Skip to main content
Top
Published in: Journal of Medical Case Reports 1/2020

Open Access 01-12-2020 | Thrombotic Thrombocytopenic Purpura | Case report

Atypical hemolytic uremic syndrome: a case report

Authors: B. M. D. B. Basnayake, A. W. M. Wazil, N. Nanayakkara, S. M. D. K. Samarakoon, E. M. S. K. Senavirathne, B. U. E. W. D. R. Thangarajah, N. Karunasena, R. M. B. S. S. Mahanama

Published in: Journal of Medical Case Reports | Issue 1/2020

Login to get access

Abstract

Background

Thrombotic microangiopathy is a pathological condition comprised of microvascular thrombosis involving any organ of the body leading to thrombocytopenia, Coombs-negative hemolytic anemia, and end-organ damage. The most common forms of thrombotic microangiopathies are Shiga toxin-producing Escherichia coli-mediated hemolytic uremic syndrome, thrombotic thrombocytopenic purpura, and atypical hemolytic uremic syndrome. The atypical hemolytic uremic syndrome occurs due to genetic and acquired mutations in complement regulatory factors and to complement activation factors in the immune system, mainly the alternative pathway. Clinical manifestations and outcomes differ with the prevalent mutations of the patient. Currently, available treatment modalities are therapeutic plasma exchange and a monoclonal antibody against C5, eculizumab. We report a case of a Sri Lankan girl diagnosed with atypical hemolytic uremic syndrome complicated with septicemia, hemolytic anemia, acute kidney injury, pulmonary hemorrhage with respiratory failure, and hypertension who had a complete remission following long-term (30 months) therapeutic plasma exchange.

Case presentation

A 15-year-old Sri Lankan girl was transferred from a local hospital with the features of septicemia and acute kidney injury for specialized management. She had high blood pressure (180/100 mmHg) on admission. She underwent appendicectomy based on suspicion of acute appendicitis as the cause of sepsis. Following surgery, her condition deteriorated, and intensive care unit management was warranted because she developed pulmonary hemorrhages and respiratory failure requiring mechanical ventilation and renal replacement therapy in the form of hemodialysis. Her blood investigations showed microangiopathic hemolytic anemia, thrombocytopenia, elevated lactate dehydrogenase, and reduced human complement C3 levels, together with a normal coagulation profile. She was diagnosed with atypical hemolytic uremic syndrome and was initiated on therapeutic plasma exchange and other supportive therapy, including corticosteroids. Following a lengthy course of plasma exchange, complete recovery was achieved.

Conclusion

The atypical hemolytic uremic syndrome is a rare disease entity requiring a high index of suspicion to diagnose. It is a diagnosis of exclusion. Early diagnosis with prompt treatment will render a better outcome. The atypical hemolytic uremic syndrome needs to be considered in all patients with thrombotic microangiopathy.
Literature
1.
go back to reference Brocklebank V, Wood KM, Kavanagh D. Thrombotic microangiopathy and the kidney. Clin J Am Soc Nephrol. 2018;13(2):300–17.CrossRef Brocklebank V, Wood KM, Kavanagh D. Thrombotic microangiopathy and the kidney. Clin J Am Soc Nephrol. 2018;13(2):300–17.CrossRef
2.
go back to reference Benz K, Amann K. Thrombotic microangiopathy: new insights. Curr Opin Nephrol Hypertens. 2010;19(3):242–7.CrossRef Benz K, Amann K. Thrombotic microangiopathy: new insights. Curr Opin Nephrol Hypertens. 2010;19(3):242–7.CrossRef
3.
go back to reference Goodship TH, Cook HT, Fachouri F, Fervenza FC, Fremeaux-Bacchi V, Kavanagh D, et al. Atypical hemolytic uremic syndrome and C3 glomerulopathy: conclusions from a “Kidney Disease: Improving Global Outcomes” (KDIGO) Controversies Conference. Kidney Int. 2017;91(3):539–51.CrossRef Goodship TH, Cook HT, Fachouri F, Fervenza FC, Fremeaux-Bacchi V, Kavanagh D, et al. Atypical hemolytic uremic syndrome and C3 glomerulopathy: conclusions from a “Kidney Disease: Improving Global Outcomes” (KDIGO) Controversies Conference. Kidney Int. 2017;91(3):539–51.CrossRef
4.
go back to reference Yoshida Y, Kato H, Ikeda Y, Nangaku M. Pathogenesis of atypical hemolytic uremic syndrome. J Atheroscler Thromb. 2019;26(2):99–110.CrossRef Yoshida Y, Kato H, Ikeda Y, Nangaku M. Pathogenesis of atypical hemolytic uremic syndrome. J Atheroscler Thromb. 2019;26(2):99–110.CrossRef
5.
go back to reference Huang J, Motto DG, Bundle DR, Sadler JE. Shiga toxin B subunits induce VWF secretion by human endothelial cells and thrombotic microangiopathy in ADAMTS13-deficient mice. Blood. 2010;116:3653–9.CrossRef Huang J, Motto DG, Bundle DR, Sadler JE. Shiga toxin B subunits induce VWF secretion by human endothelial cells and thrombotic microangiopathy in ADAMTS13-deficient mice. Blood. 2010;116:3653–9.CrossRef
6.
go back to reference Buelli S, Zoja C, Remuzzi G, Morigi M. Complement activation contributes to the pathophysiology of Shiga toxin-associated hemolytic uremic syndrome. Microorganisms. 2019;7(1):15.CrossRef Buelli S, Zoja C, Remuzzi G, Morigi M. Complement activation contributes to the pathophysiology of Shiga toxin-associated hemolytic uremic syndrome. Microorganisms. 2019;7(1):15.CrossRef
7.
go back to reference Kavanagh D, Goodship TH, Richards A. Atypical hemolytic uremic syndrome. Semin Nephrol. 2013;33(6):508–30.CrossRef Kavanagh D, Goodship TH, Richards A. Atypical hemolytic uremic syndrome. Semin Nephrol. 2013;33(6):508–30.CrossRef
8.
go back to reference Merle NS, Noe R, Halbwachs-Mecarelli L, Fremeaux-Bacchi V, Roumenina LT. Complement system part II: role in immunity. Front Immunol. 2015;6:257.PubMedPubMedCentral Merle NS, Noe R, Halbwachs-Mecarelli L, Fremeaux-Bacchi V, Roumenina LT. Complement system part II: role in immunity. Front Immunol. 2015;6:257.PubMedPubMedCentral
9.
go back to reference Łukawska E, Polcyn-Adamczak M, Niemir ZI. The role of the alternative pathway of complement activation in glomerular diseases. Clin Exp Med. 2018;18(3):297–318.CrossRef Łukawska E, Polcyn-Adamczak M, Niemir ZI. The role of the alternative pathway of complement activation in glomerular diseases. Clin Exp Med. 2018;18(3):297–318.CrossRef
10.
go back to reference Noris M, Remuzzi G. Atypical hemolytic–uremic syndrome. N Engl J Med. 2009;361(17):1676–87.CrossRef Noris M, Remuzzi G. Atypical hemolytic–uremic syndrome. N Engl J Med. 2009;361(17):1676–87.CrossRef
11.
go back to reference Thurman JM, Holers VM. The central role of the alternative complement pathway in human disease. J Immunol. 2006;176(3):1305–10.CrossRef Thurman JM, Holers VM. The central role of the alternative complement pathway in human disease. J Immunol. 2006;176(3):1305–10.CrossRef
12.
go back to reference Frémeaux-Bacchi V, Miller EC, Liszewski MK, Strain L, Blouin J, Brown AL, et al. Mutations in complement C3 predispose to development of atypical hemolytic uremic syndrome. Blood. 2008;112(13):4948–52.CrossRef Frémeaux-Bacchi V, Miller EC, Liszewski MK, Strain L, Blouin J, Brown AL, et al. Mutations in complement C3 predispose to development of atypical hemolytic uremic syndrome. Blood. 2008;112(13):4948–52.CrossRef
13.
go back to reference Sharma AK, Pangburn MK. Identification of three physically and functionally distinct binding sites for C3b in human complement factor H by deletion mutagenesis. Proc Natl Acad Sci U S A. 1996;93:10996–1001.CrossRef Sharma AK, Pangburn MK. Identification of three physically and functionally distinct binding sites for C3b in human complement factor H by deletion mutagenesis. Proc Natl Acad Sci U S A. 1996;93:10996–1001.CrossRef
14.
go back to reference Jokiranta TS, Hellwage J, Koistinen V, Zipfel PF, Meri S. Each of the three binding sites on complement factor H interacts with a distinct site on C3b. J Biol Chem. 2000;275:27657–62.PubMed Jokiranta TS, Hellwage J, Koistinen V, Zipfel PF, Meri S. Each of the three binding sites on complement factor H interacts with a distinct site on C3b. J Biol Chem. 2000;275:27657–62.PubMed
15.
go back to reference Noris M, Caprioli J, Bresin E, Mossali C, Pianetti G, Gamba S, et al. A relative role of genetic complement abnormalities in sporadic and familial aHUS and their impact on clinical phenotype. Clin J Am Soc Nephrol. 2010;5:1844–59.CrossRef Noris M, Caprioli J, Bresin E, Mossali C, Pianetti G, Gamba S, et al. A relative role of genetic complement abnormalities in sporadic and familial aHUS and their impact on clinical phenotype. Clin J Am Soc Nephrol. 2010;5:1844–59.CrossRef
16.
go back to reference Kavanagh D, Richards A, Noris M, Hauhart R, Liszewski MK, Karpman D, et al. Characterization of mutations in complement factor I (CFI) associated with hemolytic uremic syndrome. Mol Immunol. 2008;45:95–105.CrossRef Kavanagh D, Richards A, Noris M, Hauhart R, Liszewski MK, Karpman D, et al. Characterization of mutations in complement factor I (CFI) associated with hemolytic uremic syndrome. Mol Immunol. 2008;45:95–105.CrossRef
17.
go back to reference Richards A, Kathryn Liszewski M, Kavanagh D, Fang CJ, Moulton E, Fremeaux-Bacchi V, et al. Implications of the initial mutations in membrane cofactor protein (MCP; CD46) leading to atypical hemolytic uremic syndrome. Mol Immunol. 2007;44:111–22.CrossRef Richards A, Kathryn Liszewski M, Kavanagh D, Fang CJ, Moulton E, Fremeaux-Bacchi V, et al. Implications of the initial mutations in membrane cofactor protein (MCP; CD46) leading to atypical hemolytic uremic syndrome. Mol Immunol. 2007;44:111–22.CrossRef
18.
go back to reference Moore I, Strain L, Pappworth I, Kavanagh D, Barlow PN, Herbert AP, et al. Association of factor H autoantibodies with deletions of CFHR1, CFHR3, CFHR4, and with mutations in CFH, CFI, CD46, and C3 in patients with atypical hemolytic uremic syndrome. Blood. 2010;115:379–87.CrossRef Moore I, Strain L, Pappworth I, Kavanagh D, Barlow PN, Herbert AP, et al. Association of factor H autoantibodies with deletions of CFHR1, CFHR3, CFHR4, and with mutations in CFH, CFI, CD46, and C3 in patients with atypical hemolytic uremic syndrome. Blood. 2010;115:379–87.CrossRef
19.
go back to reference Fujisawa M, Kato H, Yoshida Y, Usui T, Takata M, Fujimoto M, et al. Clinical characteristics and genetic backgrounds of Japanese patients with atypical hemolytic uremic syndrome. Clin Exp Nephrol. 2018;22(5):1088–99.CrossRef Fujisawa M, Kato H, Yoshida Y, Usui T, Takata M, Fujimoto M, et al. Clinical characteristics and genetic backgrounds of Japanese patients with atypical hemolytic uremic syndrome. Clin Exp Nephrol. 2018;22(5):1088–99.CrossRef
20.
go back to reference Goicoechea de Jorge E, Harris CL, Esparza-Gordillo J, Carreras L, Arranz EA, Garrido CA, et al. Gain-of-function mutations in complement factor B are associated with atypical hemolytic uremic syndrome. Proc Natl Acad Sci U S A. 2007;104:240–5.CrossRef Goicoechea de Jorge E, Harris CL, Esparza-Gordillo J, Carreras L, Arranz EA, Garrido CA, et al. Gain-of-function mutations in complement factor B are associated with atypical hemolytic uremic syndrome. Proc Natl Acad Sci U S A. 2007;104:240–5.CrossRef
21.
go back to reference Delvaeye M, Noris M, De Vriese A, Esmon CT, Esmon NL, Ferrell G, et al. Thrombomodulin mutations in atypical hemolytic-uremic syndrome. N Engl J Med. 2009;361:345–57.CrossRef Delvaeye M, Noris M, De Vriese A, Esmon CT, Esmon NL, Ferrell G, et al. Thrombomodulin mutations in atypical hemolytic-uremic syndrome. N Engl J Med. 2009;361:345–57.CrossRef
22.
go back to reference Lemaire M, Fremeaux-Bacchi V, Schaefer F, Choi M, Tang WH, Le Quintrec M, et al. Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome. Nat Genet. 2013;45:531–6.CrossRef Lemaire M, Fremeaux-Bacchi V, Schaefer F, Choi M, Tang WH, Le Quintrec M, et al. Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome. Nat Genet. 2013;45:531–6.CrossRef
23.
go back to reference Bu F, Maga T, Meyer NC, Wang K, Thomas CP, Nester CM, et al. Comprehensive genetic analysis of complement and coagulation genes in atypical hemolytic uremic syndrome. J Am Soc Nephrol. 2014;25(1):55–64.CrossRef Bu F, Maga T, Meyer NC, Wang K, Thomas CP, Nester CM, et al. Comprehensive genetic analysis of complement and coagulation genes in atypical hemolytic uremic syndrome. J Am Soc Nephrol. 2014;25(1):55–64.CrossRef
24.
go back to reference Caprioli J, Noris M, Brioschi S, Pianetti G, Castelletti F, Bettinaglio P, et al. Genetics of HUS: the impact of MCP, CFH, and IF mutations on clinical presentation, response to treatment, and outcome. Blood. 2006;108(4):1267–79.CrossRef Caprioli J, Noris M, Brioschi S, Pianetti G, Castelletti F, Bettinaglio P, et al. Genetics of HUS: the impact of MCP, CFH, and IF mutations on clinical presentation, response to treatment, and outcome. Blood. 2006;108(4):1267–79.CrossRef
25.
go back to reference Loirat C, Noris M, Fremeaux-Bacchi V. Complement and the atypical hemolytic uremic syndrome in children. Pediatr Nephrol. 2008;23(11):1957–72.CrossRef Loirat C, Noris M, Fremeaux-Bacchi V. Complement and the atypical hemolytic uremic syndrome in children. Pediatr Nephrol. 2008;23(11):1957–72.CrossRef
26.
go back to reference Ariceta G, Besbas N, Johnson S, Karpman D, Landau D, Licht C, et al. Guideline for the investigation and initial therapy of diarrhea-negative hemolytic uremic syndrome. Pediatr Nephrol. 2009;24(4):687–96.CrossRef Ariceta G, Besbas N, Johnson S, Karpman D, Landau D, Licht C, et al. Guideline for the investigation and initial therapy of diarrhea-negative hemolytic uremic syndrome. Pediatr Nephrol. 2009;24(4):687–96.CrossRef
27.
go back to reference Michael M, Elliott EJ, Craig JC, Ridley G, Hodson EM. Interventions for hemolytic uremic syndrome and thrombotic thrombocytopenic purpura: a systematic review of randomized controlled trials. Am J Kidney Dis. 2009;53(2):259–72.CrossRef Michael M, Elliott EJ, Craig JC, Ridley G, Hodson EM. Interventions for hemolytic uremic syndrome and thrombotic thrombocytopenic purpura: a systematic review of randomized controlled trials. Am J Kidney Dis. 2009;53(2):259–72.CrossRef
28.
go back to reference Kwon T, Dragon-Durey MA, Macher MA, Baudouin V, Maisin A, Peuchmaur M, et al. Successful pre-transplant management of a patient with anti-factor H autoantibodies-associated haemolytic uraemic syndrome. Nephrol Dial Transplant. 2008;23(6):2088–90.CrossRef Kwon T, Dragon-Durey MA, Macher MA, Baudouin V, Maisin A, Peuchmaur M, et al. Successful pre-transplant management of a patient with anti-factor H autoantibodies-associated haemolytic uraemic syndrome. Nephrol Dial Transplant. 2008;23(6):2088–90.CrossRef
29.
go back to reference Nürnberger J, Philipp T, Witzke O, Saez AO, Vester U, Baba HA, et al. Eculizumab for atypical hemolytic–uremic syndrome. N Engl J Med. 2009;360(5):542–4.CrossRef Nürnberger J, Philipp T, Witzke O, Saez AO, Vester U, Baba HA, et al. Eculizumab for atypical hemolytic–uremic syndrome. N Engl J Med. 2009;360(5):542–4.CrossRef
30.
go back to reference Loirat C, Fakhouri F, Ariceta G, Besbas N, Bitzan M, Bjerre A, Coppo R, Emma F, Johnson S, Karpman D, Landau D. An international consensus approach to the management of atypical hemolytic uremic syndrome in children. Pediatr Nephrol. 2016;31(1):15–39.CrossRef Loirat C, Fakhouri F, Ariceta G, Besbas N, Bitzan M, Bjerre A, Coppo R, Emma F, Johnson S, Karpman D, Landau D. An international consensus approach to the management of atypical hemolytic uremic syndrome in children. Pediatr Nephrol. 2016;31(1):15–39.CrossRef
31.
go back to reference Hackl A, Ehren R, Kirschfink M, Zipfel PF, Beck BB, Weber LT, et al. Successful discontinuation of eculizumab under immunosuppressive therapy in DEAP-HUS. Pediatr Nephrol. 2017;32(6):1081–7.CrossRef Hackl A, Ehren R, Kirschfink M, Zipfel PF, Beck BB, Weber LT, et al. Successful discontinuation of eculizumab under immunosuppressive therapy in DEAP-HUS. Pediatr Nephrol. 2017;32(6):1081–7.CrossRef
Metadata
Title
Atypical hemolytic uremic syndrome: a case report
Authors
B. M. D. B. Basnayake
A. W. M. Wazil
N. Nanayakkara
S. M. D. K. Samarakoon
E. M. S. K. Senavirathne
B. U. E. W. D. R. Thangarajah
N. Karunasena
R. M. B. S. S. Mahanama
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Journal of Medical Case Reports / Issue 1/2020
Electronic ISSN: 1752-1947
DOI
https://doi.org/10.1186/s13256-019-2334-y

Other articles of this Issue 1/2020

Journal of Medical Case Reports 1/2020 Go to the issue