Skip to main content
Top
Published in: EJNMMI Research 1/2020

Open Access 01-12-2020 | Deep Brain Stimulation | Original research

Metabolic network as an objective biomarker in monitoring deep brain stimulation for Parkinson’s disease: a longitudinal study

Authors: Jingjie Ge, Min Wang, Wei Lin, Ping Wu, Yihui Guan, Huiwei Zhang, Zhemin Huang, Likun Yang, Chuantao Zuo, Jiehui Jiang, Axel Rominger, Kuangyu Shi

Published in: EJNMMI Research | Issue 1/2020

Login to get access

Abstract

Background

With the advance of subthalamic nucleus (STN) deep brain stimulation (DBS) in the treatment of Parkinson’s disease (PD), it is desired to identify objective criteria for the monitoring of the therapy outcome. This paper explores the feasibility of metabolic network derived from positron emission tomography (PET) with 18F-fluorodeoxyglucose in monitoring the STN DBS treatment for PD.

Methods

Age-matched 33 PD patients, 33 healthy controls (HCs), 9 PD patients with bilateral DBS surgery and 9 controls underwent 18F-FDG PET scans. The DBS patients were followed longitudinally to investigate the alternations of the PD-related metabolic covariance pattern (PDRP) expressions.

Results

The PDRP expression was abnormally elevated in PD patients compared with HCs (P < 0.001). For DBS patients, a significant decrease in the Unified Parkinson’s Disease Rating Scale (UPDRS, P = 0.001) and PDRP expression (P = 0.004) was observed 3 months after STN DBS treatment, while a rollback was observed in both UPDRS and PDRP expressions (both P < 0.01) 12 months after treatment. The changes in PDRP expression mediated by STN DBS were generally in line with UPDRS improvement. The graphical network analysis shows increased connections at 3 months and a return at 12 months confirmed by small-worldness coefficient.

Conclusions

The preliminary results demonstrate the potential of metabolic network expression as complimentary objective biomarker for the assessment and monitoring of STN DBS treatment in PD patients.
Clinical Trial Registration ChiCTR-DOC-16008645. http://​www.​chictr.​org.​cn/​showproj.​aspx?​proj=​13865.
Appendix
Available only for authorised users
Literature
1.
go back to reference Timmermann L, Jain R, Chen L, Maarouf M, Barbe MT, Allert N, et al. Multiple-source current steering in subthalamic nucleus deep brain stimulation for Parkinson’s disease (the VANTAGE study): a non-randomised, prospective, multicentre, open-label study. Lancet Neurol. 2015;14(7):693–701.CrossRef Timmermann L, Jain R, Chen L, Maarouf M, Barbe MT, Allert N, et al. Multiple-source current steering in subthalamic nucleus deep brain stimulation for Parkinson’s disease (the VANTAGE study): a non-randomised, prospective, multicentre, open-label study. Lancet Neurol. 2015;14(7):693–701.CrossRef
2.
go back to reference Gervais-Bernard H, Xie-Brustolin J, Mertens P, Polo G, Klinger H, Adamec D, et al. Bilateral subthalamic nucleus stimulation in advanced Parkinson’s disease: five year follow-up. J Neurol. 2009;256(2):225–33.CrossRef Gervais-Bernard H, Xie-Brustolin J, Mertens P, Polo G, Klinger H, Adamec D, et al. Bilateral subthalamic nucleus stimulation in advanced Parkinson’s disease: five year follow-up. J Neurol. 2009;256(2):225–33.CrossRef
3.
go back to reference Perlmutter JS. Assessment of Parkinson disease manifestations. Curr Protocol Neurosci. 2009;49:10.CrossRef Perlmutter JS. Assessment of Parkinson disease manifestations. Curr Protocol Neurosci. 2009;49:10.CrossRef
4.
go back to reference Statucka M, Cohn M. Origins matter: culture impacts cognitive testing in Parkinson’s disease. Front Hum Neurosci. 2019;13:269.CrossRef Statucka M, Cohn M. Origins matter: culture impacts cognitive testing in Parkinson’s disease. Front Hum Neurosci. 2019;13:269.CrossRef
5.
go back to reference Lozano AM, Lipsman N, Bergman H, Brown P, Chabardes S, Chang JW, et al. Deep brain stimulation: current challenges and future directions. Nat Rev Neurol. 2019;15(3):148–60.CrossRef Lozano AM, Lipsman N, Bergman H, Brown P, Chabardes S, Chang JW, et al. Deep brain stimulation: current challenges and future directions. Nat Rev Neurol. 2019;15(3):148–60.CrossRef
6.
go back to reference Ge J, Wu J, Peng S, Wu P, Wang J, Zhang H, et al. Reproducible network and regional topographies of abnormal glucose metabolism associated with progressive supranuclear palsy: multivariate and univariate analyses in American and Chinese patient cohorts. Hum Brain Mapp. 2018;39(7):2842–58.CrossRef Ge J, Wu J, Peng S, Wu P, Wang J, Zhang H, et al. Reproducible network and regional topographies of abnormal glucose metabolism associated with progressive supranuclear palsy: multivariate and univariate analyses in American and Chinese patient cohorts. Hum Brain Mapp. 2018;39(7):2842–58.CrossRef
7.
go back to reference Liu FT, Ge JJ, Wu JJ, Wu P, Ma Y, Zuo CT, et al. Clinical, dopaminergic, and metabolic correlations in Parkinson disease: a dual-tracer PET study. Clin Nucl Med. 2018;43(8):562–71.CrossRef Liu FT, Ge JJ, Wu JJ, Wu P, Ma Y, Zuo CT, et al. Clinical, dopaminergic, and metabolic correlations in Parkinson disease: a dual-tracer PET study. Clin Nucl Med. 2018;43(8):562–71.CrossRef
8.
go back to reference Huang Z, Jiang C, Li L, Xu Q, Ge J, Li M, et al. Correlations between dopaminergic dysfunction and abnormal metabolic network activity in REM sleep behavior disorder. J Cereb Blood Flow Metab. 2019;40:552–62.CrossRef Huang Z, Jiang C, Li L, Xu Q, Ge J, Li M, et al. Correlations between dopaminergic dysfunction and abnormal metabolic network activity in REM sleep behavior disorder. J Cereb Blood Flow Metab. 2019;40:552–62.CrossRef
9.
go back to reference Ge J, Wu P, Peng S, Yu H, Zhang H, Guan Y, et al. Assessing cerebral glucose metabolism in patients with idiopathic rapid eye movement sleep behavior disorder. J Cereb Blood Flow Metab. 2015;35(12):2062–9.CrossRef Ge J, Wu P, Peng S, Yu H, Zhang H, Guan Y, et al. Assessing cerebral glucose metabolism in patients with idiopathic rapid eye movement sleep behavior disorder. J Cereb Blood Flow Metab. 2015;35(12):2062–9.CrossRef
10.
go back to reference Asanuma K, Tang C, Ma Y, Dhawan V, Mattis P, Edwards C, et al. Network modulation in the treatment of Parkinson’s disease. Brain. 2006;129(Pt 10):2667–78.CrossRef Asanuma K, Tang C, Ma Y, Dhawan V, Mattis P, Edwards C, et al. Network modulation in the treatment of Parkinson’s disease. Brain. 2006;129(Pt 10):2667–78.CrossRef
11.
go back to reference Schuepbach WM, Rau J, Knudsen K, Volkmann J, Krack P, Timmermann L, et al. Neurostimulation for Parkinson’s disease with early motor complications. N Engl J Med. 2013;368(7):610–22.CrossRef Schuepbach WM, Rau J, Knudsen K, Volkmann J, Krack P, Timmermann L, et al. Neurostimulation for Parkinson’s disease with early motor complications. N Engl J Med. 2013;368(7):610–22.CrossRef
12.
go back to reference Baggio HC, Sala-Llonch R, Segura B, Marti MJ, Valldeoriola F, Compta Y, et al. Functional brain networks and cognitive deficits in Parkinson’s disease. Hum Brain Mapp. 2014;35(9):4620–34.CrossRef Baggio HC, Sala-Llonch R, Segura B, Marti MJ, Valldeoriola F, Compta Y, et al. Functional brain networks and cognitive deficits in Parkinson’s disease. Hum Brain Mapp. 2014;35(9):4620–34.CrossRef
13.
go back to reference Schindlbeck KA, Eidelberg D. Network imaging biomarkers: insights and clinical applications in Parkinson’s disease. Lancet Neurol. 2018;17(7):629–40.CrossRef Schindlbeck KA, Eidelberg D. Network imaging biomarkers: insights and clinical applications in Parkinson’s disease. Lancet Neurol. 2018;17(7):629–40.CrossRef
14.
go back to reference Horn A, Reich M, Vorwerk J, Li N, Wenzel G, Fang Q, et al. Connectivity Predicts deep brain stimulation outcome in Parkinson disease. Ann Neurol. 2017;82(1):67–78.CrossRef Horn A, Reich M, Vorwerk J, Li N, Wenzel G, Fang Q, et al. Connectivity Predicts deep brain stimulation outcome in Parkinson disease. Ann Neurol. 2017;82(1):67–78.CrossRef
15.
go back to reference Ko JH, Spetsieris PG, Eidelberg D. Network structure and function in Parkinson’s disease. Cereb Cortex. 2018;28(12):4121–35. Ko JH, Spetsieris PG, Eidelberg D. Network structure and function in Parkinson’s disease. Cereb Cortex. 2018;28(12):4121–35.
16.
go back to reference Gibb WR, Lees AJ. The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatr. 1988;51(6):745–52.CrossRef Gibb WR, Lees AJ. The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatr. 1988;51(6):745–52.CrossRef
17.
go back to reference Martin-Blanco A, Serra-Blasco M, Perez-Egea R, de Diego-Adelino J, Carceller-Sindreu M, Puigdemont D, et al. Immediate cerebral metabolic changes induced by discontinuation of deep brain stimulation of subcallosal cingulate gyrus in treatment-resistant depression. J Affect Disord. 2015;173:159–62.CrossRef Martin-Blanco A, Serra-Blasco M, Perez-Egea R, de Diego-Adelino J, Carceller-Sindreu M, Puigdemont D, et al. Immediate cerebral metabolic changes induced by discontinuation of deep brain stimulation of subcallosal cingulate gyrus in treatment-resistant depression. J Affect Disord. 2015;173:159–62.CrossRef
18.
go back to reference Wang J, Ma Y, Huang Z, Sun B, Guan Y, Zuo C. Modulation of metabolic brain function by bilateral subthalamic nucleus stimulation in the treatment of Parkinson’s disease. J Neurol. 2010;257(1):72–8.CrossRef Wang J, Ma Y, Huang Z, Sun B, Guan Y, Zuo C. Modulation of metabolic brain function by bilateral subthalamic nucleus stimulation in the treatment of Parkinson’s disease. J Neurol. 2010;257(1):72–8.CrossRef
19.
go back to reference Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15(1):273–89.CrossRef Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15(1):273–89.CrossRef
20.
go back to reference Spetsieris PG, Eidelberg D. Scaled subprofile modeling of resting state imaging data in Parkinson’s disease: methodological issues. Neuroimage. 2011;54(4):2899–914.CrossRef Spetsieris PG, Eidelberg D. Scaled subprofile modeling of resting state imaging data in Parkinson’s disease: methodological issues. Neuroimage. 2011;54(4):2899–914.CrossRef
21.
go back to reference Eidelberg D. Metabolic brain networks in neurodegenerative disorders: a functional imaging approach. Trends Neurosci. 2009;32(10):548–57.CrossRef Eidelberg D. Metabolic brain networks in neurodegenerative disorders: a functional imaging approach. Trends Neurosci. 2009;32(10):548–57.CrossRef
22.
go back to reference Spetsieris P, Ma Y, Peng S, Ko JH, Dhawan V, Tang CC, et al. Identification of disease-related spatial covariance patterns using neuroimaging data. J Vis Exp JoVE. 2013;76:e50319. Spetsieris P, Ma Y, Peng S, Ko JH, Dhawan V, Tang CC, et al. Identification of disease-related spatial covariance patterns using neuroimaging data. J Vis Exp JoVE. 2013;76:e50319.
23.
go back to reference Habeck C, Foster NL, Perneczky R, Kurz A, Alexopoulos P, Koeppe RA, et al. Multivariate and univariate neuroimaging biomarkers of Alzheimer’s disease. Neuroimage. 2008;40(4):1503–15.CrossRef Habeck C, Foster NL, Perneczky R, Kurz A, Alexopoulos P, Koeppe RA, et al. Multivariate and univariate neuroimaging biomarkers of Alzheimer’s disease. Neuroimage. 2008;40(4):1503–15.CrossRef
24.
go back to reference Titov D, Diehl-Schmid J, Shi K, Perneczky R, Zou N, Grimmer T, et al. Metabolic connectivity for differential diagnosis of dementing disorders. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2017;37(1):252–62.CrossRef Titov D, Diehl-Schmid J, Shi K, Perneczky R, Zou N, Grimmer T, et al. Metabolic connectivity for differential diagnosis of dementing disorders. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2017;37(1):252–62.CrossRef
25.
go back to reference Bassett DS, Sporns O. Network neuroscience. Nat Neurosci. 2017;20(3):353–64.CrossRef Bassett DS, Sporns O. Network neuroscience. Nat Neurosci. 2017;20(3):353–64.CrossRef
26.
go back to reference Watts DJ, Strogatz SH. Collective dynamics of “small-world” networks. Nature. 1998;393(6684):440–2.CrossRef Watts DJ, Strogatz SH. Collective dynamics of “small-world” networks. Nature. 1998;393(6684):440–2.CrossRef
27.
go back to reference Humphries MD, Gurney K. Network “small-world-ness”: a quantitative method for determining canonical network equivalence. PLoS ONE. 2008;3(4):e0002051.CrossRef Humphries MD, Gurney K. Network “small-world-ness”: a quantitative method for determining canonical network equivalence. PLoS ONE. 2008;3(4):e0002051.CrossRef
28.
go back to reference Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage. 2010;52(3):1059–69.CrossRef Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage. 2010;52(3):1059–69.CrossRef
29.
go back to reference Wu P, Wang J, Peng S, Ma Y, Zhang H, Guan Y, et al. Metabolic brain network in the Chinese patients with Parkinson’s disease based on 18F-FDG PET imaging. Parkinsonism Relat Disord. 2013;19(6):622–7.CrossRef Wu P, Wang J, Peng S, Ma Y, Zhang H, Guan Y, et al. Metabolic brain network in the Chinese patients with Parkinson’s disease based on 18F-FDG PET imaging. Parkinsonism Relat Disord. 2013;19(6):622–7.CrossRef
30.
go back to reference Su PC, Ma Y, Fukuda M, Mentis MJ, Tseng HM, Yen RF, et al. Metabolic changes following subthalamotomy for advanced Parkinson’s disease. Ann Neurol. 2001;50(4):514–20.CrossRef Su PC, Ma Y, Fukuda M, Mentis MJ, Tseng HM, Yen RF, et al. Metabolic changes following subthalamotomy for advanced Parkinson’s disease. Ann Neurol. 2001;50(4):514–20.CrossRef
31.
go back to reference Trost M, Su S, Su P, Yen RF, Tseng HM, Barnes A, et al. Network modulation by the subthalamic nucleus in the treatment of Parkinson’s disease. Neuroimage. 2006;31(1):301–7.CrossRef Trost M, Su S, Su P, Yen RF, Tseng HM, Barnes A, et al. Network modulation by the subthalamic nucleus in the treatment of Parkinson’s disease. Neuroimage. 2006;31(1):301–7.CrossRef
Metadata
Title
Metabolic network as an objective biomarker in monitoring deep brain stimulation for Parkinson’s disease: a longitudinal study
Authors
Jingjie Ge
Min Wang
Wei Lin
Ping Wu
Yihui Guan
Huiwei Zhang
Zhemin Huang
Likun Yang
Chuantao Zuo
Jiehui Jiang
Axel Rominger
Kuangyu Shi
Publication date
01-12-2020
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2020
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-020-00722-1

Other articles of this Issue 1/2020

EJNMMI Research 1/2020 Go to the issue