagi F, Soda M, Grant EJ, et al. Studies of the mortality of atomic bomb survivors, Report 14, 1950–2003: an overview of cancer and noncancer diseases. Radiat Res. 2012;177(3):229–43.PubMedCrossRef
4.
go back to reference ICRP. The 2007 recommendations of the international commission on radiological protection. ICRP publication 103. Ann ICRP. 2007;37(2–4): 2 ICRP. The 2007 recommendations of the international commission on radiological protection. ICRP publication 103. Ann ICRP. 2007;37(2–4): 2
5.
go back to reference WHO. Communicating radiation risks in Paediatric imaging. Geneva: WHO Press; 2016. WHO. Communicating radiation risks in Paediatric imaging. Geneva: WHO Press; 2016.
7.
go back to reference Vali R, Alessio A, Balza R, Borgwardt L, Bar-Sever Z, Czachowski M, et al. SNMMI procedure standard/EANM practice guideline on pediatric (18)F-FDG PET/CT for oncology 10. J Nucl Med. 2021;62(1):99–110.PubMedCrossRef Vali R, Alessio A, Balza R, Borgwardt L, Bar-Sever Z, Czachowski M, et al. SNMMI procedure standard/EANM practice guideline on pediatric (18)F-FDG PET/CT for oncology 10. J Nucl Med. 2021;62(1):99–110.PubMedCrossRef
8.
go back to reference Treves ST, Gelfand MJ, Fahey FH, Parisi MT. 2016 update of the North American consensus guidelines for pediatric administered radiopharmaceutical activities. J Nucl Med. 2016;57(12):15N-18N.PubMed Treves ST, Gelfand MJ, Fahey FH, Parisi MT. 2016 update of the North American consensus guidelines for pediatric administered radiopharmaceutical activities. J Nucl Med. 2016;57(12):15N-18N.PubMed
9.
go back to reference Alessio AM, Kinahan PE, Manchanda V, Ghioni V, Aldape L, Parisi MT. Weight-based, low-dose pediatric whole-body PET/CT protocols. J Nucl Med. 2009;50(10):1570–8.PubMedCrossRef Alessio AM, Kinahan PE, Manchanda V, Ghioni V, Aldape L, Parisi MT. Weight-based, low-dose pediatric whole-body PET/CT protocols. J Nucl Med. 2009;50(10):1570–8.PubMedCrossRef
10.
go back to reference Accorsi R, Karp JS, Surti S. Improved dose regimen in pediatric PET. J Nucl Med. 2010;51(2):293–300.PubMedCrossRef Accorsi R, Karp JS, Surti S. Improved dose regimen in pediatric PET. J Nucl Med. 2010;51(2):293–300.PubMedCrossRef
11.
go back to reference Alessio AM, Sammer M, Phillips GS, Manchanda V, Mohr BC, Parisi MT. Evaluation of optimal acquisition duration or injected activity for pediatric 18F-FDG PET/CT. J Nucl Med. 2011;52(7):1028–34.PubMedCrossRef Alessio AM, Sammer M, Phillips GS, Manchanda V, Mohr BC, Parisi MT. Evaluation of optimal acquisition duration or injected activity for pediatric 18F-FDG PET/CT. J Nucl Med. 2011;52(7):1028–34.PubMedCrossRef
12.
go back to reference Jacobs F, Thierens H, Piepsz A, Bacher K, Van de Wiele C, Ham H, et al. Optimised tracer-dependent dosage cards to obtain weight-independent effective doses. Eur J Nucl Med Mol Imaging. 2005;32(5):581–8.PubMedCrossRef Jacobs F, Thierens H, Piepsz A, Bacher K, Van de Wiele C, Ham H, et al. Optimised tracer-dependent dosage cards to obtain weight-independent effective doses. Eur J Nucl Med Mol Imaging. 2005;32(5):581–8.PubMedCrossRef
13.
go back to reference Alkhybari EM, McEntee MF, Willowson KP, Brennan PC, Kitsos T, Kench PL. An Australian local diagnostic reference level for paediatric whole-body (18)F-FDG PET/CT. Br J Radiol. 2019;92(1096):20180879.PubMedPubMedCentralCrossRef Alkhybari EM, McEntee MF, Willowson KP, Brennan PC, Kitsos T, Kench PL. An Australian local diagnostic reference level for paediatric whole-body (18)F-FDG PET/CT. Br J Radiol. 2019;92(1096):20180879.PubMedPubMedCentralCrossRef
14.
go back to reference Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42(2):328–54.PubMedCrossRef Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42(2):328–54.PubMedCrossRef
15.
go back to reference de Groot EH, Post N, Boellaard R, Wagenaar NR, Willemsen AT, van Dalen JA. Optimized dose regimen for whole-body FDG-PET imaging. EJNMMI Res. 2013;3(1):63.PubMedPubMedCentralCrossRef de Groot EH, Post N, Boellaard R, Wagenaar NR, Willemsen AT, van Dalen JA. Optimized dose regimen for whole-body FDG-PET imaging. EJNMMI Res. 2013;3(1):63.PubMedPubMedCentralCrossRef
16.
go back to reference Halpern BS, Dahlbom M, Auerbach MA, Schiepers C, Fueger BJ, Weber WA, et al. Optimizing imaging protocols for overweight and obese patients: a lutetium orthosilicate PET/CT study. J Nucl Med. 2005;46(4):603–7.PubMed Halpern BS, Dahlbom M, Auerbach MA, Schiepers C, Fueger BJ, Weber WA, et al. Optimizing imaging protocols for overweight and obese patients: a lutetium orthosilicate PET/CT study. J Nucl Med. 2005;46(4):603–7.PubMed
17.
go back to reference Halpern BS, Dahlbom M, Quon A, Schiepers C, Waldherr C, Silverman DH, et al. Impact of patient weight and emission scan duration on PET/CT image quality and lesion detectability. J Nucl Med. 2004;45(5):797–801.PubMed Halpern BS, Dahlbom M, Quon A, Schiepers C, Waldherr C, Silverman DH, et al. Impact of patient weight and emission scan duration on PET/CT image quality and lesion detectability. J Nucl Med. 2004;45(5):797–801.PubMed
18.
go back to reference Masuda Y, Kondo C, Matsuo Y, Uetani M, Kusakabe K. Comparison of imaging protocols for 18F-FDG PET/CT in overweight patients: optimizing scan duration versus administered dose. J Nucl Med. 2009;50(6):844–8.PubMedCrossRef Masuda Y, Kondo C, Matsuo Y, Uetani M, Kusakabe K. Comparison of imaging protocols for 18F-FDG PET/CT in overweight patients: optimizing scan duration versus administered dose. J Nucl Med. 2009;50(6):844–8.PubMedCrossRef
19.
go back to reference Watson CC, Casey ME, Bendriem B, Carney JP, Townsend DW, Eberl S, et al. Optimizing injected dose in clinical PET by accurately modeling the counting-rate response functions specific to individual patient scans. J Nucl Med. 2005;46(11):1825–34.PubMed Watson CC, Casey ME, Bendriem B, Carney JP, Townsend DW, Eberl S, et al. Optimizing injected dose in clinical PET by accurately modeling the counting-rate response functions specific to individual patient scans. J Nucl Med. 2005;46(11):1825–34.PubMed
20.
go back to reference Geismar JH, Stolzmann P, Sah BR, Burger IA, Seifert B, Delso G, et al. Intra-individual comparison of PET/CT with different body weight-adapted FDG dosage regimens. Acta Radiol Open. 2015;4(2):1–9. Geismar JH, Stolzmann P, Sah BR, Burger IA, Seifert B, Delso G, et al. Intra-individual comparison of PET/CT with different body weight-adapted FDG dosage regimens. Acta Radiol Open. 2015;4(2):1–9.
21.
go back to reference van Gent M, Hamming VC, Schaar JE, Glaudemans AWJM, Willemsen ATM. Dose optimization for pediatric FDG whole body PET/CT. Eur J Nucl Med Mol Imag. 2019;46(11):1. van Gent M, Hamming VC, Schaar JE, Glaudemans AWJM, Willemsen ATM. Dose optimization for pediatric FDG whole body PET/CT. Eur J Nucl Med Mol Imag. 2019;46(11):1.
22.
go back to reference Gatidis S, Schmidt H, la Fougere C, Nikolaou K, Schwenzer NF, Schafer JF. Defining optimal tracer activities in pediatric oncologic whole-body (18)F-FDG-PET/MRI. Eur J Nucl Med Mol Imaging. 2016;43(13):2283–9.PubMedCrossRef Gatidis S, Schmidt H, la Fougere C, Nikolaou K, Schwenzer NF, Schafer JF. Defining optimal tracer activities in pediatric oncologic whole-body (18)F-FDG-PET/MRI. Eur J Nucl Med Mol Imaging. 2016;43(13):2283–9.PubMedCrossRef
23.
go back to reference Kertesz H, Beyer T, London K, Saleh H, Chung D, Rausch I, et al. Reducing radiation exposure to paediatric patients undergoing [18F]FDG-PET/CT imaging. Mol Imaging Biol. 2021. Kertesz H, Beyer T, London K, Saleh H, Chung D, Rausch I, et al. Reducing radiation exposure to paediatric patients undergoing [18F]FDG-PET/CT imaging. Mol Imaging Biol. 2021.
24.
go back to reference Lassmann M, Treves ST, Group ESPDHW. Paediatric radiopharmaceutical administration: harmonization of the 2007 EANM paediatric dosage card (version 1.5.2008) and the 2010 North American consensus guidelines. Eur J Nucl Med Mol Imaging. 2014;41(5):1036–41. Lassmann M, Treves ST, Group ESPDHW. Paediatric radiopharmaceutical administration: harmonization of the 2007 EANM paediatric dosage card (version 1.5.2008) and the 2010 North American consensus guidelines. Eur J Nucl Med Mol Imaging. 2014;41(5):1036–41.
25.
go back to reference Du Bois D, Du Bois EF. A formula to estimate the approximate surface area if height and weight be known 1916. Nutrition. 1989;5(5):303–11.PubMed Du Bois D, Du Bois EF. A formula to estimate the approximate surface area if height and weight be known 1916. Nutrition. 1989;5(5):303–11.PubMed
26.
go back to reference Caan GA, Almeida AS, Segbers M. Phantom study into constant image quality of low-dose CT in the pediatric population. Eur J Nucl Med. 2014;41(10):2. Caan GA, Almeida AS, Segbers M. Phantom study into constant image quality of low-dose CT in the pediatric population. Eur J Nucl Med. 2014;41(10):2.
27.
go back to reference Caan GA, Almeida AS, Segbers M. Pediactric low-dose CT: how low can we go? Eur J Nucl Med. 2016;43(11):1. Caan GA, Almeida AS, Segbers M. Pediactric low-dose CT: how low can we go? Eur J Nucl Med. 2016;43(11):1.
29.
30.
go back to reference Yeung HW, Sanches A, Squire OD, Macapinlac HA, Larson SM, Erdi YE. Standardized uptake value in pediatric patients: an investigation to determine the optimum measurement parameter. Eur J Nucl Med Mol Imaging. 2002;29(1):61–6.PubMedCrossRef Yeung HW, Sanches A, Squire OD, Macapinlac HA, Larson SM, Erdi YE. Standardized uptake value in pediatric patients: an investigation to determine the optimum measurement parameter. Eur J Nucl Med Mol Imaging. 2002;29(1):61–6.PubMedCrossRef
31.
go back to reference Schomburg A, Bender H, Reichel C, Sommer T, Ruhlmann J, Kozak B, et al. Standardized uptake values of fluorine-18 fluorodeoxyglucose: the value of different normalization procedures. Eur J Nucl Med. 1996;23(5):571–4.PubMedCrossRef Schomburg A, Bender H, Reichel C, Sommer T, Ruhlmann J, Kozak B, et al. Standardized uptake values of fluorine-18 fluorodeoxyglucose: the value of different normalization procedures. Eur J Nucl Med. 1996;23(5):571–4.PubMedCrossRef
32.
go back to reference Burnham KP, Anderson DR. Model selection and multimodel inference: A practical information-theoretic approach. 2nd ed. New York: Springer; 2002. Burnham KP, Anderson DR. Model selection and multimodel inference: A practical information-theoretic approach. 2nd ed. New York: Springer; 2002.
33.
go back to reference ICRP. Radiation Dose to Patients from Radiopharmaceuticals: a Compendium of Current Information Related to Frequently Used Substances. ICRP Publication 128. Ann ICRP. 2015;442:107–9. ICRP. Radiation Dose to Patients from Radiopharmaceuticals: a Compendium of Current Information Related to Frequently Used Substances. ICRP Publication 128. Ann ICRP. 2015;442:107–9.
34.
go back to reference Meier JM, Alavi A, Iruvuri S, Alzeair S, Parker R, Houseni M, et al. Assessment of age-related changes in abdominal organ structure and function with computed tomography and positron emission tomography. Semin Nucl Med. 2007;37(3):154–72.PubMedCrossRef Meier JM, Alavi A, Iruvuri S, Alzeair S, Parker R, Houseni M, et al. Assessment of age-related changes in abdominal organ structure and function with computed tomography and positron emission tomography. Semin Nucl Med. 2007;37(3):154–72.PubMedCrossRef
35.
go back to reference Sastre J, Pallardó FV, Plá R, Pellín A, Juan G, O’Connor JE, et al. Aging of the liver: age-associated mitochondrial damage in intact hepatocytes. Hepatology. 1996;24(5):1199–205.PubMedCrossRef Sastre J, Pallardó FV, Plá R, Pellín A, Juan G, O’Connor JE, et al. Aging of the liver: age-associated mitochondrial damage in intact hepatocytes. Hepatology. 1996;24(5):1199–205.PubMedCrossRef
36.
go back to reference Grasedyck K, Jahnke M, Friedrich O, Schulz D, Lindner J. Aging of liver: morphological and biochemical changes. Mech Ageing Dev. 1980;14(3–4):435–42.PubMedCrossRef Grasedyck K, Jahnke M, Friedrich O, Schulz D, Lindner J. Aging of liver: morphological and biochemical changes. Mech Ageing Dev. 1980;14(3–4):435–42.PubMedCrossRef
37.
go back to reference ICRP. Report of the task group on reference man. Ann ICRP. 1979;3(1–4). ICRP. Report of the task group on reference man. Ann ICRP. 1979;3(1–4).
38.
go back to reference Keyes JW Jr. SUV: standard uptake or silly useless value? J Nucl Med. 1995;36(10):1836–9.PubMed Keyes JW Jr. SUV: standard uptake or silly useless value? J Nucl Med. 1995;36(10):1836–9.PubMed
39.
go back to reference Menezes VO, Machado MA, Queiroz CC, Souza SO, d’Errico F, Namias M, et al. Optimization of oncological (18)F-FDG PET/CT imaging based on a multiparameter analysis. Med Phys. 2016;43(2):930–8.PubMedCrossRef Menezes VO, Machado MA, Queiroz CC, Souza SO, d’Errico F, Namias M, et al. Optimization of oncological (18)F-FDG PET/CT imaging based on a multiparameter analysis. Med Phys. 2016;43(2):930–8.PubMedCrossRef
40.
go back to reference Wickham F, McMeekin H, Burniston M, McCool D, Pencharz D, Skillen A, et al. Patient-specific optimisation of administered activity and acquisition times for (18)F-FDG PET imaging. EJNMMI Res. 2017;7(1):3.PubMedPubMedCentralCrossRef Wickham F, McMeekin H, Burniston M, McCool D, Pencharz D, Skillen A, et al. Patient-specific optimisation of administered activity and acquisition times for (18)F-FDG PET imaging. EJNMMI Res. 2017;7(1):3.PubMedPubMedCentralCrossRef
41.
go back to reference McDermott GM, Chowdhury FU, Scarsbrook AF. Evaluation of noise equivalent count parameters as indicators of adult whole-body FDG-PET image quality. Ann Nucl Med. 2013;27(9):855–61.PubMedCrossRef McDermott GM, Chowdhury FU, Scarsbrook AF. Evaluation of noise equivalent count parameters as indicators of adult whole-body FDG-PET image quality. Ann Nucl Med. 2013;27(9):855–61.PubMedCrossRef
42.
go back to reference Mizuta T, Senda M, Okamura T, Kitamura K, Inaoka Y, Takahashi M, et al. NEC density and liver ROI S/N ratio for image quality control of whole-body FDG-PET scans: comparison with visual assessment. Mol Imaging Biol. 2009;11(6):480–6.PubMedCrossRef Mizuta T, Senda M, Okamura T, Kitamura K, Inaoka Y, Takahashi M, et al. NEC density and liver ROI S/N ratio for image quality control of whole-body FDG-PET scans: comparison with visual assessment. Mol Imaging Biol. 2009;11(6):480–6.PubMedCrossRef
44.
go back to reference ICRP. Managing Patient Dose in Multi-Detector Computed Tomography (MDCT). ICRP Publication 102. Ann ICRP. 2007;37(1):77. ICRP. Managing Patient Dose in Multi-Detector Computed Tomography (MDCT). ICRP Publication 102. Ann ICRP. 2007;37(1):77.
45.
go back to reference Schmall JP, Surti S, Otero HJ, Servaes S, Karp JS, States LJ. Investigating low-dose image quality in whole-body pediatric 18F-FDG scans using time-of-flight PET/MRI. J Nucl Med. 2021;62(1):123–30.PubMedCrossRef Schmall JP, Surti S, Otero HJ, Servaes S, Karp JS, States LJ. Investigating low-dose image quality in whole-body pediatric 18F-FDG scans using time-of-flight PET/MRI. J Nucl Med. 2021;62(1):123–30.PubMedCrossRef
46.
go back to reference Zucchetta P, Branchini M, Zorz A, Bodanza V, Cecchin D, Paiusco M, et al. Quantitative analysis of image metrics for reduced and standard dose pediatric (18)F-FDG PET/MRI examinations. Br J Radiol. 2019;92(1095):20180438.PubMedPubMedCentralCrossRef Zucchetta P, Branchini M, Zorz A, Bodanza V, Cecchin D, Paiusco M, et al. Quantitative analysis of image metrics for reduced and standard dose pediatric (18)F-FDG PET/MRI examinations. Br J Radiol. 2019;92(1095):20180438.PubMedPubMedCentralCrossRef
47.
go back to reference Gatidis S, Schmidt H, Gucke B, Bezrukov I, Seitz G, Ebinger M, et al. Comprehensive oncologic imaging in infants and preschool children with substantially reduced radiation exposure using combined simultaneous (1)(8)F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging: a direct comparison to (1)(8)F-fluorodeoxyglucose positron emission tomography/computed tomography. Invest Radiol. 2016;51(1):7–14.PubMedCrossRef Gatidis S, Schmidt H, Gucke B, Bezrukov I, Seitz G, Ebinger M, et al. Comprehensive oncologic imaging in infants and preschool children with substantially reduced radiation exposure using combined simultaneous (1)(8)F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging: a direct comparison to (1)(8)F-fluorodeoxyglucose positron emission tomography/computed tomography. Invest Radiol. 2016;51(1):7–14.PubMedCrossRef
48.
go back to reference Lindstrom E, Sundin A, Trampal C, Lindsjo L, Ilan E, Danfors T, et al. Evaluation of penalized-likelihood estimation reconstruction on a digital time-of-flight PET/CT scanner for (18)F-FDG whole-body examinations. J Nucl Med. 2018;59(7):1152–8.PubMedCrossRef Lindstrom E, Sundin A, Trampal C, Lindsjo L, Ilan E, Danfors T, et al. Evaluation of penalized-likelihood estimation reconstruction on a digital time-of-flight PET/CT scanner for (18)F-FDG whole-body examinations. J Nucl Med. 2018;59(7):1152–8.PubMedCrossRef
49.
go back to reference Parvizi N, Franklin JM, McGowan DR, Teoh EJ, Bradley KM, Gleeson FV. Does a novel penalized likelihood reconstruction of 18F-FDG PET-CT improve signal-to-background in colorectal liver metastases? Eur J Radiol. 2015;84(10):1873–8.PubMedCrossRef Parvizi N, Franklin JM, McGowan DR, Teoh EJ, Bradley KM, Gleeson FV. Does a novel penalized likelihood reconstruction of 18F-FDG PET-CT improve signal-to-background in colorectal liver metastases? Eur J Radiol. 2015;84(10):1873–8.PubMedCrossRef
50.
go back to reference Tragardh E, Minarik D, Almquist H, Bitzen U, Garpered S, Hvittfelt E, et al. Impact of acquisition time and penalizing factor in a block-sequential regularized expectation maximization reconstruction algorithm on a Si-photomultiplier-based PET-CT system for (18)F-FDG. EJNMMI Res. 2019;9(1):64.PubMedPubMedCentralCrossRef Tragardh E, Minarik D, Almquist H, Bitzen U, Garpered S, Hvittfelt E, et al. Impact of acquisition time and penalizing factor in a block-sequential regularized expectation maximization reconstruction algorithm on a Si-photomultiplier-based PET-CT system for (18)F-FDG. EJNMMI Res. 2019;9(1):64.PubMedPubMedCentralCrossRef
51.
go back to reference Hu Z, Li Y, Zou S, Xue H, Sang Z, Liu X, et al. Obtaining PET/CT images from non-attenuation corrected PET images in a single PET system using Wasserstein generative adversarial networks. Phys Med Biol. 2020;65(21):215010.PubMedCrossRef Hu Z, Li Y, Zou S, Xue H, Sang Z, Liu X, et al. Obtaining PET/CT images from non-attenuation corrected PET images in a single PET system using Wasserstein generative adversarial networks. Phys Med Biol. 2020;65(21):215010.PubMedCrossRef
52.
go back to reference Sanaat A, Shiri I, Arabi H, Mainta I, Nkoulou R, Zaidi H. Deep learning-assisted ultra-fast/low-dose whole-body PET/CT imaging. Eur J Nucl Med Mol Imaging. 2021. Sanaat A, Shiri I, Arabi H, Mainta I, Nkoulou R, Zaidi H. Deep learning-assisted ultra-fast/low-dose whole-body PET/CT imaging. Eur J Nucl Med Mol Imaging. 2021.
53.
go back to reference Wang YJ, Baratto L, Hawk KE, Theruvath AJ, Pribnow A, Thakor AS, et al. Artificial intelligence enables whole-body positron emission tomography scans with minimal radiation exposure. Eur J Nucl Med Mol Imaging. 2021. Wang YJ, Baratto L, Hawk KE, Theruvath AJ, Pribnow A, Thakor AS, et al. Artificial intelligence enables whole-body positron emission tomography scans with minimal radiation exposure. Eur J Nucl Med Mol Imaging. 2021.
54.
go back to reference Katsari K, Penna D, Arena V, Polverari G, Ianniello A, Italiano D, et al. Artificial intelligence for reduced dose 18F-FDG PET examinations: a real-world deployment through a standardized framework and business case assessment. EJNMMI Phys. 2021;8(1):25.PubMedPubMedCentralCrossRef Katsari K, Penna D, Arena V, Polverari G, Ianniello A, Italiano D, et al. Artificial intelligence for reduced dose 18F-FDG PET examinations: a real-world deployment through a standardized framework and business case assessment. EJNMMI Phys. 2021;8(1):25.PubMedPubMedCentralCrossRef
Metadata
Title
A dedicated paediatric [18F]FDG PET/CT dosage regimen
Authors
Christina P. W. Cox
Daniëlle M. E. van Assema
Frederik A. Verburg
Tessa Brabander
Mark Konijnenberg
Marcel Segbers
Publication date
01-12-2021
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2021
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-021-00812-8

Other articles of this Issue 1/2021

EJNMMI Research 1/2021 Go to the issue