Skip to main content
Top
Published in: EJNMMI Research 1/2019

Open Access 01-12-2019 | Pharmacokinetics | Original research

Human biodistribution and radiation dosimetry of the 5-HT2A receptor agonist Cimbi-36 labeled with carbon-11 in two positions

Authors: Annette Johansen, Søren Holm, Bente Dall, Sune Keller, Jesper L. Kristensen, Gitte M. Knudsen, Hanne D. Hansen

Published in: EJNMMI Research | Issue 1/2019

Login to get access

Abstract

Background

Cimbi-36 can be 11C-labeled to form an agonist radioligand used for positron emission tomography (PET) imaging of the 5-HT2A receptor in the brain. In its non-labeled form (25B-NBOMe), it is used as a recreational drug that can lead to severe adverse effects, in some cases, with fatal outcome. We investigated human biodistribution and radiation dosimetry of the radioligand with two different radiolabeling positions. Seven healthy volunteers underwent dynamic 120-min whole-body PET scans (injection of 581 ± 16 MBq, n = 5 for 11C-Cimbi-36; 593 ± 14 MBq, n = 2 for 11C-Cimbi-36_5). Time-integrated activity coefficients (TIACs) from time-activity curves (TACs) of selected organs were used as input into the OLINDA/EXM software to obtain dosimetry information for both 11C-labeling positions of Cimbi-36.

Results

The effective dose was only slightly higher for 11C-Cimbi-36 (5.5 μSv/MBq) than for 11C-Cimbi-36_5 (5.3 μSv/MBq). Standard uptake value (SUV) curves showed higher uptake of 11C-Cimbi-36 in the pancreas, small intestines, liver, kidney, gallbladder, and urinary bladder compared with 11C-Cimbi-36_5, reflecting differences in radiometabolism for the two radioligands. Variability in uptake in excretory organs for 11C-Cimbi-36 points to inter-individual differences with regard to metabolic rate and route. Surprisingly, moderate uptake was found in brown adipose tissue (BAT) in four subjects, possibly representing specific 5-HT2A/2C receptor binding.

Conclusion

The low effective dose of 5.5 μSv/MBq allows for the injection of up to 1.8 GBq for healthy volunteers per study (equivalent to 3 scans if injecting 600 MBq) and still stay below the international guidelines of 10 mSv, making 11C-Cimbi-36 eligible for studies involving a series of PET scans in a single subject. The biodistribution of Cimbi-36 (and its metabolites) may also help to shed light on the toxic effects of 25B-NBOMe when used in pharmacological doses in recreational settings.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ettrup A, da Cunha-Bang S, McMahon B, Lehel S, Dyssegaard A, Jørgensen LM, et al. Serotonin 2A receptor agonist binding in the human brain with [11C]Cimbi-36. J Cereb Blood Flow Metab. 2014;34:1188–96.CrossRef Ettrup A, da Cunha-Bang S, McMahon B, Lehel S, Dyssegaard A, Jørgensen LM, et al. Serotonin 2A receptor agonist binding in the human brain with [11C]Cimbi-36. J Cereb Blood Flow Metab. 2014;34:1188–96.CrossRef
2.
go back to reference Beliveau V, Ganz M, Feng L, Ozenne B, Højgaard L, Fisher PM, et al. A high-resolution in vivo atlas of the human brain’s serotonin system. J Neurosci. 2017;37:120–8.CrossRef Beliveau V, Ganz M, Feng L, Ozenne B, Højgaard L, Fisher PM, et al. A high-resolution in vivo atlas of the human brain’s serotonin system. J Neurosci. 2017;37:120–8.CrossRef
3.
go back to reference Frokjaer VG, Mortensen EL, Nielsen FÅ, Haugbol S, Pinborg LH, Adams KH, et al. Frontolimbic serotonin 2A receptor binding in healthy subjects is associated with personality risk factors for affective disorder. Biol Psychiatry. 2008;63:569–76.CrossRef Frokjaer VG, Mortensen EL, Nielsen FÅ, Haugbol S, Pinborg LH, Adams KH, et al. Frontolimbic serotonin 2A receptor binding in healthy subjects is associated with personality risk factors for affective disorder. Biol Psychiatry. 2008;63:569–76.CrossRef
4.
go back to reference Bhagwagar Z, Hinz R, Taylor M, Fancy S, Cowen P, Grasby P. Increased 5-HT 2A receptor binding in euthymic, medication-free patients recovered from depression: a positron emission study with [11C]MDL 100,907. Am J Psychiatry. 2006;163:1580–7.CrossRef Bhagwagar Z, Hinz R, Taylor M, Fancy S, Cowen P, Grasby P. Increased 5-HT 2A receptor binding in euthymic, medication-free patients recovered from depression: a positron emission study with [11C]MDL 100,907. Am J Psychiatry. 2006;163:1580–7.CrossRef
5.
go back to reference Sullivan LC, Clarke WP, Berg KA. Atypical antipsychotics and inverse agonism at 5-HT2 receptors. Curr Pharm Des. 2015;21:3732–8.CrossRef Sullivan LC, Clarke WP, Berg KA. Atypical antipsychotics and inverse agonism at 5-HT2 receptors. Curr Pharm Des. 2015;21:3732–8.CrossRef
6.
go back to reference Madsen MK, Fisher PM, Burmester D, Dyssegaard A, Stenbæk DS, Kristiansen S, et al. Psychedelic effects of psilocybin correlate with serotonin 2A receptor occupancy and plasma psilocin levels. Neuropsychopharmacology. 2019;44:1328–34.CrossRef Madsen MK, Fisher PM, Burmester D, Dyssegaard A, Stenbæk DS, Kristiansen S, et al. Psychedelic effects of psilocybin correlate with serotonin 2A receptor occupancy and plasma psilocin levels. Neuropsychopharmacology. 2019;44:1328–34.CrossRef
7.
go back to reference Halberstadt AL. Pharmacology and toxicology of N-benzylphenethylamine (“NBOMe”) hallucinogens. Curr Top Behav Neurosci. 2017;32:283–311.CrossRef Halberstadt AL. Pharmacology and toxicology of N-benzylphenethylamine (“NBOMe”) hallucinogens. Curr Top Behav Neurosci. 2017;32:283–311.CrossRef
8.
go back to reference Shalgunov V, van Waarde A, Booij J, Michel MC, Dierckx RAJO, Elsinga PH. Hunting for the high-affinity state of G-protein-coupled receptors with agonist tracers: theoretical and practical considerations for positron emission tomography imaging. Med Res Rev. 2019;39:1014–52.CrossRef Shalgunov V, van Waarde A, Booij J, Michel MC, Dierckx RAJO, Elsinga PH. Hunting for the high-affinity state of G-protein-coupled receptors with agonist tracers: theoretical and practical considerations for positron emission tomography imaging. Med Res Rev. 2019;39:1014–52.CrossRef
9.
go back to reference Gandhimathi A, Sowdhamini R. Molecular modelling of human 5-hydroxytryptamine receptor (5-HT2A) and virtual screening studies towards the identification of agonist and antagonist molecules. J Biomol Struct Dyn. 2016;34(5):952–70.CrossRef Gandhimathi A, Sowdhamini R. Molecular modelling of human 5-hydroxytryptamine receptor (5-HT2A) and virtual screening studies towards the identification of agonist and antagonist molecules. J Biomol Struct Dyn. 2016;34(5):952–70.CrossRef
10.
go back to reference Ettrup A, Hansen M, Santini MA, Paine J, Gillings N, Palner M, et al. Radiosynthesis and in vivo evaluation of a series of substituted 11C-phenethylamines as 5-HT2A agonist PET tracers. Eur J Nucl Med Mol Imaging. 2011;38:681–93.CrossRef Ettrup A, Hansen M, Santini MA, Paine J, Gillings N, Palner M, et al. Radiosynthesis and in vivo evaluation of a series of substituted 11C-phenethylamines as 5-HT2A agonist PET tracers. Eur J Nucl Med Mol Imaging. 2011;38:681–93.CrossRef
11.
go back to reference Ettrup A, Holm S, Hansen M, Wasim M, Santini MA, Palner M, et al. Preclinical safety assessment of the 5-HT2A receptor agonist PET radioligand [11C]Cimbi-36. Mol Imaging Biol. 2013;15:376–83.CrossRef Ettrup A, Holm S, Hansen M, Wasim M, Santini MA, Palner M, et al. Preclinical safety assessment of the 5-HT2A receptor agonist PET radioligand [11C]Cimbi-36. Mol Imaging Biol. 2013;15:376–83.CrossRef
12.
go back to reference Finnema SJ, Stepanov V, Ettrup A, Nakao R, Amini N, Svedberg M, et al. Characterization of [11C]Cimbi-36 as an agonist PET radioligand for the 5-HT2A and 5-HT2C receptors in the nonhuman primate brain. Neuroimage. 2014;84:342–53.CrossRef Finnema SJ, Stepanov V, Ettrup A, Nakao R, Amini N, Svedberg M, et al. Characterization of [11C]Cimbi-36 as an agonist PET radioligand for the 5-HT2A and 5-HT2C receptors in the nonhuman primate brain. Neuroimage. 2014;84:342–53.CrossRef
13.
go back to reference Zanotti-Fregonara P, Lammertsma AA, Innis RB. Suggested pathway to assess radiation safety of 11C-labeled PET tracers for first-in-human studies. Eur J Nucl Med Mol Imaging. 2012;39:544–7.CrossRef Zanotti-Fregonara P, Lammertsma AA, Innis RB. Suggested pathway to assess radiation safety of 11C-labeled PET tracers for first-in-human studies. Eur J Nucl Med Mol Imaging. 2012;39:544–7.CrossRef
14.
go back to reference Leth-Petersen S, Gabel-Jensen C, Gillings N, Lehel S, Hansen HD, Knudsen GM, et al. Metabolic fate of hallucinogenic NBOMes. Chem Res Toxicol. 2016;29:96–100.CrossRef Leth-Petersen S, Gabel-Jensen C, Gillings N, Lehel S, Hansen HD, Knudsen GM, et al. Metabolic fate of hallucinogenic NBOMes. Chem Res Toxicol. 2016;29:96–100.CrossRef
15.
go back to reference Johansen A, Hansen HD, Svarer C, Lehel S, Leth-Petersen S, Kristensen JL, et al. The importance of small polar radiometabolites in molecular neuroimaging: A PET study with [11C]Cimbi-36 labeled in two positions. J Cereb Blood Flow Metab. 2018;38:659–68.CrossRef Johansen A, Hansen HD, Svarer C, Lehel S, Leth-Petersen S, Kristensen JL, et al. The importance of small polar radiometabolites in molecular neuroimaging: A PET study with [11C]Cimbi-36 labeled in two positions. J Cereb Blood Flow Metab. 2018;38:659–68.CrossRef
16.
go back to reference Persson M, Skovgaard D, Brandt-Larsen M, Christensen C, Madsen J, Nielsen CH, et al. First-in-human uPAR PET: Imaging of cancer aggressiveness. Theranostics. 2015;5:1303–16.CrossRef Persson M, Skovgaard D, Brandt-Larsen M, Christensen C, Madsen J, Nielsen CH, et al. First-in-human uPAR PET: Imaging of cancer aggressiveness. Theranostics. 2015;5:1303–16.CrossRef
17.
go back to reference Skovgaard D, Persson M, Brandt-Larsen M, Christensen C, Madsen J, Klausen TL, et al. Safety, dosimetry, and tumor detection ability of 68 Ga-NOTA-AE105: first-in-human study of a novel radioligand for uPAR PET imaging. J Nucl Med. 2016;58:379–86.CrossRef Skovgaard D, Persson M, Brandt-Larsen M, Christensen C, Madsen J, Klausen TL, et al. Safety, dosimetry, and tumor detection ability of 68 Ga-NOTA-AE105: first-in-human study of a novel radioligand for uPAR PET imaging. J Nucl Med. 2016;58:379–86.CrossRef
18.
go back to reference Stabin MG, Siegel JA. Physical models and dose factors for use in internal dose assessment. Health Phys. 2003;85:294–310.CrossRef Stabin MG, Siegel JA. Physical models and dose factors for use in internal dose assessment. Health Phys. 2003;85:294–310.CrossRef
19.
go back to reference ICRP Publication. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP. 2007;37:1–332. ICRP Publication. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP. 2007;37:1–332.
20.
go back to reference Stabin MG. Fundamentals of nuclear medicine dosimetry. New York: Springer; 2008. Stabin MG. Fundamentals of nuclear medicine dosimetry. New York: Springer; 2008.
21.
go back to reference Leitner BP, Huang S, Brychta RJ, Duckworth CJ, Baskin AS, McGehee S, et al. Mapping of human brown adipose tissue in lean and obese young men. Proc Natl Acad Sci. 2017;114:8649–54.CrossRef Leitner BP, Huang S, Brychta RJ, Duckworth CJ, Baskin AS, McGehee S, et al. Mapping of human brown adipose tissue in lean and obese young men. Proc Natl Acad Sci. 2017;114:8649–54.CrossRef
22.
go back to reference ICRP. Radiological Protection in Biomedical Research. ICRP Publication 62. Ann ICRP. 1992:22(3). ICRP. Radiological Protection in Biomedical Research. ICRP Publication 62. Ann ICRP. 1992:22(3).
23.
go back to reference Van Der Aart J, Hallett WA, Rabiner EA, Passchier J, Comley RA. Radiation dose estimates for carbon-11-labelled PET tracers. Nucl Med Biol. 2012;39:305–14.CrossRef Van Der Aart J, Hallett WA, Rabiner EA, Passchier J, Comley RA. Radiation dose estimates for carbon-11-labelled PET tracers. Nucl Med Biol. 2012;39:305–14.CrossRef
24.
go back to reference Nosslin B, Johansson L, Leide-Svegborn S, Liniecki J, Mattsson S, Taylor DM. A generic model for 11C labelled radiopharmaceuticals for imaging receptors in the human brain. Radiat Prot Dosimetry. 2003;105:587–91.CrossRef Nosslin B, Johansson L, Leide-Svegborn S, Liniecki J, Mattsson S, Taylor DM. A generic model for 11C labelled radiopharmaceuticals for imaging receptors in the human brain. Radiat Prot Dosimetry. 2003;105:587–91.CrossRef
25.
go back to reference Heller AA, Lockwood SY, Janes TM, Spence DM. Technologies for measuring pharmacokinetic profiles. Annu Rev Anal Chem. 2018;11:79–100.CrossRef Heller AA, Lockwood SY, Janes TM, Spence DM. Technologies for measuring pharmacokinetic profiles. Annu Rev Anal Chem. 2018;11:79–100.CrossRef
26.
go back to reference Suzuki J, Dekker MA, Valenti ES, Arbelo Cruz FA, Correa AM, Poklis JL, et al. Toxicities associated with NBOMe ingestion—a novel class of potent hallucinogens: a review of the literature. Psychosomatics. 2015;56:129–39.CrossRef Suzuki J, Dekker MA, Valenti ES, Arbelo Cruz FA, Correa AM, Poklis JL, et al. Toxicities associated with NBOMe ingestion—a novel class of potent hallucinogens: a review of the literature. Psychosomatics. 2015;56:129–39.CrossRef
27.
go back to reference Herth MM, Petersen IN, Hansen HD, Hansen M, Ettrup A, Jensen AA, et al. Synthesis and evaluation of 18F-labeled 5-HT2A receptor agonists as PET ligands. Nucl Med Biol. 2016;43:455–62.CrossRef Herth MM, Petersen IN, Hansen HD, Hansen M, Ettrup A, Jensen AA, et al. Synthesis and evaluation of 18F-labeled 5-HT2A receptor agonists as PET ligands. Nucl Med Biol. 2016;43:455–62.CrossRef
28.
go back to reference Banskota S, Ghia JE, Khan WI. Serotonin in the gut: blessing or a curse. Biochimie. 2019;161:56–64.CrossRef Banskota S, Ghia JE, Khan WI. Serotonin in the gut: blessing or a curse. Biochimie. 2019;161:56–64.CrossRef
29.
go back to reference El-Merahbi R, Löffler M, Mayer A, Sumara G. The roles of peripheral serotonin in metabolic homeostasis. FEBS Lett. 2015;589:1728–34.CrossRef El-Merahbi R, Löffler M, Mayer A, Sumara G. The roles of peripheral serotonin in metabolic homeostasis. FEBS Lett. 2015;589:1728–34.CrossRef
30.
go back to reference Oh CM, Park S, Kim H. Serotonin as a new therapeutic target for diabetes mellitus and obesity. Diabetes Metab J. 2016;40:89–98.CrossRef Oh CM, Park S, Kim H. Serotonin as a new therapeutic target for diabetes mellitus and obesity. Diabetes Metab J. 2016;40:89–98.CrossRef
31.
go back to reference Kim H, Toyofuku Y, Lynn FC, Chak E, Uchida T, Mizukami H, et al. Serotonin regulates pancreatic beta cell mass during pregnancy. Nat Med. 2010;16:804–8.CrossRef Kim H, Toyofuku Y, Lynn FC, Chak E, Uchida T, Mizukami H, et al. Serotonin regulates pancreatic beta cell mass during pregnancy. Nat Med. 2010;16:804–8.CrossRef
32.
go back to reference Shajib MS, Khan WI. The role of serotonin and its receptors in activation of immune responses and inflammation. Acta Physiol. 2015;213:561–74.CrossRef Shajib MS, Khan WI. The role of serotonin and its receptors in activation of immune responses and inflammation. Acta Physiol. 2015;213:561–74.CrossRef
33.
go back to reference Sommer C. Serotonin in pain and analgesia: actions in the periphery. Mol Neurobiol. 2004;30:117–25.CrossRef Sommer C. Serotonin in pain and analgesia: actions in the periphery. Mol Neurobiol. 2004;30:117–25.CrossRef
34.
go back to reference Bennet H, Balhuizen A, Medina A, Dekker Nitert M, Ottosson Laakso E, Essén S, et al. Altered serotonin (5-HT) 1D and 2A receptor expression may contribute to defective insulin and glucagon secretion in human type 2 diabetes. Peptides. 2015;71:113–20.CrossRef Bennet H, Balhuizen A, Medina A, Dekker Nitert M, Ottosson Laakso E, Essén S, et al. Altered serotonin (5-HT) 1D and 2A receptor expression may contribute to defective insulin and glucagon secretion in human type 2 diabetes. Peptides. 2015;71:113–20.CrossRef
35.
go back to reference Zhang Q, Zhu Y, Zhou W, Gao L, Yuan L, Han X. Serotonin receptor 2C and insulin secretion. PLoS One. 2013;8:e54250.CrossRef Zhang Q, Zhu Y, Zhou W, Gao L, Yuan L, Han X. Serotonin receptor 2C and insulin secretion. PLoS One. 2013;8:e54250.CrossRef
36.
go back to reference Nakamura M, Shintani-Ishida K, Ikegaya H. 5-HT 2A receptor agonist-induced hyperthermia is induced via vasoconstriction by peripheral 5-HT 2A receptors and brown adipose tissue thermogenesis by peripheral serotonin loss at a high ambient temperature. J Pharmacol Exp Ther. 2018;367:356–62.CrossRef Nakamura M, Shintani-Ishida K, Ikegaya H. 5-HT 2A receptor agonist-induced hyperthermia is induced via vasoconstriction by peripheral 5-HT 2A receptors and brown adipose tissue thermogenesis by peripheral serotonin loss at a high ambient temperature. J Pharmacol Exp Ther. 2018;367:356–62.CrossRef
37.
go back to reference Oh CM, Namkung J, Go Y, Shong KE, Kim K, Kim H, et al. Regulation of systemic energy homeostasis by serotonin in adipose tissues. Nat Commun. 2015;6:1–12. Oh CM, Namkung J, Go Y, Shong KE, Kim K, Kim H, et al. Regulation of systemic energy homeostasis by serotonin in adipose tissues. Nat Commun. 2015;6:1–12.
38.
go back to reference Ootsuka Y, Blessing WW. Thermogenesis in brown adipose tissue: Increase by 5-HT2A receptor activation and decrease by 5-HT1A receptor activation in conscious rats. Neurosci Lett. 2006;395:170–4.CrossRef Ootsuka Y, Blessing WW. Thermogenesis in brown adipose tissue: Increase by 5-HT2A receptor activation and decrease by 5-HT1A receptor activation in conscious rats. Neurosci Lett. 2006;395:170–4.CrossRef
39.
go back to reference Ootsuka Y, Blessing WW, Nalivaiko E. Selective blockade of 5-HT2A receptors attenuates the increased temperature response in brown adipose tissue to restraint stress in rats. Stress. 2008;11:125–33.CrossRef Ootsuka Y, Blessing WW, Nalivaiko E. Selective blockade of 5-HT2A receptors attenuates the increased temperature response in brown adipose tissue to restraint stress in rats. Stress. 2008;11:125–33.CrossRef
40.
go back to reference Studerus E, Kometer M, Hasler F, Vollenweider FX. Acute, subacute and long-term subjective effects of psilocybin in healthy humans: a pooled analysis of experimental studies. J Psychopharmacol. 2011;25:1434–52.CrossRef Studerus E, Kometer M, Hasler F, Vollenweider FX. Acute, subacute and long-term subjective effects of psilocybin in healthy humans: a pooled analysis of experimental studies. J Psychopharmacol. 2011;25:1434–52.CrossRef
41.
go back to reference Krebs TS, Johansen PØ. Psychedelics and mental health: a population study. PLoS One. 2013;8:1–9. Krebs TS, Johansen PØ. Psychedelics and mental health: a population study. PLoS One. 2013;8:1–9.
42.
go back to reference Caspar AT, Meyer MR, Maurer HH. Human cytochrome P450 kinetic studies on six N-2-methoxybenzyl (NBOMe)-derived new psychoactive substances using the substrate depletion approach. Toxicol Lett. 2018;285:1–8.CrossRef Caspar AT, Meyer MR, Maurer HH. Human cytochrome P450 kinetic studies on six N-2-methoxybenzyl (NBOMe)-derived new psychoactive substances using the substrate depletion approach. Toxicol Lett. 2018;285:1–8.CrossRef
43.
go back to reference Uhlen M, Berling H, von Feilitzen K, Nielsen J, Szigyarto CA-K, Edlund K, et al. Tissue-based map of the human proteome. Science. 2015;347:1260419.CrossRef Uhlen M, Berling H, von Feilitzen K, Nielsen J, Szigyarto CA-K, Edlund K, et al. Tissue-based map of the human proteome. Science. 2015;347:1260419.CrossRef
44.
go back to reference Boumrah Y, Humbert L, Phanithavong M, Khimeche K, Dahmani A, Allorge D. In vitro characterization of potential CYP- and UGT-derived metabolites of the psychoactive drug 25B-NBOMe using LC-high resolution MS. Drug Test Anal. 2016;8:248–56.CrossRef Boumrah Y, Humbert L, Phanithavong M, Khimeche K, Dahmani A, Allorge D. In vitro characterization of potential CYP- and UGT-derived metabolites of the psychoactive drug 25B-NBOMe using LC-high resolution MS. Drug Test Anal. 2016;8:248–56.CrossRef
Metadata
Title
Human biodistribution and radiation dosimetry of the 5-HT2A receptor agonist Cimbi-36 labeled with carbon-11 in two positions
Authors
Annette Johansen
Søren Holm
Bente Dall
Sune Keller
Jesper L. Kristensen
Gitte M. Knudsen
Hanne D. Hansen
Publication date
01-12-2019
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2019
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-019-0527-4

Other articles of this Issue 1/2019

EJNMMI Research 1/2019 Go to the issue