Skip to main content
Top
Published in: EJNMMI Research 1/2014

Open Access 01-12-2014 | Original research

Evaluation of efficacy of a new MEK inhibitor, RO4987655, in human tumor xenografts by [18F] FDG-PET imaging combined with proteomic approaches

Authors: Tetyana Tegnebratt, Elisabeth Ruge, Sabine Bader, Nobuya Ishii, Satoshi Aida, Yasushi Yoshimura, Chia-Huey Ooi, Li Lu, Nicholas Mitsios, Valerie Meresse, Jan Mulder, Michael Pawlak, Miro Venturi, Jean Tessier, Sharon Stone-Elander

Published in: EJNMMI Research | Issue 1/2014

Login to get access

Abstract

Background

Inhibition of mitogen-activated protein kinase (MEK, also known as MAPK2, MAPKK), a key molecule of the Ras/MAPK (mitogen-activated protein kinase) pathway, has shown promising effects on B-raf-mutated and some RAS (rat sarcoma)-activated tumors in clinical trials. The objective of this study is to examine the efficacy of a novel allosteric MEK inhibitor RO4987655 in K-ras-mutated human tumor xenograft models using [18F] FDG-PET imaging and proteomics technology.

Methods

[18F] FDG uptake was studied in human lung carcinoma xenografts from day 0 to day 9 of RO4987655 therapy using microPET Focus 120 (CTI Concorde Microsystems, Knoxville, TN, USA). The expression levels of GLUT1 and hexokinase 1 were examined using semi-quantitative fluorescent immunohistochemistry (fIHC). The in vivo effects of RO4987655 on MAPK/PI3K pathway components were assessed by reverse phase protein arrays (RPPA).

Results

We have observed modest metabolic decreases in tumor [18F] FDG uptake after MEK inhibition by RO4987655 as early as 2 h post-treatment. The greatest [18F] FDG decreases were found on day 1, followed by a rebound in [18F] FDG uptake on day 3 in parallel with decreasing tumor volumes. Molecular analysis of the tumors by fIHC did not reveal statistically significant correlations of GLUT1 and hexokinase 1 expressions with the [18F] FDG changes. RPPA signaling response profiling revealed not only down-regulation of pERK1/2, pMKK4, and pmTOR on day 1 after RO4987655 treatment but also significant up-regulation of pMEK1/2, pMEK2, pC-RAF, and pAKT on day 3. The up-regulation of these markers is interpreted to be indicative of a reactivation of the MAPK and activation of the compensatory PI3K pathway, which can also explain the rebound in [18F] FDG uptake following MEK inhibition with RO4987655 in the K-ras-mutated human tumor xenografts.

Conclusions

We have performed the first preclinical evaluation of a new MEK inhibitor, RO4987655, using a combination of [18F] FDG-PET imaging and molecular proteomics. These results provide support for using preclinical [18F] FDG-PET imaging in early, non-invasive monitoring of the effects of MEK and perhaps other Ras/MAPK signaling pathway inhibitors, which should facilitate a wider implementation of clinical [18F] FDG-PET to optimize their clinical use.
Appendix
Available only for authorised users
Literature
1.
go back to reference Friday BB, Adjei AA: Advances in targeting the Ras/Raf/MEK/Erk mitogen-activated protein kinase cascade with MEK inhibitors for cancer therapy. Clin Cancer Res 2008, 14: 342–346. 10.1158/1078-0432.CCR-07-4790CrossRefPubMed Friday BB, Adjei AA: Advances in targeting the Ras/Raf/MEK/Erk mitogen-activated protein kinase cascade with MEK inhibitors for cancer therapy. Clin Cancer Res 2008, 14: 342–346. 10.1158/1078-0432.CCR-07-4790CrossRefPubMed
2.
go back to reference Pratilas CA, Solit DB: Targeting the mitogen-activated protein kinase pathway: physiological feedback and drug response. Clin Cancer Res 2010, 16: 3329–3334. 10.1158/1078-0432.CCR-09-3064PubMedCentralCrossRefPubMed Pratilas CA, Solit DB: Targeting the mitogen-activated protein kinase pathway: physiological feedback and drug response. Clin Cancer Res 2010, 16: 3329–3334. 10.1158/1078-0432.CCR-09-3064PubMedCentralCrossRefPubMed
3.
go back to reference Roberts PJ, Der CJ: Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 2007, 26: 3291–3310. 10.1038/sj.onc.1210422CrossRefPubMed Roberts PJ, Der CJ: Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 2007, 26: 3291–3310. 10.1038/sj.onc.1210422CrossRefPubMed
4.
go back to reference Fremin C, Meloche S: From basic research to clinical development of MEK1/2 inhibitors for cancer therapy. J Hematol Oncol 2010, 3: 8. 10.1186/1756-8722-3-8PubMedCentralCrossRefPubMed Fremin C, Meloche S: From basic research to clinical development of MEK1/2 inhibitors for cancer therapy. J Hematol Oncol 2010, 3: 8. 10.1186/1756-8722-3-8PubMedCentralCrossRefPubMed
5.
go back to reference Schelling M, Avril N, Nahrig J, Kuhn W, Romer W, Sattler D, Werner M, Dose J, Janicke F, Graeff H, Schwaiger M: Positron emission tomography using [(18)F] Fluorodeoxyglucose for monitoring primary chemotherapy in breast cancer. J Clin Oncol 2000, 18: 1689–1695.PubMed Schelling M, Avril N, Nahrig J, Kuhn W, Romer W, Sattler D, Werner M, Dose J, Janicke F, Graeff H, Schwaiger M: Positron emission tomography using [(18)F] Fluorodeoxyglucose for monitoring primary chemotherapy in breast cancer. J Clin Oncol 2000, 18: 1689–1695.PubMed
6.
go back to reference Weber WA, Petersen V, Schmidt B, Tyndale-Hines L, Link T, Peschel C, Schwaiger M: Positron emission tomography in non-small-cell lung cancer: prediction of response to chemotherapy by quantitative assessment of glucose use. J Clin Oncol 2003, 21: 2651–2657. 10.1200/JCO.2003.12.004CrossRefPubMed Weber WA, Petersen V, Schmidt B, Tyndale-Hines L, Link T, Peschel C, Schwaiger M: Positron emission tomography in non-small-cell lung cancer: prediction of response to chemotherapy by quantitative assessment of glucose use. J Clin Oncol 2003, 21: 2651–2657. 10.1200/JCO.2003.12.004CrossRefPubMed
7.
go back to reference Spaepen K, Stroobants S, Verhoef G, Mortelmans L: Positron emission tomography with [(18)F] FDG for therapy response monitoring in lymphoma patients. Eur J Nucl Med Mol Imaging 2003, 30(Suppl 1):S97–105. 10.1007/s00259-003-1166-5CrossRefPubMed Spaepen K, Stroobants S, Verhoef G, Mortelmans L: Positron emission tomography with [(18)F] FDG for therapy response monitoring in lymphoma patients. Eur J Nucl Med Mol Imaging 2003, 30(Suppl 1):S97–105. 10.1007/s00259-003-1166-5CrossRefPubMed
8.
go back to reference Stroobants S, Goeminne J, Seegers M, Dimitrijevic S, Dupont P, Nuyts J, Martens M, van den Borne B, Cole P, Sciot R, Dumez H, Silberman S, Mortelmans L, van Oosterom A: 18FDG-Positron emission tomography for the early prediction of response in advanced soft tissue sarcoma treated with imatinib mesylate (Glivec). Eur J Cancer 2003, 39: 2012–2020. 10.1016/S0959-8049(03)00073-XCrossRefPubMed Stroobants S, Goeminne J, Seegers M, Dimitrijevic S, Dupont P, Nuyts J, Martens M, van den Borne B, Cole P, Sciot R, Dumez H, Silberman S, Mortelmans L, van Oosterom A: 18FDG-Positron emission tomography for the early prediction of response in advanced soft tissue sarcoma treated with imatinib mesylate (Glivec). Eur J Cancer 2003, 39: 2012–2020. 10.1016/S0959-8049(03)00073-XCrossRefPubMed
9.
go back to reference Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, O'Dwyer PJ, Lee RJ, Grippo JF, Nolop K, Chapman PB: Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 2010, 363: 809–819. 10.1056/NEJMoa1002011PubMedCentralCrossRefPubMed Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, O'Dwyer PJ, Lee RJ, Grippo JF, Nolop K, Chapman PB: Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 2010, 363: 809–819. 10.1056/NEJMoa1002011PubMedCentralCrossRefPubMed
10.
go back to reference Leijen S, Middleton MR, Tresca P, Kraeber-Bodere F, Dieras V, Scheulen ME, Gupta A, Lopez-Valverde V, Xu ZX, Rueger R, Tessier JJ, Shochat E, Blotner S, Naegelen VM, Schellens JH, Eberhardt WE: Phase I dose-escalation study of the safety, pharmacokinetics, and pharmacodynamics of the MEK inhibitor RO4987655 (CH4987655) in patients with advanced solid tumors. Clin Cancer Res 2012, 18: 4794–4805. 10.1158/1078-0432.CCR-12-0868CrossRefPubMed Leijen S, Middleton MR, Tresca P, Kraeber-Bodere F, Dieras V, Scheulen ME, Gupta A, Lopez-Valverde V, Xu ZX, Rueger R, Tessier JJ, Shochat E, Blotner S, Naegelen VM, Schellens JH, Eberhardt WE: Phase I dose-escalation study of the safety, pharmacokinetics, and pharmacodynamics of the MEK inhibitor RO4987655 (CH4987655) in patients with advanced solid tumors. Clin Cancer Res 2012, 18: 4794–4805. 10.1158/1078-0432.CCR-12-0868CrossRefPubMed
11.
go back to reference Martinez-Garcia M, Banerji U, Albanell J, Bahleda R, Dolly S, Kraeber-Bodere F, Rojo F, Routier E, Guarin E, Xu ZX, Rueger R, Tessier JJ, Shochat E, Blotner S, Naegelen VM, Soria JC: First-in-human, phase I dose-escalation study of the safety, pharmacokinetics, and pharmacodynamics of RO5126766, a first-in-class dual MEK/RAF inhibitor in patients with solid tumors. Clin Cancer Res 2012, 18: 4806–4819. 10.1158/1078-0432.CCR-12-0742CrossRefPubMed Martinez-Garcia M, Banerji U, Albanell J, Bahleda R, Dolly S, Kraeber-Bodere F, Rojo F, Routier E, Guarin E, Xu ZX, Rueger R, Tessier JJ, Shochat E, Blotner S, Naegelen VM, Soria JC: First-in-human, phase I dose-escalation study of the safety, pharmacokinetics, and pharmacodynamics of RO5126766, a first-in-class dual MEK/RAF inhibitor in patients with solid tumors. Clin Cancer Res 2012, 18: 4806–4819. 10.1158/1078-0432.CCR-12-0742CrossRefPubMed
12.
go back to reference Infante JR, Fecher LA, Falchook GS, Nallapareddy S, Gordon MS, Becerra C, DeMarini DJ, Cox DS, Xu Y, Morris SR, Peddareddigari VG, Le NT, Hart L, Bendell JC, Eckhardt G, Kurzrock R, Flaherty K, Burris HA 3rd, Messersmith WA: Safety, pharmacokinetic, pharmacodynamic, and efficacy data for the oral MEK inhibitor trametinib: a phase 1 dose-escalation trial. Lancet Oncol 2012, 13: 773–781. 10.1016/S1470-2045(12)70270-XCrossRefPubMed Infante JR, Fecher LA, Falchook GS, Nallapareddy S, Gordon MS, Becerra C, DeMarini DJ, Cox DS, Xu Y, Morris SR, Peddareddigari VG, Le NT, Hart L, Bendell JC, Eckhardt G, Kurzrock R, Flaherty K, Burris HA 3rd, Messersmith WA: Safety, pharmacokinetic, pharmacodynamic, and efficacy data for the oral MEK inhibitor trametinib: a phase 1 dose-escalation trial. Lancet Oncol 2012, 13: 773–781. 10.1016/S1470-2045(12)70270-XCrossRefPubMed
13.
go back to reference Engelman JA, Chen L, Tan X, Crosby K, Guimaraes AR, Upadhyay R, Maira M, McNamara K, Perera SA, Song Y, Chirieac LR, Kaur R, Lightbown A, Simendinger J, Li T, Padera RF, Garcia-Echeverria C, Weissleder R, Mahmood U, Cantley LC, Wong KK: Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med 2008, 14: 1351–1356. 10.1038/nm.1890PubMedCentralCrossRefPubMed Engelman JA, Chen L, Tan X, Crosby K, Guimaraes AR, Upadhyay R, Maira M, McNamara K, Perera SA, Song Y, Chirieac LR, Kaur R, Lightbown A, Simendinger J, Li T, Padera RF, Garcia-Echeverria C, Weissleder R, Mahmood U, Cantley LC, Wong KK: Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med 2008, 14: 1351–1356. 10.1038/nm.1890PubMedCentralCrossRefPubMed
14.
go back to reference Kinross KM, Brown DV, Kleinschmidt M, Jackson S, Christensen J, Cullinane C, Hicks RJ, Johnstone RW, McArthur GA: In vivo activity of combined PI3K/mTOR and MEK inhibition in a Kras(G12D);Pten deletion mouse model of ovarian cancer. Mol Cancer Ther 2011, 10: 1440–1449. 10.1158/1535-7163.MCT-11-0240CrossRefPubMed Kinross KM, Brown DV, Kleinschmidt M, Jackson S, Christensen J, Cullinane C, Hicks RJ, Johnstone RW, McArthur GA: In vivo activity of combined PI3K/mTOR and MEK inhibition in a Kras(G12D);Pten deletion mouse model of ovarian cancer. Mol Cancer Ther 2011, 10: 1440–1449. 10.1158/1535-7163.MCT-11-0240CrossRefPubMed
15.
go back to reference Chen Z, Cheng K, Walton Z, Wang Y, Ebi H, Shimamura T, Liu Y, Tupper T, Ouyang J, Li J, Gao P, Woo MS, Xu C, Yanagita M, Altabef A, Wang S, Lee C, Nakada Y, Pena CG, Sun Y, Franchetti Y, Yao C, Saur A, Cameron MD, Nishino M, Hayes DN, Wilkerson MD, Roberts PJ, Lee CB, Bardeesy N, Butaney M, Chirieac LR, Costa DB, Jackman D, Sharpless NE, Castrillon DH, Demetri GD, Janne PA, Pandolfi PP, Cantley LC, Kung AL, Engelman JA, Wong KK: A murine lung cancer co-clinical trial identifies genetic modifiers of therapeutic response. Nature 2012, 483: 613–617. 10.1038/nature10937PubMedCentralCrossRefPubMed Chen Z, Cheng K, Walton Z, Wang Y, Ebi H, Shimamura T, Liu Y, Tupper T, Ouyang J, Li J, Gao P, Woo MS, Xu C, Yanagita M, Altabef A, Wang S, Lee C, Nakada Y, Pena CG, Sun Y, Franchetti Y, Yao C, Saur A, Cameron MD, Nishino M, Hayes DN, Wilkerson MD, Roberts PJ, Lee CB, Bardeesy N, Butaney M, Chirieac LR, Costa DB, Jackman D, Sharpless NE, Castrillon DH, Demetri GD, Janne PA, Pandolfi PP, Cantley LC, Kung AL, Engelman JA, Wong KK: A murine lung cancer co-clinical trial identifies genetic modifiers of therapeutic response. Nature 2012, 483: 613–617. 10.1038/nature10937PubMedCentralCrossRefPubMed
16.
go back to reference Tegnebratt T, Lu L, Lee L, Meresse V, Tessier J, Ishii N, Harada N, Pisa P, Stone-Elander S: [18F] FDG-PET imaging is an early non-invasive pharmacodynamic biomarker for a first-in-class dual MEK/Raf inhibitor, RO5126766 (CH5126766), in preclinical xenograft models. EJNMMI Res 2013, 3: 67. 10.1186/2191-219X-3-67PubMedCentralCrossRefPubMed Tegnebratt T, Lu L, Lee L, Meresse V, Tessier J, Ishii N, Harada N, Pisa P, Stone-Elander S: [18F] FDG-PET imaging is an early non-invasive pharmacodynamic biomarker for a first-in-class dual MEK/Raf inhibitor, RO5126766 (CH5126766), in preclinical xenograft models. EJNMMI Res 2013, 3: 67. 10.1186/2191-219X-3-67PubMedCentralCrossRefPubMed
17.
go back to reference Baudy AR, Dogan T, Flores-Mercado JE, Hoeflich KP, Su F, van Bruggen N, Williams SP: FDG-PET is a good biomarker of both early response and acquired resistance in BRAFV600 mutant melanomas treated with vemurafenib and the MEK inhibitor GDC-0973. EJNMMI Res 2012, 2: 22. 10.1186/2191-219X-2-22PubMedCentralCrossRefPubMed Baudy AR, Dogan T, Flores-Mercado JE, Hoeflich KP, Su F, van Bruggen N, Williams SP: FDG-PET is a good biomarker of both early response and acquired resistance in BRAFV600 mutant melanomas treated with vemurafenib and the MEK inhibitor GDC-0973. EJNMMI Res 2012, 2: 22. 10.1186/2191-219X-2-22PubMedCentralCrossRefPubMed
18.
go back to reference Speer R, Wulfkuhle J, Espina V, Aurajo R, Edmiston KH, Liotta LA, Petricoin EF 3rd: Development of reverse phase protein microarrays for clinical applications and patient-tailored therapy. Cancer Genomics Proteomics 2007, 4: 157–164.PubMed Speer R, Wulfkuhle J, Espina V, Aurajo R, Edmiston KH, Liotta LA, Petricoin EF 3rd: Development of reverse phase protein microarrays for clinical applications and patient-tailored therapy. Cancer Genomics Proteomics 2007, 4: 157–164.PubMed
19.
go back to reference Paweletz CP, Charboneau L, Bichsel VE, Simone NL, Chen T, Gillespie JW, Emmert-Buck MR, Roth MJ, Petricoin IE, Liotta LA: Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 2001, 20: 1981–1989. 10.1038/sj.onc.1204265CrossRefPubMed Paweletz CP, Charboneau L, Bichsel VE, Simone NL, Chen T, Gillespie JW, Emmert-Buck MR, Roth MJ, Petricoin IE, Liotta LA: Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 2001, 20: 1981–1989. 10.1038/sj.onc.1204265CrossRefPubMed
20.
go back to reference Gopal YN, Deng W, Woodman SE, Komurov K, Ram P, Smith PD, Davies MA: Basal and treatment-induced activation of AKT mediates resistance to cell death by AZD6244 (ARRY-142886) in Braf-mutant human cutaneous melanoma cells. Cancer Res 2010, 70: 8736–8747. 10.1158/0008-5472.CAN-10-0902PubMedCentralCrossRefPubMed Gopal YN, Deng W, Woodman SE, Komurov K, Ram P, Smith PD, Davies MA: Basal and treatment-induced activation of AKT mediates resistance to cell death by AZD6244 (ARRY-142886) in Braf-mutant human cutaneous melanoma cells. Cancer Res 2010, 70: 8736–8747. 10.1158/0008-5472.CAN-10-0902PubMedCentralCrossRefPubMed
21.
go back to reference Mirzoeva OK, Das D, Heiser LM, Bhattacharya S, Siwak D, Gendelman R, Bayani N, Wang NJ, Neve RM, Guan Y, Hu Z, Knight Z, Feiler HS, Gascard P, Parvin B, Spellman PT, Shokat KM, Wyrobek AJ, Bissell MJ, McCormick F, Kuo WL, Mills GB, Gray JW, Korn WM: Basal subtype and MAPK/ERK kinase (MEK)-phosphoinositide 3-kinase feedback signaling determine susceptibility of breast cancer cells to MEK inhibition. Cancer Res 2009, 69: 565–572. 10.1158/0008-5472.CAN-08-3389PubMedCentralCrossRefPubMed Mirzoeva OK, Das D, Heiser LM, Bhattacharya S, Siwak D, Gendelman R, Bayani N, Wang NJ, Neve RM, Guan Y, Hu Z, Knight Z, Feiler HS, Gascard P, Parvin B, Spellman PT, Shokat KM, Wyrobek AJ, Bissell MJ, McCormick F, Kuo WL, Mills GB, Gray JW, Korn WM: Basal subtype and MAPK/ERK kinase (MEK)-phosphoinositide 3-kinase feedback signaling determine susceptibility of breast cancer cells to MEK inhibition. Cancer Res 2009, 69: 565–572. 10.1158/0008-5472.CAN-08-3389PubMedCentralCrossRefPubMed
22.
go back to reference Network CGA: Comprehensive molecular portraits of human breast tumours. Nature 2012, 490: 61–70. 10.1038/nature11453CrossRef Network CGA: Comprehensive molecular portraits of human breast tumours. Nature 2012, 490: 61–70. 10.1038/nature11453CrossRef
23.
go back to reference Gujral TS, Karp RL, Finski A, Chan M, Schwartz PE, Macbeath G, Sorger P: Profiling phospho-signaling networks in breast cancer using reverse-phase protein arrays. Oncogene 2013, 32: 3470–3476. 10.1038/onc.2012.378PubMedCentralCrossRefPubMed Gujral TS, Karp RL, Finski A, Chan M, Schwartz PE, Macbeath G, Sorger P: Profiling phospho-signaling networks in breast cancer using reverse-phase protein arrays. Oncogene 2013, 32: 3470–3476. 10.1038/onc.2012.378PubMedCentralCrossRefPubMed
24.
go back to reference Tibes R, Qiu Y, Lu Y, Hennessy B, Andreeff M, Mills GB, Kornblau SM: Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells. Mol Cancer Ther 2006, 5: 2512–2521. 10.1158/1535-7163.MCT-06-0334CrossRefPubMed Tibes R, Qiu Y, Lu Y, Hennessy B, Andreeff M, Mills GB, Kornblau SM: Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells. Mol Cancer Ther 2006, 5: 2512–2521. 10.1158/1535-7163.MCT-06-0334CrossRefPubMed
25.
go back to reference Isshiki Y, Kohchi Y, Iikura H, Matsubara Y, Asoh K, Murata T, Kohchi M, Mizuguchi E, Tsujii S, Hattori K, Miura T, Yoshimura Y, Aida S, Miwa M, Saitoh R, Murao N, Okabe H, Belunis C, Janson C, Lukacs C, Schuck V, Shimma N: Design and synthesis of novel allosteric MEK inhibitor CH4987655 as an orally available anticancer agent. Bioorg Med Chem Lett 2011, 21: 1795–1801. 10.1016/j.bmcl.2011.01.062CrossRefPubMed Isshiki Y, Kohchi Y, Iikura H, Matsubara Y, Asoh K, Murata T, Kohchi M, Mizuguchi E, Tsujii S, Hattori K, Miura T, Yoshimura Y, Aida S, Miwa M, Saitoh R, Murao N, Okabe H, Belunis C, Janson C, Lukacs C, Schuck V, Shimma N: Design and synthesis of novel allosteric MEK inhibitor CH4987655 as an orally available anticancer agent. Bioorg Med Chem Lett 2011, 21: 1795–1801. 10.1016/j.bmcl.2011.01.062CrossRefPubMed
26.
go back to reference Higashi K, Ueda Y, Sakurai A, Wang XM, Xu L, Murakami M, Seki H, Oguchi M, Taki S, Nambu Y, Tonami H, Katsuda S, Yamamoto I: Correlation of Glut-1 glucose transporter expression with. Eur J Nucl Med 2000, 27: 1778–1785. 10.1007/s002590000367CrossRef Higashi K, Ueda Y, Sakurai A, Wang XM, Xu L, Murakami M, Seki H, Oguchi M, Taki S, Nambu Y, Tonami H, Katsuda S, Yamamoto I: Correlation of Glut-1 glucose transporter expression with. Eur J Nucl Med 2000, 27: 1778–1785. 10.1007/s002590000367CrossRef
27.
go back to reference Mulder J, Bjorling E, Jonasson K, Wernerus H, Hober S, Hokfelt T, Uhlen M: Tissue profiling of the mammalian central nervous system using human antibody-based proteomics. Mol Cell Proteomics 2009, 8: 1612–1622. 10.1074/mcp.M800539-MCP200PubMedCentralCrossRefPubMed Mulder J, Bjorling E, Jonasson K, Wernerus H, Hober S, Hokfelt T, Uhlen M: Tissue profiling of the mammalian central nervous system using human antibody-based proteomics. Mol Cell Proteomics 2009, 8: 1612–1622. 10.1074/mcp.M800539-MCP200PubMedCentralCrossRefPubMed
28.
go back to reference Ishii N, Harada N, Joseph EW, Ohara K, Miura T, Sakamoto H, Matsuda Y, Tomii Y, Tachibana-Kondo Y, Iikura H, Aoki T, Shimma N, Arisawa M, Sowa Y, Poulikakos PI, Rosen N, Aoki Y, Sakai T: Enhanced inhibition of ERK signaling by a novel allosteric MEK inhibitor, CH5126766, that suppresses feedback reactivation of RAF activity. Cancer Res 2013, 73: 4050–4060. 10.1158/0008-5472.CAN-12-3937PubMedCentralCrossRefPubMed Ishii N, Harada N, Joseph EW, Ohara K, Miura T, Sakamoto H, Matsuda Y, Tomii Y, Tachibana-Kondo Y, Iikura H, Aoki T, Shimma N, Arisawa M, Sowa Y, Poulikakos PI, Rosen N, Aoki Y, Sakai T: Enhanced inhibition of ERK signaling by a novel allosteric MEK inhibitor, CH5126766, that suppresses feedback reactivation of RAF activity. Cancer Res 2013, 73: 4050–4060. 10.1158/0008-5472.CAN-12-3937PubMedCentralCrossRefPubMed
29.
go back to reference Kraeber-Bodere F, Carlier T, Naegelen VM, Shochat E, Lumbroso J, Trampal C, Nagarajah J, Chua S, Hugonnet F, Stokkel M, Gleeson F, Tessier J: Differences in the biologic activity of 2 novel MEK inhibitors revealed by 18F-FDG PET: analysis of imaging data from 2 phase I trials. J Nucl Med 2012, 53: 1836–1846. 10.2967/jnumed.112.109421CrossRefPubMed Kraeber-Bodere F, Carlier T, Naegelen VM, Shochat E, Lumbroso J, Trampal C, Nagarajah J, Chua S, Hugonnet F, Stokkel M, Gleeson F, Tessier J: Differences in the biologic activity of 2 novel MEK inhibitors revealed by 18F-FDG PET: analysis of imaging data from 2 phase I trials. J Nucl Med 2012, 53: 1836–1846. 10.2967/jnumed.112.109421CrossRefPubMed
30.
go back to reference de Geus-Oei LF, van Krieken JH, Aliredjo RP, Krabbe PF, Frielink C, Verhagen AF, Boerman OC, Oyen WJ: Biological correlates of FDG uptake in non-small cell lung cancer. Lung Cancer 2007, 55: 79–87. 10.1016/j.lungcan.2006.08.018CrossRefPubMed de Geus-Oei LF, van Krieken JH, Aliredjo RP, Krabbe PF, Frielink C, Verhagen AF, Boerman OC, Oyen WJ: Biological correlates of FDG uptake in non-small cell lung cancer. Lung Cancer 2007, 55: 79–87. 10.1016/j.lungcan.2006.08.018CrossRefPubMed
31.
go back to reference Mamede M, Higashi T, Kitaichi M, Ishizu K, Ishimori T, Nakamoto Y, Yanagihara K, Li M, Tanaka F, Wada H, Manabe T, Saga T: [18F] FDG uptake and PCNA, Glut-1, and Hexokinase-II expressions in cancers and inflammatory lesions of the lung. Neoplasia 2005, 7: 369–379. 10.1593/neo.04577PubMedCentralCrossRefPubMed Mamede M, Higashi T, Kitaichi M, Ishizu K, Ishimori T, Nakamoto Y, Yanagihara K, Li M, Tanaka F, Wada H, Manabe T, Saga T: [18F] FDG uptake and PCNA, Glut-1, and Hexokinase-II expressions in cancers and inflammatory lesions of the lung. Neoplasia 2005, 7: 369–379. 10.1593/neo.04577PubMedCentralCrossRefPubMed
32.
go back to reference Ong LC, Jin Y, Song IC, Yu S, Zhang K, Chow PK: 2-[18F]-2-deoxy-D-glucose (FDG) uptake in human tumor cells is related to the expression of GLUT-1 and hexokinase II. Acta Radiol 2008, 49: 1145–1153. 10.1080/02841850802482486CrossRefPubMed Ong LC, Jin Y, Song IC, Yu S, Zhang K, Chow PK: 2-[18F]-2-deoxy-D-glucose (FDG) uptake in human tumor cells is related to the expression of GLUT-1 and hexokinase II. Acta Radiol 2008, 49: 1145–1153. 10.1080/02841850802482486CrossRefPubMed
33.
go back to reference Tateishi U, Nishihara H, Tsukamoto E, Morikawa T, Tamaki N, Miyasaka K: Lung tumors evaluated with FDG-PET and dynamic CT: the relationship between vascular density and glucose metabolism. J Comput Assist Tomogr 2002, 26: 185–190. 10.1097/00004728-200203000-00004CrossRefPubMed Tateishi U, Nishihara H, Tsukamoto E, Morikawa T, Tamaki N, Miyasaka K: Lung tumors evaluated with FDG-PET and dynamic CT: the relationship between vascular density and glucose metabolism. J Comput Assist Tomogr 2002, 26: 185–190. 10.1097/00004728-200203000-00004CrossRefPubMed
34.
go back to reference Higashi K, Ueda Y, Yagishita M, Arisaka Y, Sakurai A, Oguchi M, Seki H, Nambu Y, Tonami H, Yamamoto I: FDG PET measurement of the proliferative potential of non-small cell lung cancer. J Nucl Med 2000, 41: 85–92.PubMed Higashi K, Ueda Y, Yagishita M, Arisaka Y, Sakurai A, Oguchi M, Seki H, Nambu Y, Tonami H, Yamamoto I: FDG PET measurement of the proliferative potential of non-small cell lung cancer. J Nucl Med 2000, 41: 85–92.PubMed
35.
go back to reference Avril N: GLUT1 expression in tissue and (18)F-FDG uptake. J Nucl Med 2004, 45: 930–932.PubMed Avril N: GLUT1 expression in tissue and (18)F-FDG uptake. J Nucl Med 2004, 45: 930–932.PubMed
36.
go back to reference Davies BR, Logie A, McKay JS, Martin P, Steele S, Jenkins R, Cockerill M, Cartlidge S, Smith PD: AZD6244 (ARRY-142886), a potent inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2 kinases: mechanism of action in vivo, pharmacokinetic/pharmacodynamic relationship, and potential for combination in preclinical models. Mol Cancer Ther 2007, 6: 2209–2219. 10.1158/1535-7163.MCT-07-0231CrossRefPubMed Davies BR, Logie A, McKay JS, Martin P, Steele S, Jenkins R, Cockerill M, Cartlidge S, Smith PD: AZD6244 (ARRY-142886), a potent inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2 kinases: mechanism of action in vivo, pharmacokinetic/pharmacodynamic relationship, and potential for combination in preclinical models. Mol Cancer Ther 2007, 6: 2209–2219. 10.1158/1535-7163.MCT-07-0231CrossRefPubMed
37.
go back to reference Solit DB, Garraway LA, Pratilas CA, Sawai A, Getz G, Basso A, Ye Q, Lobo JM, She Y, Osman I, Golub TR, Sebolt-Leopold J, Sellers WR, Rosen N: BRAF mutation predicts sensitivity to MEK inhibition. Nature 2006, 439: 358–362. 10.1038/nature04304PubMedCentralCrossRefPubMed Solit DB, Garraway LA, Pratilas CA, Sawai A, Getz G, Basso A, Ye Q, Lobo JM, She Y, Osman I, Golub TR, Sebolt-Leopold J, Sellers WR, Rosen N: BRAF mutation predicts sensitivity to MEK inhibition. Nature 2006, 439: 358–362. 10.1038/nature04304PubMedCentralCrossRefPubMed
38.
39.
go back to reference Friday BB, Yu C, Dy GK, Smith PD, Wang L, Thibodeau SN, Adjei AA: BRAF V600E disrupts AZD6244-induced abrogation of negative feedback pathways between extracellular signal-regulated kinase and Raf proteins. Cancer Res 2008, 68: 6145–6153. 10.1158/0008-5472.CAN-08-1430CrossRefPubMed Friday BB, Yu C, Dy GK, Smith PD, Wang L, Thibodeau SN, Adjei AA: BRAF V600E disrupts AZD6244-induced abrogation of negative feedback pathways between extracellular signal-regulated kinase and Raf proteins. Cancer Res 2008, 68: 6145–6153. 10.1158/0008-5472.CAN-08-1430CrossRefPubMed
40.
go back to reference Rexer BN, Ghosh R, Arteaga CL: Inhibition of PI3K and MEK: it is all about combinations and biomarkers. Clin Cancer Res 2009, 15: 4518–4520. 10.1158/1078-0432.CCR-09-0872CrossRefPubMed Rexer BN, Ghosh R, Arteaga CL: Inhibition of PI3K and MEK: it is all about combinations and biomarkers. Clin Cancer Res 2009, 15: 4518–4520. 10.1158/1078-0432.CCR-09-0872CrossRefPubMed
41.
go back to reference Smalley KS, Lioni M, Dalla Palma M, Xiao M, Desai B, Egyhazi S, Hansson J, Wu H, King AJ, Van Belle P, Elder DE, Flaherty KT, Herlyn M, Nathanson KL: Increased cyclin D1 expression can mediate BRAF inhibitor resistance in BRAF V600E-mutated melanomas. Mol Cancer Ther 2008, 7: 2876–2883. 10.1158/1535-7163.MCT-08-0431PubMedCentralCrossRefPubMed Smalley KS, Lioni M, Dalla Palma M, Xiao M, Desai B, Egyhazi S, Hansson J, Wu H, King AJ, Van Belle P, Elder DE, Flaherty KT, Herlyn M, Nathanson KL: Increased cyclin D1 expression can mediate BRAF inhibitor resistance in BRAF V600E-mutated melanomas. Mol Cancer Ther 2008, 7: 2876–2883. 10.1158/1535-7163.MCT-08-0431PubMedCentralCrossRefPubMed
42.
go back to reference Turke AB, Song Y, Costa C, Cook R, Arteaga CL, Asara JM, Engelman JA: MEK inhibition leads to PI3K/AKT activation by relieving a negative feedback on ERBB receptors. Cancer Res 2012, 72: 3228–3237. 10.1158/0008-5472.CAN-11-3747PubMedCentralCrossRefPubMed Turke AB, Song Y, Costa C, Cook R, Arteaga CL, Asara JM, Engelman JA: MEK inhibition leads to PI3K/AKT activation by relieving a negative feedback on ERBB receptors. Cancer Res 2012, 72: 3228–3237. 10.1158/0008-5472.CAN-11-3747PubMedCentralCrossRefPubMed
43.
go back to reference Gioeli D, Wunderlich W, Sebolt-Leopold J, Bekiranov S, Wulfkuhle JD, Petricoin EF 3rd, Conaway M, Weber MJ: Compensatory pathways induced by MEK inhibition are effective drug targets for combination therapy against castration-resistant prostate cancer. Mol Cancer Ther 2011, 10: 1581–1590. 10.1158/1535-7163.MCT-10-1033PubMedCentralCrossRefPubMed Gioeli D, Wunderlich W, Sebolt-Leopold J, Bekiranov S, Wulfkuhle JD, Petricoin EF 3rd, Conaway M, Weber MJ: Compensatory pathways induced by MEK inhibition are effective drug targets for combination therapy against castration-resistant prostate cancer. Mol Cancer Ther 2011, 10: 1581–1590. 10.1158/1535-7163.MCT-10-1033PubMedCentralCrossRefPubMed
44.
go back to reference Flores LG 2nd, Yeh HH, Soghomonyan S, Young D, Bankson J, Hu Q, Alauddin M, Huff V, Gelovani JG: Monitoring therapy with MEK inhibitor U0126 in a novel Wilms tumor model in Wt1 knockout Igf2 transgenic mice using (18)F-FDG PET with dual-contrast enhanced CT and MRI: early metabolic response without inhibition of tumor growth. Mol Imaging Biol 2012, 15: 175–185. 10.1007/s11307-012-0588-5PubMedCentralCrossRef Flores LG 2nd, Yeh HH, Soghomonyan S, Young D, Bankson J, Hu Q, Alauddin M, Huff V, Gelovani JG: Monitoring therapy with MEK inhibitor U0126 in a novel Wilms tumor model in Wt1 knockout Igf2 transgenic mice using (18)F-FDG PET with dual-contrast enhanced CT and MRI: early metabolic response without inhibition of tumor growth. Mol Imaging Biol 2012, 15: 175–185. 10.1007/s11307-012-0588-5PubMedCentralCrossRef
45.
go back to reference Saini KS, Loi S, de Azambuja E, Metzger-Filho O, Saini ML, Ignatiadis M, Dancey JE, Piccart-Gebhart MJ: Targeting the PI3K/AKT/mTOR and Raf/MEK/ERK pathways in the treatment of breast cancer. Cancer Treat Rev 2013, 39: 935–946. 10.1016/j.ctrv.2013.03.009CrossRefPubMed Saini KS, Loi S, de Azambuja E, Metzger-Filho O, Saini ML, Ignatiadis M, Dancey JE, Piccart-Gebhart MJ: Targeting the PI3K/AKT/mTOR and Raf/MEK/ERK pathways in the treatment of breast cancer. Cancer Treat Rev 2013, 39: 935–946. 10.1016/j.ctrv.2013.03.009CrossRefPubMed
46.
go back to reference Renshaw J, Taylor KR, Bishop R, Valenti M, De Haven Brandon A, Gowan S, Eccles SA, Ruddle RR, Johnson LD, Raynaud FI, Selfe JL, Thway K, Pietsch T, Pearson AD, Shipley J: Dual blockade of the PI3K/AKT/mTOR (AZD8055) and RAS/MEK/ERK (AZD6244) pathways synergistically inhibits rhabdomyosarcoma cell growth in vitro and in vivo. Clin Cancer Res 2013, 19: 5940–5951. 10.1158/1078-0432.CCR-13-0850CrossRefPubMed Renshaw J, Taylor KR, Bishop R, Valenti M, De Haven Brandon A, Gowan S, Eccles SA, Ruddle RR, Johnson LD, Raynaud FI, Selfe JL, Thway K, Pietsch T, Pearson AD, Shipley J: Dual blockade of the PI3K/AKT/mTOR (AZD8055) and RAS/MEK/ERK (AZD6244) pathways synergistically inhibits rhabdomyosarcoma cell growth in vitro and in vivo. Clin Cancer Res 2013, 19: 5940–5951. 10.1158/1078-0432.CCR-13-0850CrossRefPubMed
47.
go back to reference Jahangiri A, Weiss WA: It takes two to tango: dual inhibition of PI3K and MAPK in rhabdomyosarcoma. Clin Cancer Res 2013, 19: 5811–5813. 10.1158/1078-0432.CCR-13-2177CrossRefPubMed Jahangiri A, Weiss WA: It takes two to tango: dual inhibition of PI3K and MAPK in rhabdomyosarcoma. Clin Cancer Res 2013, 19: 5811–5813. 10.1158/1078-0432.CCR-13-2177CrossRefPubMed
48.
go back to reference Meng J, Dai B, Fang B, Bekele BN, Bornmann WG, Sun D, Peng Z, Herbst RS, Papadimitrakopoulou V, Minna JD, Peyton M, Roth JA: Combination treatment with MEK and AKT inhibitors is more effective than each drug alone in human non-small cell lung cancer in vitro and in vivo. PLoS One 2010, 5: e14124. 10.1371/journal.pone.0014124PubMedCentralCrossRefPubMed Meng J, Dai B, Fang B, Bekele BN, Bornmann WG, Sun D, Peng Z, Herbst RS, Papadimitrakopoulou V, Minna JD, Peyton M, Roth JA: Combination treatment with MEK and AKT inhibitors is more effective than each drug alone in human non-small cell lung cancer in vitro and in vivo. PLoS One 2010, 5: e14124. 10.1371/journal.pone.0014124PubMedCentralCrossRefPubMed
Metadata
Title
Evaluation of efficacy of a new MEK inhibitor, RO4987655, in human tumor xenografts by [18F] FDG-PET imaging combined with proteomic approaches
Authors
Tetyana Tegnebratt
Elisabeth Ruge
Sabine Bader
Nobuya Ishii
Satoshi Aida
Yasushi Yoshimura
Chia-Huey Ooi
Li Lu
Nicholas Mitsios
Valerie Meresse
Jan Mulder
Michael Pawlak
Miro Venturi
Jean Tessier
Sharon Stone-Elander
Publication date
01-12-2014
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2014
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-014-0034-6

Other articles of this Issue 1/2014

EJNMMI Research 1/2014 Go to the issue