Skip to main content
Top
Published in: EJNMMI Research 1/2018

Open Access 01-12-2018 | Original research

Subcellular storage and release mode of the novel 18F-labeled sympathetic nerve PET tracer LMI1195

Authors: Xinyu Chen, Rudolf A. Werner, Constantin Lapa, Naoko Nose, Mitsuru Hirano, Mehrbod S. Javadi, Simon Robinson, Takahiro Higuchi

Published in: EJNMMI Research | Issue 1/2018

Login to get access

Abstract

Background

18F-N-[3-bromo-4-(3-fluoro-propoxy)-benzyl]-guanidine (18F-LMI1195) is a new class of PET tracer designed for sympathetic nervous imaging of the heart. The favorable image quality with high and specific neural uptake has been previously demonstrated in animals and humans, but intracellular behavior is not yet fully understood. The aim of the present study is to verify whether it is taken up in storage vesicles and released in company with vesicle turnover.

Results

Both vesicle-rich (PC12) and vesicle-poor (SK-N-SH) norepinephrine-expressing cell lines were used for in vitro tracer uptake studies. After 2 h of 18F-LMI1195 preloading into both cell lines, effects of stimulants for storage vesicle turnover (high concentration KCl (100 mM) or reserpine treatment) were measured at 10, 20, and 30 min. 131I-meta-iodobenzylguanidine (131I-MIBG) served as a reference. Both high concentration KCl and reserpine enhanced 18F-LMI1195 washout from PC12 cells, while tracer retention remained stable in the SK-N-SH cells. After 30 min of treatment, 18F-LMI1195 releasing index (percentage of tracer released from cells) from vesicle-rich PC12 cells achieved significant differences compared to cells without treatment condition. In contrast, such effect could not be observed using vesicle-poor SK-N-SH cell lines. Similar tracer kinetics after KCl or reserpine treatment were also observed using 131I-MIBG. In case of KCl exposure, Ca2+-free buffer with the calcium chelator, ethylenediaminetetracetic acid (EDTA), could suppress the tracer washout from PC12 cells. This finding is consistent with the tracer release being mediated by Ca2+ influx resulting from membrane depolarization.

Conclusions

Analogous to 131I-MIBG, the current in vitro tracer uptake study confirmed that 18F-LMI1195 is also stored in vesicles in PC12 cells and released along with vesicle turnover. Understanding the basic kinetics of 18F-LMI1195 at a subcellular level is important for the design of clinical imaging protocols and imaging interpretation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Henzlova MJ, Duvall WL, Einstein AJ, Travin MI, Verberne HJ. ASNC imaging guidelines for SPECT nuclear cardiology procedures: stress, protocols, and tracers. J Nucl Cardiol. 2016;23(3):606–39.CrossRefPubMed Henzlova MJ, Duvall WL, Einstein AJ, Travin MI, Verberne HJ. ASNC imaging guidelines for SPECT nuclear cardiology procedures: stress, protocols, and tracers. J Nucl Cardiol. 2016;23(3):606–39.CrossRefPubMed
2.
go back to reference Narula J, Gerson M, Thomas GS, Cerqueira MD, Jacobson AF. 123I-MIBG imaging for prediction of mortality and potentially fatal events in heart failure: the ADMIRE-HFX study. J Nucl Med. 2015;56:1011–8.CrossRefPubMed Narula J, Gerson M, Thomas GS, Cerqueira MD, Jacobson AF. 123I-MIBG imaging for prediction of mortality and potentially fatal events in heart failure: the ADMIRE-HFX study. J Nucl Med. 2015;56:1011–8.CrossRefPubMed
3.
go back to reference Chen X, Werner RA, Javadi MS, Maya Y, Decker M, Lapa C, Herrmann K, Higuchi T. Radionuclide imaging of neurohormonal system of the heart. Theranostics. 2015;5(6):545–85.CrossRefPubMedPubMedCentral Chen X, Werner RA, Javadi MS, Maya Y, Decker M, Lapa C, Herrmann K, Higuchi T. Radionuclide imaging of neurohormonal system of the heart. Theranostics. 2015;5(6):545–85.CrossRefPubMedPubMedCentral
4.
go back to reference Kobayashi R, Chen X, Werner RA, Lapa C, Javadi MS, Higuchi T. New horizon in cardiac innervation imaging: introduction of novel 18F-labeled PET tracers. Eur J Nucl Med Mol Imaging. 2017;44(13):2302–9.CrossRefPubMed Kobayashi R, Chen X, Werner RA, Lapa C, Javadi MS, Higuchi T. New horizon in cardiac innervation imaging: introduction of novel 18F-labeled PET tracers. Eur J Nucl Med Mol Imaging. 2017;44(13):2302–9.CrossRefPubMed
5.
go back to reference Sinusas AJ, Lazewatsky J, Brunetti J, et al. Biodistribution and radiation dosimetry of LMI1195: first-in-human study of a novel 18F-labeled tracer for imaging myocardial innervation. J Nucl Med. 2014;55:1445–51.CrossRefPubMed Sinusas AJ, Lazewatsky J, Brunetti J, et al. Biodistribution and radiation dosimetry of LMI1195: first-in-human study of a novel 18F-labeled tracer for imaging myocardial innervation. J Nucl Med. 2014;55:1445–51.CrossRefPubMed
6.
go back to reference Jang KS, Jung Y-W, Gu G, et al. 4-[18F]Fluoro-m-hydroxyphenethylguanidine: a radiopharmaceutical for quantifying regional cardiac sympathetic nerve density with positron emission tomography. J Med Chem. 2013;56:7312–23.CrossRefPubMedPubMedCentral Jang KS, Jung Y-W, Gu G, et al. 4-[18F]Fluoro-m-hydroxyphenethylguanidine: a radiopharmaceutical for quantifying regional cardiac sympathetic nerve density with positron emission tomography. J Med Chem. 2013;56:7312–23.CrossRefPubMedPubMedCentral
7.
go back to reference Raffel D, Jung Y-W, Murthy V, et al. First-in-human studies of 18F-hydroxyphenethylguanidines: PET radiotracers for quantifying cardiac sympathetic nerve density. J Nucl Med. 2016;57(Suppl 2):232. Raffel D, Jung Y-W, Murthy V, et al. First-in-human studies of 18F-hydroxyphenethylguanidines: PET radiotracers for quantifying cardiac sympathetic nerve density. J Nucl Med. 2016;57(Suppl 2):232.
8.
go back to reference Yu M, Bozek J, Lamoy M, et al. Evaluation of LMI1195, a novel 18F-labeled cardiac neuronal PET imaging agent, in cells and animal models. Circ Cardiovasc Imaging. 2011;4:435–43.CrossRefPubMed Yu M, Bozek J, Lamoy M, et al. Evaluation of LMI1195, a novel 18F-labeled cardiac neuronal PET imaging agent, in cells and animal models. Circ Cardiovasc Imaging. 2011;4:435–43.CrossRefPubMed
9.
go back to reference Yu M, Bozek J, Lamoy M, et al. LMI1195 PET imaging in evaluation of regional cardiac sympathetic denervation and its potential role in antiarrhythmic drug treatment. Eur J Nucl Med Mol Imaging. 2012;39:1910–9.CrossRefPubMed Yu M, Bozek J, Lamoy M, et al. LMI1195 PET imaging in evaluation of regional cardiac sympathetic denervation and its potential role in antiarrhythmic drug treatment. Eur J Nucl Med Mol Imaging. 2012;39:1910–9.CrossRefPubMed
10.
go back to reference Mangner TJ, Tobes MC, Wieland DW, Sisson JC, Shapiro B. Metabolism of iodine-131 metaiodobenzylguanidine in patients with metastatic pheochromocytoma. J Nucl Med. 1986;27(1):37–44.PubMed Mangner TJ, Tobes MC, Wieland DW, Sisson JC, Shapiro B. Metabolism of iodine-131 metaiodobenzylguanidine in patients with metastatic pheochromocytoma. J Nucl Med. 1986;27(1):37–44.PubMed
11.
go back to reference Higuchi T, Yousefi BH, Reder S, et al. Myocardial kinetics of a novel [(18)F]-labeled sympathetic nerve PET tracer LMI1195 in the isolated perfused rabbit heart. J Am Coll Cardiol Img. 2015;8:1229–31.CrossRef Higuchi T, Yousefi BH, Reder S, et al. Myocardial kinetics of a novel [(18)F]-labeled sympathetic nerve PET tracer LMI1195 in the isolated perfused rabbit heart. J Am Coll Cardiol Img. 2015;8:1229–31.CrossRef
12.
go back to reference Smets LA, Janssen M, Metwally E, Lösberg C. Extragranular storage of the neuron blocking agent meta-iodobenzylguanidine (MIBG) in human neuroblastoma cells. Biochem Pharmacol. 1990;39(12):1959–64.CrossRefPubMed Smets LA, Janssen M, Metwally E, Lösberg C. Extragranular storage of the neuron blocking agent meta-iodobenzylguanidine (MIBG) in human neuroblastoma cells. Biochem Pharmacol. 1990;39(12):1959–64.CrossRefPubMed
13.
go back to reference Mandela P, Chandley M, Xu YY, Zhu MY, Ordway GA. Reserpine-induced reduction in norepinephrine transporter function requires catecholamine storage vesicles. Neurochem Int. 2010;56:760–7.CrossRefPubMedPubMedCentral Mandela P, Chandley M, Xu YY, Zhu MY, Ordway GA. Reserpine-induced reduction in norepinephrine transporter function requires catecholamine storage vesicles. Neurochem Int. 2010;56:760–7.CrossRefPubMedPubMedCentral
14.
go back to reference Thackeray JT, Bengel FM. PET imaging of the autonomic nervous system. Q J Nucl Med Mol Imaging. 2016;60:362–82.PubMed Thackeray JT, Bengel FM. PET imaging of the autonomic nervous system. Q J Nucl Med Mol Imaging. 2016;60:362–82.PubMed
15.
go back to reference Gaertner FC, Wiedemann T, Yousefi BH, et al. Preclinical evaluation of 18F-LMI1195 for in vivo imaging of pheochromocytoma in the MENX tumor model. J Nucl Med. 2013;54:2111–7.CrossRefPubMed Gaertner FC, Wiedemann T, Yousefi BH, et al. Preclinical evaluation of 18F-LMI1195 for in vivo imaging of pheochromocytoma in the MENX tumor model. J Nucl Med. 2013;54:2111–7.CrossRefPubMed
16.
go back to reference Werner RA, Rischpler C, Onthank D, et al. Retention kinetics of the 18F-labeled sympathetic nerve PET tracer LMI1195: comparison with 11C-hydroxyephedrine and 123I-MIBG. J Nucl Med. 2015;56:1429–33.CrossRefPubMed Werner RA, Rischpler C, Onthank D, et al. Retention kinetics of the 18F-labeled sympathetic nerve PET tracer LMI1195: comparison with 11C-hydroxyephedrine and 123I-MIBG. J Nucl Med. 2015;56:1429–33.CrossRefPubMed
17.
go back to reference Higuchi T, Yousefi BH, Kaiser F, et al. Assessment of the 18F-labeled PET tracer LMI1195 for imaging norepinephrine handling in rat hearts. J Nucl Med. 2013;54:1142–6.CrossRefPubMed Higuchi T, Yousefi BH, Kaiser F, et al. Assessment of the 18F-labeled PET tracer LMI1195 for imaging norepinephrine handling in rat hearts. J Nucl Med. 2013;54:1142–6.CrossRefPubMed
18.
go back to reference Streby KA, Shah N, Ranalli MA, Kunkler A, Cripe TP. Nothing but NET: a review of norepinephrine transporter expression and efficacy of 131I-mIBG therapy. Pediatr Blood Cancer. 2015;62:5–11.CrossRefPubMed Streby KA, Shah N, Ranalli MA, Kunkler A, Cripe TP. Nothing but NET: a review of norepinephrine transporter expression and efficacy of 131I-mIBG therapy. Pediatr Blood Cancer. 2015;62:5–11.CrossRefPubMed
19.
go back to reference Blaustein MP. Effects of potassium, vertridine, and scorpion venom on calcium accumulation and transmitter release by nerve terminals in vitro. J Physiol. 1975;247:617–55.CrossRefPubMedPubMedCentral Blaustein MP. Effects of potassium, vertridine, and scorpion venom on calcium accumulation and transmitter release by nerve terminals in vitro. J Physiol. 1975;247:617–55.CrossRefPubMedPubMedCentral
20.
go back to reference Araujo CB, Bendhack LM. High concentrations of KCl release noradrenaline from noradrenergic neurons in the rat ancoccygeus muscle. Braz J Med Biol Res. 2003;36:97–104.CrossRefPubMed Araujo CB, Bendhack LM. High concentrations of KCl release noradrenaline from noradrenergic neurons in the rat ancoccygeus muscle. Braz J Med Biol Res. 2003;36:97–104.CrossRefPubMed
21.
go back to reference Mandela P, Ordway GA. KCl stimulation increases norepinephrine transporter function in PC12 cells. J Neurochem. 2006;98:1521–30.CrossRefPubMed Mandela P, Ordway GA. KCl stimulation increases norepinephrine transporter function in PC12 cells. J Neurochem. 2006;98:1521–30.CrossRefPubMed
22.
go back to reference Bourreau JP. Internal calcium stores and norepinephrine overflow from isolated, field stimulated rat vas deferens. Life Sci. 1996;58:L123–9.CrossRef Bourreau JP. Internal calcium stores and norepinephrine overflow from isolated, field stimulated rat vas deferens. Life Sci. 1996;58:L123–9.CrossRef
23.
go back to reference Zhang H, Huang R, Cheung NK, et al. Imaging the norepinephrine transporter in neuroblastoma: a comparison of [18F]-MFBG and 123I-MIBG. Clin Cancer Res. 2014;20:2182–91.CrossRefPubMedPubMedCentral Zhang H, Huang R, Cheung NK, et al. Imaging the norepinephrine transporter in neuroblastoma: a comparison of [18F]-MFBG and 123I-MIBG. Clin Cancer Res. 2014;20:2182–91.CrossRefPubMedPubMedCentral
24.
go back to reference Smets LA, Loesberg C, Janssen M, Metwally EA, Huiskamp R. Active uptake and extravesicular storage of m-iodobenzylguanidine in human neuroblastoma SK-N-SH cells. Cancer Res. 1989;49:2941–4.PubMed Smets LA, Loesberg C, Janssen M, Metwally EA, Huiskamp R. Active uptake and extravesicular storage of m-iodobenzylguanidine in human neuroblastoma SK-N-SH cells. Cancer Res. 1989;49:2941–4.PubMed
25.
go back to reference Pfluger T, Piccardo A. Neuroblastoma: MIBG imaging and new tracers. Semin Nucl Med. 2017;47(2):143–57.CrossRefPubMed Pfluger T, Piccardo A. Neuroblastoma: MIBG imaging and new tracers. Semin Nucl Med. 2017;47(2):143–57.CrossRefPubMed
26.
go back to reference Pandit-Taskar N, Modak S. Norepinepherine transporter as a target for imaging and therapy. J Nucl Med. 2017;58(Suppl 2):39S–53S.CrossRefPubMed Pandit-Taskar N, Modak S. Norepinepherine transporter as a target for imaging and therapy. J Nucl Med. 2017;58(Suppl 2):39S–53S.CrossRefPubMed
Metadata
Title
Subcellular storage and release mode of the novel 18F-labeled sympathetic nerve PET tracer LMI1195
Authors
Xinyu Chen
Rudolf A. Werner
Constantin Lapa
Naoko Nose
Mitsuru Hirano
Mehrbod S. Javadi
Simon Robinson
Takahiro Higuchi
Publication date
01-12-2018
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2018
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-018-0365-9

Other articles of this Issue 1/2018

EJNMMI Research 1/2018 Go to the issue