Skip to main content
Top
Published in: Journal of Medical Case Reports 1/2021

Open Access 01-12-2021 | Magnetic Resonance Imaging | Case report

Hypertensive cerebral hemorrhage with undetectable plasma vascular endothelial growth factor levels in a patient receiving intravitreal injection of aflibercept for bilateral diabetic macular edema: a case report

Authors: Miwako Yoshimoto, Nobuhiko Takeda, Takayuki Yoshimoto, Shun Matsumoto

Published in: Journal of Medical Case Reports | Issue 1/2021

Login to get access

Abstract

Background

Intravitreal injections of anti-vascular endothelial growth factor are commonly used to treat macular diseases, including diabetic macular edema. Anti-vascular endothelial growth factor drugs can enter the systemic circulation after intravitreal injections and appear to suppress circulating vascular endothelial growth factor levels. However, whether this can cause any systemic adverse events remains unknown.

Case presentation

A 70-year-old Japanese man diagnosed with diabetic macular edema in both eyes was treated with anti-vascular endothelial growth factor intravitreal injections. One month after receiving two intravitreal injections of aflibercept 1 week apart for diabetic macular edema in both eyes, he complained of a severe acute headache. The patient was diagnosed with hypertensive cerebral hemorrhage of the occipital lobe based on an elevated blood pressure of 195/108 mmHg and the results of computed tomography and magnetic resonance imaging of his brain. The patient was treated with an intravenous injection of nicardipine hydrochloride to lower his systemic blood pressure. Two days after the stroke, the patient began oral treatment with 80 mg/day telmisartan, which was continued for 3 days, and the telmisartan dose was reduced to 40 mg/day thereafter. His blood pressure promptly dropped to 130/80 mmHg, and his severe headache disappeared. One year after the cerebrovascular stroke, the telmisartan was discontinued because his blood pressure stabilized at a normal level. His plasma vascular endothelial growth factor levels were measured via specific enzyme-linked immunosorbent assay before and after the intravitreal injections of aflibercept. Immediately before the injections, the vascular endothelial growth factor level was 28 pg/ml, but it rapidly fell below the detection limit within 1 week, where it remained for over 2 months. Two days before the cerebral hemorrhage, his plasma vascular endothelial growth factor level was below the detection limit, and 2 months later after the stroke, his plasma vascular endothelial growth factor level recovered to 41 pg/ml.

Conclusion

This case suggests that hypertension and resultant cerebral hemorrhage can occur in patients with diabetic macular edema when plasma vascular endothelial growth factor levels are systemically decreased below the detection limit for a prolonged time after local injections of anti-vascular endothelial growth factor agents into the vitreous cavity. Therefore, severely reduced plasma vascular endothelial growth factor levels could be a higher risk factor to develop generally infrequent stroke. Ophthalmologists should be aware of possible severe reduction of plasma vascular endothelial growth factor levels and resultant increase in blood pressure after intravitreal injections of an anti-vascular endothelial growth factor drug. If the plasma vascular endothelial growth factor levels could be monitored more easily and quickly during the treatment, it would help to prevent adverse events.
Literature
1.
go back to reference Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: beyond discovery and development. Cell. 2019;176:1248–64.CrossRef Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: beyond discovery and development. Cell. 2019;176:1248–64.CrossRef
2.
go back to reference Ranieri G, Patruno R, Ruggieri E, Montemurro S, Valerio P, Ribatti D. Vascular endothelial growth factor (VEGF) as a target of bevacizumab in cancer: from the biology to the clinic. Curr Med Chem. 2006;13:1845–57.CrossRef Ranieri G, Patruno R, Ruggieri E, Montemurro S, Valerio P, Ribatti D. Vascular endothelial growth factor (VEGF) as a target of bevacizumab in cancer: from the biology to the clinic. Curr Med Chem. 2006;13:1845–57.CrossRef
3.
go back to reference Virgili G, Parravano M, Evans JR, Gordon I, Lucenteforte E. Anti-vascular endothelial growth factor for diabetic macular oedema: a network meta-analysis. Cochrane Database Syst Rev. 2018;10:CD007419. Virgili G, Parravano M, Evans JR, Gordon I, Lucenteforte E. Anti-vascular endothelial growth factor for diabetic macular oedema: a network meta-analysis. Cochrane Database Syst Rev. 2018;10:CD007419.
4.
go back to reference Zarbin MA, Dunger-Baldauf C, Haskova Z, Koovejee P, Mousseau MC, Margaron P, et al. Vascular safety of ranibizumab in patients with diabetic macular edema: a pooled analysis of patient-level data from randomized clinical trials. JAMA Ophthalmol. 2017;135:424–31.CrossRef Zarbin MA, Dunger-Baldauf C, Haskova Z, Koovejee P, Mousseau MC, Margaron P, et al. Vascular safety of ranibizumab in patients with diabetic macular edema: a pooled analysis of patient-level data from randomized clinical trials. JAMA Ophthalmol. 2017;135:424–31.CrossRef
5.
go back to reference Maloney MH, Schilz SR, Herrin J, Sangaralingham LR, Shah ND, Barkmeier AJ. Risk of systemic adverse events associated with intravitreal anti-VEGF therapy for diabetic macular edema in routine clinical practice. Ophthalmology. 2019;126:1007–15.CrossRef Maloney MH, Schilz SR, Herrin J, Sangaralingham LR, Shah ND, Barkmeier AJ. Risk of systemic adverse events associated with intravitreal anti-VEGF therapy for diabetic macular edema in routine clinical practice. Ophthalmology. 2019;126:1007–15.CrossRef
6.
go back to reference Rebeiz AG, Mahfoud Z, Abdul Fattah M, Saad A, Safar A, Bashshur ZF. Change in cardiac troponin T level after intravitreal anti-vascular endothelial growth factor treatment: prospective pilot study. Eur J Ophthalmol. 2020;30:563–9.CrossRef Rebeiz AG, Mahfoud Z, Abdul Fattah M, Saad A, Safar A, Bashshur ZF. Change in cardiac troponin T level after intravitreal anti-vascular endothelial growth factor treatment: prospective pilot study. Eur J Ophthalmol. 2020;30:563–9.CrossRef
7.
go back to reference Avery RL, Gordon GM. Systemic safety of prolonged monthly anti-vascular endothelial growth factor therapy for diabetic macular edema: a systematic review and meta-analysis. JAMA Ophthalmol. 2016;134:21–9.CrossRef Avery RL, Gordon GM. Systemic safety of prolonged monthly anti-vascular endothelial growth factor therapy for diabetic macular edema: a systematic review and meta-analysis. JAMA Ophthalmol. 2016;134:21–9.CrossRef
8.
go back to reference Kawasaki R, Tanaka S, Tanaka S, Abe S, Sone H, Yokote K, et al. Risk of cardiovascular diseases is increased even with mild diabetic retinopathy: the Japan Diabetes Complications Study. Ophthalmology. 2013;120:574–82.CrossRef Kawasaki R, Tanaka S, Tanaka S, Abe S, Sone H, Yokote K, et al. Risk of cardiovascular diseases is increased even with mild diabetic retinopathy: the Japan Diabetes Complications Study. Ophthalmology. 2013;120:574–82.CrossRef
9.
go back to reference Chen HX, Cleck JN. Adverse effects of anticancer agents that target the VEGF pathway. Nat Rev Clin Oncol. 2009;6:465–77.CrossRef Chen HX, Cleck JN. Adverse effects of anticancer agents that target the VEGF pathway. Nat Rev Clin Oncol. 2009;6:465–77.CrossRef
10.
go back to reference Falavarjani KG, Nguyen QD. Adverse events and complications associated with intravitreal injection of anti-VEGF agents: a review of literature. Eye (Lond). 2013;27:787–94.CrossRef Falavarjani KG, Nguyen QD. Adverse events and complications associated with intravitreal injection of anti-VEGF agents: a review of literature. Eye (Lond). 2013;27:787–94.CrossRef
11.
go back to reference Avery RL, Castellarin AA, Steinle NC, Dhoot DS, Pieramici DJ, See R, et al. Systemic pharmacokinetics and pharmacodynamics of intravitreal aflibercept, bevacizumab, and ranibizumab. Retina. 2017;37:1847–58.CrossRef Avery RL, Castellarin AA, Steinle NC, Dhoot DS, Pieramici DJ, See R, et al. Systemic pharmacokinetics and pharmacodynamics of intravitreal aflibercept, bevacizumab, and ranibizumab. Retina. 2017;37:1847–58.CrossRef
12.
go back to reference Hirano T, Toriyama Y, Iesato Y, Imai A, Murata T. Changes in plasma vascular endothelial growth factor level after intravitreal injection of bevacizumab, aflibercept, or ranibizumab for diabetic macular edema. Retina. 2018;38:1801–8.CrossRef Hirano T, Toriyama Y, Iesato Y, Imai A, Murata T. Changes in plasma vascular endothelial growth factor level after intravitreal injection of bevacizumab, aflibercept, or ranibizumab for diabetic macular edema. Retina. 2018;38:1801–8.CrossRef
13.
go back to reference Rasier R, Artunay O, Yuzbasioglu E, Sengul A, Bahcecioglu H. The effect of intravitreal bevacizumab (avastin) administration on systemic hypertension. Eye (Lond). 2009;23:1714–8.CrossRef Rasier R, Artunay O, Yuzbasioglu E, Sengul A, Bahcecioglu H. The effect of intravitreal bevacizumab (avastin) administration on systemic hypertension. Eye (Lond). 2009;23:1714–8.CrossRef
14.
go back to reference Hanna RM, Lopez EA, Hasnain H, Selamet U, Wilson J, Youssef PN, et al. Three patients with injection of intravitreal vascular endothelial growth factor inhibitors and subsequent exacerbation of chronic proteinuria and hypertension. Clin Kidney J. 2019;12:92–100.CrossRef Hanna RM, Lopez EA, Hasnain H, Selamet U, Wilson J, Youssef PN, et al. Three patients with injection of intravitreal vascular endothelial growth factor inhibitors and subsequent exacerbation of chronic proteinuria and hypertension. Clin Kidney J. 2019;12:92–100.CrossRef
15.
go back to reference Wilkinson CP, Ferris FL 3rd, Klein RE, Lee PP, Agardh CD, Davis M, et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology. 2003;110:1677–82.CrossRef Wilkinson CP, Ferris FL 3rd, Klein RE, Lee PP, Agardh CD, Davis M, et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology. 2003;110:1677–82.CrossRef
16.
go back to reference Verheul HM, Pinedo HM. Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition. Nat Rev Cancer. 2007;7:475–85.CrossRef Verheul HM, Pinedo HM. Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition. Nat Rev Cancer. 2007;7:475–85.CrossRef
17.
go back to reference Avery RL, Castellarin AA, Steinle NC, Dhoot DS, Pieramici DJ, See R, et al. Systemic pharmacokinetics following intravitreal injections of ranibizumab, bevacizumab or aflibercept in patients with neovascular AMD. Br J Ophthalmol. 2014;98:1636–41.CrossRef Avery RL, Castellarin AA, Steinle NC, Dhoot DS, Pieramici DJ, See R, et al. Systemic pharmacokinetics following intravitreal injections of ranibizumab, bevacizumab or aflibercept in patients with neovascular AMD. Br J Ophthalmol. 2014;98:1636–41.CrossRef
18.
go back to reference Krohne TU, Eter N, Holz FG, Meyer CH. Intraocular pharmacokinetics of bevacizumab after a single intravitreal injection in humans. Am J Ophthalmol. 2008;146:508–12.CrossRef Krohne TU, Eter N, Holz FG, Meyer CH. Intraocular pharmacokinetics of bevacizumab after a single intravitreal injection in humans. Am J Ophthalmol. 2008;146:508–12.CrossRef
19.
go back to reference Xu L, Lu T, Tuomi L, Jumbe N, Lu J, Eppler S, et al. Pharmacokinetics of ranibizumab in patients with neovascular age-related macular degeneration: a population approach. Invest Ophthalmol Vis Sci. 2013;54:1616–24.CrossRef Xu L, Lu T, Tuomi L, Jumbe N, Lu J, Eppler S, et al. Pharmacokinetics of ranibizumab in patients with neovascular age-related macular degeneration: a population approach. Invest Ophthalmol Vis Sci. 2013;54:1616–24.CrossRef
20.
go back to reference Jampol LM, Glassman AR, Liu D, Aiello LP, Bressler NM, Duh EJ, et al. Plasma vascular endothelial growth factor concentrations after intravitreous anti-vascular endothelial growth factor therapy for diabetic macular edema. Ophthalmology. 2018;125:1054–63.CrossRef Jampol LM, Glassman AR, Liu D, Aiello LP, Bressler NM, Duh EJ, et al. Plasma vascular endothelial growth factor concentrations after intravitreous anti-vascular endothelial growth factor therapy for diabetic macular edema. Ophthalmology. 2018;125:1054–63.CrossRef
21.
go back to reference Maloney MH, Payne SR, Herrin J, Sangaralingham LR, Shah ND, Barkmeier AJ. Risk of systemic adverse events after intravitreal bevacizumab, ranibizumab, and aflibercept in routine clinical practice. Ophthalmology. 2021;128:417–24.CrossRef Maloney MH, Payne SR, Herrin J, Sangaralingham LR, Shah ND, Barkmeier AJ. Risk of systemic adverse events after intravitreal bevacizumab, ranibizumab, and aflibercept in routine clinical practice. Ophthalmology. 2021;128:417–24.CrossRef
22.
go back to reference Funatsu H, Yamashita H, Noma H, Mimura T, Nakamura S, Sakata K, et al. Aqueous humor levels of cytokines are related to vitreous levels and progression of diabetic retinopathy in diabetic patients. Graefes Arch Clin Exp Ophthalmol. 2005;243:3–8.CrossRef Funatsu H, Yamashita H, Noma H, Mimura T, Nakamura S, Sakata K, et al. Aqueous humor levels of cytokines are related to vitreous levels and progression of diabetic retinopathy in diabetic patients. Graefes Arch Clin Exp Ophthalmol. 2005;243:3–8.CrossRef
23.
go back to reference Dong N, Xu B, Chu L, Tang X. Study of 27 aqueous humor cytokines in type 2 diabetic patients with or without macular edema. PLoS ONE. 2015;10:0125329. Dong N, Xu B, Chu L, Tang X. Study of 27 aqueous humor cytokines in type 2 diabetic patients with or without macular edema. PLoS ONE. 2015;10:0125329.
24.
go back to reference Acan D, Calan M, Er D, Arkan T, Kocak N, Bayraktar F, et al. The prevalence and systemic risk factors of diabetic macular edema: a cross-sectional study from Turkey. BMC Ophthalmol. 2018;18:91.CrossRef Acan D, Calan M, Er D, Arkan T, Kocak N, Bayraktar F, et al. The prevalence and systemic risk factors of diabetic macular edema: a cross-sectional study from Turkey. BMC Ophthalmol. 2018;18:91.CrossRef
25.
go back to reference Ziemssen F, Schlottman PG, Lim JI, Agostini H, Lang GE, Bandello F. Initiation of intravitreal aflibercept injection treatment in patients with diabetic macular edema: a review of VIVID-DME and VISTA-DME data. Int J Retina Vitreous. 2016;2:16.CrossRef Ziemssen F, Schlottman PG, Lim JI, Agostini H, Lang GE, Bandello F. Initiation of intravitreal aflibercept injection treatment in patients with diabetic macular edema: a review of VIVID-DME and VISTA-DME data. Int J Retina Vitreous. 2016;2:16.CrossRef
26.
go back to reference Takatsuna Y, Ishibashi R, Tatsumi T, Koshizaka M, Baba T, Yamamoto S, et al. Sodium-glucose cotransporter 2 inhibitors improve chronic diabetic macular edema. Case Rep Ophthalmol Med. 2020;2020:8867079.PubMedPubMedCentral Takatsuna Y, Ishibashi R, Tatsumi T, Koshizaka M, Baba T, Yamamoto S, et al. Sodium-glucose cotransporter 2 inhibitors improve chronic diabetic macular edema. Case Rep Ophthalmol Med. 2020;2020:8867079.PubMedPubMedCentral
Metadata
Title
Hypertensive cerebral hemorrhage with undetectable plasma vascular endothelial growth factor levels in a patient receiving intravitreal injection of aflibercept for bilateral diabetic macular edema: a case report
Authors
Miwako Yoshimoto
Nobuhiko Takeda
Takayuki Yoshimoto
Shun Matsumoto
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Journal of Medical Case Reports / Issue 1/2021
Electronic ISSN: 1752-1947
DOI
https://doi.org/10.1186/s13256-021-02983-3

Other articles of this Issue 1/2021

Journal of Medical Case Reports 1/2021 Go to the issue