Skip to main content
Top
Published in: EJNMMI Research 1/2017

Open Access 01-12-2017 | Original research

PET/CT scanning with 3D acquisition is feasible for quantifying myocardial blood flow when diagnosing coronary artery disease

Authors: Osamu Manabe, Masanao Naya, Tadao Aikawa, Masahiko Obara, Keiichi Magota, Markus Kroenke, Noriko Oyama-Manabe, Kenji Hirata, Daiki Shinyama, Chietsugu Katoh, Nagara Tamaki

Published in: EJNMMI Research | Issue 1/2017

Login to get access

Abstract

Background

The quantification of myocardial blood flow (MBF) and coronary flow reserve (CFR) are useful approaches for evaluating the functional severity of coronary artery disease (CAD). 15O-water positron emission tomography (PET) is considered the gold standard method for MBF quantification. However, MBF measurements in 15O-water PET with three-dimensional (3D) data acquisition, attenuation correction using computed tomography (CT), and time of flight have not been investigated in detail or validated. We conducted this study to evaluate the diagnostic potential of MBF measurements using PET/CT for a comparison of a control group and patients suspected of having CAD.

Results

Twenty-four patients with known or suspected CAD and eight age-matched healthy volunteers underwent rest and pharmacological stress perfusion studies with 15O-water PET/CT. The whole and three regional (left anterior descending (LAD), left circumflex (LCX), and right coronary artery (RCA) territory) MBF values were estimated. The CFR was computed as the ratio of the MBF during adenosine triphosphate-induced stress to the MBF at rest. The inter-observer variability was assessed by two independent observers. PET/CT using a 15O-water dose of 500 MBq and 3D data acquisition showed good image quality. A strong inter-observer correlation was detected in both the whole MBF analysis and the regional analysis with high intra-class correlation coefficients (r > 0.90, p < 0.001). Regional MBF at rest (LAD, 0.82 ± 0.15 ml/min/g; LCX, 0.83 ± 0.17 ml/min/g; RCA, 0.71 ± 0.20 ml/min/g; p = 0.74), MBF at stress (LAD, 3.77 ± 1.00 ml/min/g; LCX, 3.56 ± 1.01 ml/min/g; RCA, 3.27 ± 1.04 ml/min/g; p = 0.62), and CFR (LAD, 4.64 ± 0.90; LCX, 4.30 ± 0.64; RCA, 4.64 ± 0.96; p = 0.66) of the healthy volunteers showed no significant difference among the three regions. The global CFR of the patients was significantly lower than that of the volunteers (2.75 ± 0.81 vs. 4.54 ± 0.66, p = 0.0002). The regional analysis of the patients demonstrated that the CFR tended to be lower in the stenotic region compared to the non-stenotic region (2.43 ± 0.81 vs. 2.95 ± 0.92, p = 0.052).

Conclusions

15O-water PET/CT with 3D data acquisition can be reliably used for the quantification of functional MBF and CFR in CAD patients.
Literature
1.
go back to reference Naya M, Di Carli MF. Myocardial perfusion PET/CT to evaluate known and suspected coronary artery disease. Q J Nucl Med Mol Imaging. 2010;54(2):145–56.PubMed Naya M, Di Carli MF. Myocardial perfusion PET/CT to evaluate known and suspected coronary artery disease. Q J Nucl Med Mol Imaging. 2010;54(2):145–56.PubMed
3.
go back to reference Kaufmann PA, Gnecchi-Ruscone T, Yap JT, Rimoldi O, Camici PG. Assessment of the reproducibility of baseline and hyperemic myocardial blood flow measurements with 15O-labeled water and PET. J Nucl Med. 1999;40(11):1848–56.PubMed Kaufmann PA, Gnecchi-Ruscone T, Yap JT, Rimoldi O, Camici PG. Assessment of the reproducibility of baseline and hyperemic myocardial blood flow measurements with 15O-labeled water and PET. J Nucl Med. 1999;40(11):1848–56.PubMed
5.
go back to reference Tomiyama Y, Manabe O, Oyama-Manabe N, Naya M, Sugimori H, Hirata K, et al. Quantification of myocardial blood flow with dynamic perfusion 3.0 Tesla MRI: validation with (15) O-water PET. J Magn Reson Imaging. 2015;42(3):754–62. doi:10.1002/jmri.24834.CrossRefPubMed Tomiyama Y, Manabe O, Oyama-Manabe N, Naya M, Sugimori H, Hirata K, et al. Quantification of myocardial blood flow with dynamic perfusion 3.0 Tesla MRI: validation with (15) O-water PET. J Magn Reson Imaging. 2015;42(3):754–62. doi:10.​1002/​jmri.​24834.CrossRefPubMed
7.
go back to reference van der Bijl N, Joemai RM, Geleijns J, Bax JJ, Schuijf JD, de Roos A, et al. Assessment of Agatston coronary artery calcium score using contrast-enhanced CT coronary angiography. AJR Am J Roentgenol. 2010;195(6):1299–305. doi:10.2214/AJR.09.3734.CrossRefPubMed van der Bijl N, Joemai RM, Geleijns J, Bax JJ, Schuijf JD, de Roos A, et al. Assessment of Agatston coronary artery calcium score using contrast-enhanced CT coronary angiography. AJR Am J Roentgenol. 2010;195(6):1299–305. doi:10.​2214/​AJR.​09.​3734.CrossRefPubMed
8.
go back to reference Katoh C, Yoshinaga K, Klein R, Kasai K, Tomiyama Y, Manabe O, et al. Quantification of regional myocardial blood flow estimation with three-dimensional dynamic rubidium-82 PET and modified spillover correction model. J Nucl Cardiol. 2012;19(4):763–74. doi:10.1007/s12350-012-9558-1.CrossRefPubMed Katoh C, Yoshinaga K, Klein R, Kasai K, Tomiyama Y, Manabe O, et al. Quantification of regional myocardial blood flow estimation with three-dimensional dynamic rubidium-82 PET and modified spillover correction model. J Nucl Cardiol. 2012;19(4):763–74. doi:10.​1007/​s12350-012-9558-1.CrossRefPubMed
10.
go back to reference Mori Y, Manabe O, Naya M, Tomiyama Y, Yoshinaga K, Magota K, et al. Improved spillover correction model to quantify myocardial blood flow by 11C-acetate PET: comparison with 15O-H 2O PET. Ann Nucl Med. 2015;29(1):15–20. doi:10.1007/s12149-014-0904-z.CrossRefPubMed Mori Y, Manabe O, Naya M, Tomiyama Y, Yoshinaga K, Magota K, et al. Improved spillover correction model to quantify myocardial blood flow by 11C-acetate PET: comparison with 15O-H 2O PET. Ann Nucl Med. 2015;29(1):15–20. doi:10.​1007/​s12149-014-0904-z.CrossRefPubMed
11.
go back to reference White CW, Wright CB, Doty DB, Hiratza LF, Eastham CL, Harrison DG, et al. Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? N Engl J Med. 1984;310(13):819–24. doi:10.1056/NEJM198403293101304.CrossRefPubMed White CW, Wright CB, Doty DB, Hiratza LF, Eastham CL, Harrison DG, et al. Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? N Engl J Med. 1984;310(13):819–24. doi:10.​1056/​NEJM198403293101​304.CrossRefPubMed
13.
go back to reference Roelants V, Bol A, Bernard X, Coppens A, Melin J, Gerber B, et al. Direct comparison between 2-dimensional and 3-dimensional PET acquisition modes for myocardial blood flow absolute quantification with O-15 water and N-13 ammonia. J Nucl Cardiol. 2006;13(2):220–4. doi:10.1016/j.nuclcard.2006.01.006.CrossRefPubMed Roelants V, Bol A, Bernard X, Coppens A, Melin J, Gerber B, et al. Direct comparison between 2-dimensional and 3-dimensional PET acquisition modes for myocardial blood flow absolute quantification with O-15 water and N-13 ammonia. J Nucl Cardiol. 2006;13(2):220–4. doi:10.​1016/​j.​nuclcard.​2006.​01.​006.CrossRefPubMed
14.
go back to reference Gould KL, Pan T, Loghin C, Johnson NP, Guha A, Sdringola S. Frequent diagnostic errors in cardiac PET/CT due to misregistration of CT attenuation and emission PET images: a definitive analysis of causes, consequences, and corrections. J Nucl Med. 2007;48(7):1112–21. doi:10.2967/jnumed.107.039792.CrossRefPubMed Gould KL, Pan T, Loghin C, Johnson NP, Guha A, Sdringola S. Frequent diagnostic errors in cardiac PET/CT due to misregistration of CT attenuation and emission PET images: a definitive analysis of causes, consequences, and corrections. J Nucl Med. 2007;48(7):1112–21. doi:10.​2967/​jnumed.​107.​039792.CrossRefPubMed
15.
go back to reference Lautamaki R, Brown TL, Merrill J, Bengel FM. CT-based attenuation correction in (82)Rb-myocardial perfusion PET-CT: incidence of misalignment and effect on regional tracer distribution. Eur J Nucl Med Mol Imaging. 2008;35(2):305–10. doi:10.1007/s00259-007-0607-y.CrossRefPubMed Lautamaki R, Brown TL, Merrill J, Bengel FM. CT-based attenuation correction in (82)Rb-myocardial perfusion PET-CT: incidence of misalignment and effect on regional tracer distribution. Eur J Nucl Med Mol Imaging. 2008;35(2):305–10. doi:10.​1007/​s00259-007-0607-y.CrossRefPubMed
16.
go back to reference Martinez-Moller A, Souvatzoglou M, Navab N, Schwaiger M, Nekolla SG. Artifacts from misaligned CT in cardiac perfusion PET/CT studies: frequency, effects, and potential solutions. J Nucl Med. 2007;48(2):188–93.PubMed Martinez-Moller A, Souvatzoglou M, Navab N, Schwaiger M, Nekolla SG. Artifacts from misaligned CT in cardiac perfusion PET/CT studies: frequency, effects, and potential solutions. J Nucl Med. 2007;48(2):188–93.PubMed
17.
go back to reference Marinelli M, Positano V, Tucci F, Neglia D, Landini L. Automatic PET-CT image registration method based on mutual information and genetic algorithms. Sci World J. 2012;2012:567067. doi:10.1100/2012/567067.CrossRef Marinelli M, Positano V, Tucci F, Neglia D, Landini L. Automatic PET-CT image registration method based on mutual information and genetic algorithms. Sci World J. 2012;2012:567067. doi:10.​1100/​2012/​567067.CrossRef
19.
go back to reference Tsukamoto T, Morita K, Naya M, Katoh C, Inubushi M, Kuge Y, et al. Myocardial flow reserve is influenced by both coronary artery stenosis severity and coronary risk factors in patients with suspected coronary artery disease. Eur J Nucl Med Mol Imaging. 2006;33(10):1150–6. doi:10.1007/s00259-006-0082-x.CrossRefPubMed Tsukamoto T, Morita K, Naya M, Katoh C, Inubushi M, Kuge Y, et al. Myocardial flow reserve is influenced by both coronary artery stenosis severity and coronary risk factors in patients with suspected coronary artery disease. Eur J Nucl Med Mol Imaging. 2006;33(10):1150–6. doi:10.​1007/​s00259-006-0082-x.CrossRefPubMed
21.
22.
go back to reference Ziadi MC, Dekemp RA, Williams K, Guo A, Renaud JM, Chow BJ, et al. Does quantification of myocardial flow reserve using rubidium-82 positron emission tomography facilitate detection of multivessel coronary artery disease? J Nucl Cardiol. 2012;19(4):670–80. doi:10.1007/s12350-011-9506-5.CrossRefPubMed Ziadi MC, Dekemp RA, Williams K, Guo A, Renaud JM, Chow BJ, et al. Does quantification of myocardial flow reserve using rubidium-82 positron emission tomography facilitate detection of multivessel coronary artery disease? J Nucl Cardiol. 2012;19(4):670–80. doi:10.​1007/​s12350-011-9506-5.CrossRefPubMed
23.
go back to reference Schenker MP, Dorbala S, Hong EC, Rybicki FJ, Hachamovitch R, Kwong RY, et al. Interrelation of coronary calcification, myocardial ischemia, and outcomes in patients with intermediate likelihood of coronary artery disease: a combined positron emission tomography/computed tomography study. Circulation. 2008;117(13):1693–700. doi:10.1161/CIRCULATIONAHA.107.717512.CrossRefPubMedPubMedCentral Schenker MP, Dorbala S, Hong EC, Rybicki FJ, Hachamovitch R, Kwong RY, et al. Interrelation of coronary calcification, myocardial ischemia, and outcomes in patients with intermediate likelihood of coronary artery disease: a combined positron emission tomography/computed tomography study. Circulation. 2008;117(13):1693–700. doi:10.​1161/​CIRCULATIONAHA.​107.​717512.CrossRefPubMedPubMedCentral
24.
go back to reference Chang SM, Nabi F, Xu J, Peterson LE, Achari A, Pratt CM, et al. The coronary artery calcium score and stress myocardial perfusion imaging provide independent and complementary prediction of cardiac risk. J Am Coll Cardiol. 2009;54(20):1872–82. doi:10.1016/j.jacc.2009.05.071.CrossRefPubMed Chang SM, Nabi F, Xu J, Peterson LE, Achari A, Pratt CM, et al. The coronary artery calcium score and stress myocardial perfusion imaging provide independent and complementary prediction of cardiac risk. J Am Coll Cardiol. 2009;54(20):1872–82. doi:10.​1016/​j.​jacc.​2009.​05.​071.CrossRefPubMed
25.
go back to reference Schindler TH, Cardenas J, Prior JO, Facta AD, Kreissl MC, Zhang XL, et al. Relationship between increasing body weight, insulin resistance, inflammation, adipocytokine leptin, and coronary circulatory function. J Am Coll Cardiol. 2006;47(6):1188–95. doi:10.1016/j.jacc.2005.10.062.CrossRefPubMed Schindler TH, Cardenas J, Prior JO, Facta AD, Kreissl MC, Zhang XL, et al. Relationship between increasing body weight, insulin resistance, inflammation, adipocytokine leptin, and coronary circulatory function. J Am Coll Cardiol. 2006;47(6):1188–95. doi:10.​1016/​j.​jacc.​2005.​10.​062.CrossRefPubMed
27.
go back to reference Kaufmann PA, Gnecchi-Ruscone T, Schafers KP, Luscher TF, Camici PG. Low density lipoprotein cholesterol and coronary microvascular dysfunction in hypercholesterolemia. J Am Coll Cardiol. 2000;36(1):103–9.CrossRefPubMed Kaufmann PA, Gnecchi-Ruscone T, Schafers KP, Luscher TF, Camici PG. Low density lipoprotein cholesterol and coronary microvascular dysfunction in hypercholesterolemia. J Am Coll Cardiol. 2000;36(1):103–9.CrossRefPubMed
Metadata
Title
PET/CT scanning with 3D acquisition is feasible for quantifying myocardial blood flow when diagnosing coronary artery disease
Authors
Osamu Manabe
Masanao Naya
Tadao Aikawa
Masahiko Obara
Keiichi Magota
Markus Kroenke
Noriko Oyama-Manabe
Kenji Hirata
Daiki Shinyama
Chietsugu Katoh
Nagara Tamaki
Publication date
01-12-2017
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2017
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-017-0296-x

Other articles of this Issue 1/2017

EJNMMI Research 1/2017 Go to the issue