Skip to main content
Top
Published in: Clinical and Experimental Medicine 3/2018

Open Access 01-08-2018 | Review Article

The role of the alternative pathway of complement activation in glomerular diseases

Authors: Emilia Łukawska, Magdalena Polcyn-Adamczak, Zofia I. Niemir

Published in: Clinical and Experimental Medicine | Issue 3/2018

Login to get access

Abstract

The complement system (CS) has recently been recognized as a bridge between innate and adaptive immunity that constitutes a very complex mechanism controlling the clearance of pathogens, cellular debris, and immune complexes. Out of three known pathways of complement activation, the alternative pathway (AP) plays a critical role in host defense by amplifying the complement response, independently of initiation pathway and continuously maintaining low-level activity in a process called ‘thick-over.’ A key molecule of the CS is C3, in which the AP is constantly activated. To prevent host cell destruction, a group of the AP regulators tightly controls this pathway of the CS activation. Acquired and genetic abnormalities of the CS may alter the delicate balance between enhancing and inhibiting the AP cascade. These can lead to the uncontrolled CS activation, inflammatory response, and subsequent tissue damage. Since complement components are locally produced and activated in the kidney, the abnormalities targeting the AP may cause glomerular injury. C3 glomerulopathy is a new entity, in which the AP dysregulation has been well established. However, recent studies indicate that the AP may also contribute to a wide range of kidney pathologies, including immune-complex-mediated glomerulonephritis (GN), pauci-immune GN, and primary membranous nephropathy (PMN). This article provides insight into current knowledge on the role of the AP in the pathogenesis of glomerular diseases, focusing mainly on various types of primary and secondary GN and PMN.
Literature
1.
go back to reference Dunkelberger JR, Song WC. Complement and its role in innate and adaptive immune responses. Cell Res. 2010;20(1):34–50.PubMedCrossRef Dunkelberger JR, Song WC. Complement and its role in innate and adaptive immune responses. Cell Res. 2010;20(1):34–50.PubMedCrossRef
2.
go back to reference Rodriguez E, Nan R, Li K, Gor J, Perkins SJ. A revised mechanism for the activation of complement C3 to C3b: a molecular explanation of a disease-associated polymorphism. J Biol Chem. 2015;290(4):2334–50.PubMedCrossRef Rodriguez E, Nan R, Li K, Gor J, Perkins SJ. A revised mechanism for the activation of complement C3 to C3b: a molecular explanation of a disease-associated polymorphism. J Biol Chem. 2015;290(4):2334–50.PubMedCrossRef
3.
go back to reference Sahu A, Lambris JD. Structure and biology of complement protein C3, a connecting link between innate and acquired immunity. Immunol Rev. 2001;180:35–48.PubMedCrossRef Sahu A, Lambris JD. Structure and biology of complement protein C3, a connecting link between innate and acquired immunity. Immunol Rev. 2001;180:35–48.PubMedCrossRef
4.
go back to reference Singer L, Colten HR, Wetsel RA. Complement C3 deficiency: human, animal, and experimental models. Pathobiology. 1994;62(1):14–28.PubMedCrossRef Singer L, Colten HR, Wetsel RA. Complement C3 deficiency: human, animal, and experimental models. Pathobiology. 1994;62(1):14–28.PubMedCrossRef
5.
go back to reference Valero-Hervás DM, Morales P, Castro MJ, et al. Complement C3 genotyping of slow and fast variants by real time PCR-high resolution melting. Eur J Infamm. 2012;10(3):329–34.CrossRef Valero-Hervás DM, Morales P, Castro MJ, et al. Complement C3 genotyping of slow and fast variants by real time PCR-high resolution melting. Eur J Infamm. 2012;10(3):329–34.CrossRef
6.
go back to reference Delanghe JR, Speeckaert R, Speeckaert MM. Complement C3 and its polymorphism: biological and clinical consequences. Pathology. 2014;46(1):1–10.PubMedCrossRef Delanghe JR, Speeckaert R, Speeckaert MM. Complement C3 and its polymorphism: biological and clinical consequences. Pathology. 2014;46(1):1–10.PubMedCrossRef
7.
go back to reference Sethi S, Haas M, Markowitz GS, et al. Mayo clinic/renal pathology society consensus report on pathologic classification, diagnosis, and reporting of GN. J Am Soc Nephrol. 2016;27(5):1278–87.PubMedCrossRef Sethi S, Haas M, Markowitz GS, et al. Mayo clinic/renal pathology society consensus report on pathologic classification, diagnosis, and reporting of GN. J Am Soc Nephrol. 2016;27(5):1278–87.PubMedCrossRef
9.
go back to reference Fakhouri F, Frémeaux-Bacchi V, Noël LH, Cook HT, Pickering MC. C3 glomerulopathy: a new classification. Nat Rev Nephrol. 2010;6(8):494–9.PubMedCrossRef Fakhouri F, Frémeaux-Bacchi V, Noël LH, Cook HT, Pickering MC. C3 glomerulopathy: a new classification. Nat Rev Nephrol. 2010;6(8):494–9.PubMedCrossRef
11.
go back to reference De Bruijn MHL, Fey GH. Human complement component C3: cDNA coding sequence and derived primary structure. Proc Natl Acad Sci. 1985;82:708–12.PubMedCrossRef De Bruijn MHL, Fey GH. Human complement component C3: cDNA coding sequence and derived primary structure. Proc Natl Acad Sci. 1985;82:708–12.PubMedCrossRef
12.
go back to reference Reis ES, Falcăo DA, Isaac L. Clinical aspects and molecular basis of primary deficiencies of complement component C3 and its regulatory proteins factor I and factor H. Scand J Immunol. 2006;63(3):155–68.CrossRef Reis ES, Falcăo DA, Isaac L. Clinical aspects and molecular basis of primary deficiencies of complement component C3 and its regulatory proteins factor I and factor H. Scand J Immunol. 2006;63(3):155–68.CrossRef
13.
go back to reference Chen ZA, Pellarin R, Fischer L, et al. Structure of complement C3(H2O) revealed by quantitative cross-linking/mass spectrometry and modeling. Mol Cell Proteom. 2016;15(8):2730–43.CrossRef Chen ZA, Pellarin R, Fischer L, et al. Structure of complement C3(H2O) revealed by quantitative cross-linking/mass spectrometry and modeling. Mol Cell Proteom. 2016;15(8):2730–43.CrossRef
14.
go back to reference Janssen BJ, Christodoilidou A, McCarthy A, Lambris JD, Gross P. Structure of C3b reveals conformational changes that underlie complement activity. Nature. 2006;444(7116):213–6.PubMedCrossRef Janssen BJ, Christodoilidou A, McCarthy A, Lambris JD, Gross P. Structure of C3b reveals conformational changes that underlie complement activity. Nature. 2006;444(7116):213–6.PubMedCrossRef
15.
go back to reference Thurman JM, Holers VM. The central role of the alternative complement pathway in human disease. J Immunol. 2006;176(3):1305–10.PubMedCrossRef Thurman JM, Holers VM. The central role of the alternative complement pathway in human disease. J Immunol. 2006;176(3):1305–10.PubMedCrossRef
17.
go back to reference Kemper C, Atkinson JP, Hourcade DE. Properdin: emerging roles of a pattern-recognition molecule. Annu Rev Immunol. 2010;28:131–55.PubMedCrossRef Kemper C, Atkinson JP, Hourcade DE. Properdin: emerging roles of a pattern-recognition molecule. Annu Rev Immunol. 2010;28:131–55.PubMedCrossRef
18.
go back to reference Pedersen DV, Roumenina L, Jensen RK, et al. Functional and structural insight into properdin control of complement alternative pathway amplification. EMBO J. 2017;36(8):1084–99.PubMedPubMedCentralCrossRef Pedersen DV, Roumenina L, Jensen RK, et al. Functional and structural insight into properdin control of complement alternative pathway amplification. EMBO J. 2017;36(8):1084–99.PubMedPubMedCentralCrossRef
19.
go back to reference Rooijakkers SH, Wu J, Ruyken M, et al. Structural and functional implications of the alternative complement pathway C3 convertase stabilized by a staphylococcal inhibitor. Nat Immunol. 2009;10(7):721–7.PubMedPubMedCentralCrossRef Rooijakkers SH, Wu J, Ruyken M, et al. Structural and functional implications of the alternative complement pathway C3 convertase stabilized by a staphylococcal inhibitor. Nat Immunol. 2009;10(7):721–7.PubMedPubMedCentralCrossRef
21.
22.
go back to reference Rochowiak A, Niemir ZI. The structure and role of CR1 complement receptor in physiology. Pol Merkur Lekarski. 2010;28(163):79–83.PubMed Rochowiak A, Niemir ZI. The structure and role of CR1 complement receptor in physiology. Pol Merkur Lekarski. 2010;28(163):79–83.PubMed
23.
go back to reference Merle NS, Church SEL, Fremeaux-Bacchi V, Roumenina LT. Complement system part I: molecular mechanisms of activation and regulation. Front Immunol. 2015;6:262.PubMedPubMedCentral Merle NS, Church SEL, Fremeaux-Bacchi V, Roumenina LT. Complement system part I: molecular mechanisms of activation and regulation. Front Immunol. 2015;6:262.PubMedPubMedCentral
26.
go back to reference Merle NS, Noe R, Halbwachs-Mecarelli L, Fremeaux-Bacchi V, Roumenina LT. Complement system part II: role in immunity. Front Immunol. 2015;26(6):257. Merle NS, Noe R, Halbwachs-Mecarelli L, Fremeaux-Bacchi V, Roumenina LT. Complement system part II: role in immunity. Front Immunol. 2015;26(6):257.
27.
go back to reference Ritchie RF, Palomaki GE, Neveux LM, Navolotskaia O, Ledue TB, Craig WY. Reference distributions for complement proteins C3 and C4: a practical, simple and clinically relevant approach in a large cohort. J Clin Lab Anal. 2004;18(1):1–8.PubMedCrossRef Ritchie RF, Palomaki GE, Neveux LM, Navolotskaia O, Ledue TB, Craig WY. Reference distributions for complement proteins C3 and C4: a practical, simple and clinically relevant approach in a large cohort. J Clin Lab Anal. 2004;18(1):1–8.PubMedCrossRef
28.
go back to reference Forneris F, Ricklin D, Wu J, et al. Structures of C3b in complex with factors B and D give insight into complement convertase formation. Science. 2010;330(6012):1816–20.PubMedPubMedCentralCrossRef Forneris F, Ricklin D, Wu J, et al. Structures of C3b in complex with factors B and D give insight into complement convertase formation. Science. 2010;330(6012):1816–20.PubMedPubMedCentralCrossRef
29.
go back to reference Forneris F, Wu J, Xue X, et al. Regulators of complement activity mediate inhibitory mechanisms through a common C3b-binding mode. EMBO J. 2016;35(10):1133–49.PubMedPubMedCentralCrossRef Forneris F, Wu J, Xue X, et al. Regulators of complement activity mediate inhibitory mechanisms through a common C3b-binding mode. EMBO J. 2016;35(10):1133–49.PubMedPubMedCentralCrossRef
30.
go back to reference Xue X, Wu J, Ricklin D, et al. Regulator-dependent mechanisms of C3b processing by factor I allow differentiation of immune responses. Nat Struct Mol Biol. 2017;24(8):643–51.PubMedCrossRefPubMedCentral Xue X, Wu J, Ricklin D, et al. Regulator-dependent mechanisms of C3b processing by factor I allow differentiation of immune responses. Nat Struct Mol Biol. 2017;24(8):643–51.PubMedCrossRefPubMedCentral
31.
go back to reference Appel GB, Cook HT, Hageman G, et al. Membranoproliferative glomerulonephritis type II (dense deposit disease): an update. J Am Soc Nephrol. 2005;16(5):1392–403.PubMedCrossRef Appel GB, Cook HT, Hageman G, et al. Membranoproliferative glomerulonephritis type II (dense deposit disease): an update. J Am Soc Nephrol. 2005;16(5):1392–403.PubMedCrossRef
32.
33.
go back to reference Wu J, Wu YQ, Ricklin D, Janssen BJ, Lambris JD, Gros P. Structure of complement fragment C3b-factor H and implications for host protection by complement regulators. Nat Immunol. 2009;10(7):728–33.PubMedPubMedCentralCrossRef Wu J, Wu YQ, Ricklin D, Janssen BJ, Lambris JD, Gros P. Structure of complement fragment C3b-factor H and implications for host protection by complement regulators. Nat Immunol. 2009;10(7):728–33.PubMedPubMedCentralCrossRef
34.
go back to reference Abrera-Abeleda MA, Nishimura C, Smith JL, et al. Variations in the complement regulatory genes factor H (CFH) and factor H related 5 (CFHR5) are associated with membranoproliferative glomerulonephritis type II (dense deposit disease). J Med Genet. 2006;43(7):582–9.PubMedCrossRef Abrera-Abeleda MA, Nishimura C, Smith JL, et al. Variations in the complement regulatory genes factor H (CFH) and factor H related 5 (CFHR5) are associated with membranoproliferative glomerulonephritis type II (dense deposit disease). J Med Genet. 2006;43(7):582–9.PubMedCrossRef
35.
go back to reference McRae JL, Duthy TG, Griggs KM, et al. Human factor H-related protein 5 has cofactor activity, inhibits C3 convertase activity, binds heparin and C-reactive protein, and associates with lipoprotein. J Immunol. 2005;174(10):6250–6.PubMedCrossRef McRae JL, Duthy TG, Griggs KM, et al. Human factor H-related protein 5 has cofactor activity, inhibits C3 convertase activity, binds heparin and C-reactive protein, and associates with lipoprotein. J Immunol. 2005;174(10):6250–6.PubMedCrossRef
36.
go back to reference Csincsi ÁI, Kopp A, Zöldi M, et al. Factor H-related protein 5 interacts with pentraxin 3 and the extracellular matrix and modulates complement activation. J Immunol. 2015;194(10):4963–73.PubMedPubMedCentralCrossRef Csincsi ÁI, Kopp A, Zöldi M, et al. Factor H-related protein 5 interacts with pentraxin 3 and the extracellular matrix and modulates complement activation. J Immunol. 2015;194(10):4963–73.PubMedPubMedCentralCrossRef
37.
go back to reference Medjeral-Thomas N, Pickering MC. The complement factor H-related proteins. Immunol Rev. 2016;274(1):191–201.PubMedCrossRef Medjeral-Thomas N, Pickering MC. The complement factor H-related proteins. Immunol Rev. 2016;274(1):191–201.PubMedCrossRef
38.
go back to reference Goicoechea de Jorge E, Caesar JJ, Malik TH, et al. Dimerization of complement factor H-related proteins modulates complement activation in vivo. Proc Natl Acad Sci USA. 2013;110(12):4685–90.PubMedCrossRef Goicoechea de Jorge E, Caesar JJ, Malik TH, et al. Dimerization of complement factor H-related proteins modulates complement activation in vivo. Proc Natl Acad Sci USA. 2013;110(12):4685–90.PubMedCrossRef
39.
go back to reference Tortajada A, Yébenes H, Abarrategui-Garrido C, et al. C3 glomerulopathy-associated CFHR1 mutation alters FHR oligomerization and complement regulation. J Clin Invest. 2013;123(6):2434–46.PubMedPubMedCentralCrossRef Tortajada A, Yébenes H, Abarrategui-Garrido C, et al. C3 glomerulopathy-associated CFHR1 mutation alters FHR oligomerization and complement regulation. J Clin Invest. 2013;123(6):2434–46.PubMedPubMedCentralCrossRef
40.
go back to reference Chen Q, Wiesener M, Eberhardt HU, et al. Complement factor H-related hybrid protein deregulates complement in dense deposit disease. J Clin Invest. 2014;124(1):145–55.PubMedCrossRef Chen Q, Wiesener M, Eberhardt HU, et al. Complement factor H-related hybrid protein deregulates complement in dense deposit disease. J Clin Invest. 2014;124(1):145–55.PubMedCrossRef
41.
go back to reference Hebecker M, Józsi M. Factor H-related protein 4 activates complement by serving as a platform for the assembly of alternative pathway C3 convertase via its interaction with C3b protein. J Biol Chem. 2012;287(23):19528–36.PubMedPubMedCentralCrossRef Hebecker M, Józsi M. Factor H-related protein 4 activates complement by serving as a platform for the assembly of alternative pathway C3 convertase via its interaction with C3b protein. J Biol Chem. 2012;287(23):19528–36.PubMedPubMedCentralCrossRef
42.
go back to reference van Beek AE, Pouw RB, Brouwer MC, et al. Factor H-related (FHR)-1 and FHR-2 form homo- and heterodimers, while FHR-5 circulates only as homodimer in human plasma. Front Immunol. 2017;8:1328.PubMedPubMedCentralCrossRef van Beek AE, Pouw RB, Brouwer MC, et al. Factor H-related (FHR)-1 and FHR-2 form homo- and heterodimers, while FHR-5 circulates only as homodimer in human plasma. Front Immunol. 2017;8:1328.PubMedPubMedCentralCrossRef
43.
go back to reference Wieme RJ, Demeulenaere L. Genetically determined electrophoretic variant of the human complement component C’3. Nature. 1967;214:1042–3.PubMedCrossRef Wieme RJ, Demeulenaere L. Genetically determined electrophoretic variant of the human complement component C’3. Nature. 1967;214:1042–3.PubMedCrossRef
45.
go back to reference Botto M, Fong KY, So AK, Koch C, Walport MJ. Molecular basis of polymorphisms of human complement component C3. J Exp Med. 1990;172:1011–7.PubMedCrossRef Botto M, Fong KY, So AK, Koch C, Walport MJ. Molecular basis of polymorphisms of human complement component C3. J Exp Med. 1990;172:1011–7.PubMedCrossRef
46.
go back to reference Torreira E, Tortajada A, Montes T, Rodríguez de Córdoba S, Llorca O. 3D structure of the C3bB complex provides insights into the activation and regulation of the complement alternative pathway convertase. Proc Natl Acad Sci USA. 2009;106(3):882–7.PubMedCrossRef Torreira E, Tortajada A, Montes T, Rodríguez de Córdoba S, Llorca O. 3D structure of the C3bB complex provides insights into the activation and regulation of the complement alternative pathway convertase. Proc Natl Acad Sci USA. 2009;106(3):882–7.PubMedCrossRef
47.
go back to reference Yates JR, Sepp T, Matharu BK, et al. Complement C3 variant and the risk of age-related macular degeneration. N Engl J Med. 2007;357(6):553–61.PubMedCrossRef Yates JR, Sepp T, Matharu BK, et al. Complement C3 variant and the risk of age-related macular degeneration. N Engl J Med. 2007;357(6):553–61.PubMedCrossRef
48.
go back to reference Bazyar N, Azarpira N, Khatami RS, Galehdari H. The investigation of allele and genotype frequencies of human C3 (rs2230199). Mol Biol Rep. 2012;39(9):8919–24.PubMedCrossRef Bazyar N, Azarpira N, Khatami RS, Galehdari H. The investigation of allele and genotype frequencies of human C3 (rs2230199). Mol Biol Rep. 2012;39(9):8919–24.PubMedCrossRef
49.
go back to reference Koch C, Behrendt N. A novel polymorphism of human complement component C3 detected by means of a monoclonal antibody. Immunogenetics. 1986;23:322–5.PubMedCrossRef Koch C, Behrendt N. A novel polymorphism of human complement component C3 detected by means of a monoclonal antibody. Immunogenetics. 1986;23:322–5.PubMedCrossRef
50.
go back to reference Abrera-Abeleda MA, Nishimura C, Frees K, et al. Allelic variants of complement genes associated with dense deposit disease. J Am Soc Nephrol. 2011;22(8):1551–9.PubMedPubMedCentralCrossRef Abrera-Abeleda MA, Nishimura C, Frees K, et al. Allelic variants of complement genes associated with dense deposit disease. J Am Soc Nephrol. 2011;22(8):1551–9.PubMedPubMedCentralCrossRef
52.
go back to reference McLean RH, Winkelstein JA. Genetically determined variation in the complement system: relationship to disease. J Pediatr. 1984;105:179–88.PubMedCrossRef McLean RH, Winkelstein JA. Genetically determined variation in the complement system: relationship to disease. J Pediatr. 1984;105:179–88.PubMedCrossRef
53.
go back to reference Finn JE, Li PK, Lai KN, Mathieson PW. Molecular analysis of C3 allotypes in Chinese patients with immunoglobulin A nephropathy. Am J Kidney Dis. 1994;23:543–6.PubMedCrossRef Finn JE, Li PK, Lai KN, Mathieson PW. Molecular analysis of C3 allotypes in Chinese patients with immunoglobulin A nephropathy. Am J Kidney Dis. 1994;23:543–6.PubMedCrossRef
54.
go back to reference Rambausek M, van den Wall Bake AW, Schumacher-Ach R, et al. Genetic polymorphism of C3 and Bf in IgA nephropathy. Nephrol Dial Transplant. 1987;2:208–11.PubMed Rambausek M, van den Wall Bake AW, Schumacher-Ach R, et al. Genetic polymorphism of C3 and Bf in IgA nephropathy. Nephrol Dial Transplant. 1987;2:208–11.PubMed
55.
go back to reference Finn JE, Zhang L, Agrawal S, Jayne DR, Oliveira DB, Mathieson PW. Molecular analysis of C3 allotypes in patients with systemic vasculitis. Nephrol Dial Transplant. 1994;9:1564–7.PubMed Finn JE, Zhang L, Agrawal S, Jayne DR, Oliveira DB, Mathieson PW. Molecular analysis of C3 allotypes in patients with systemic vasculitis. Nephrol Dial Transplant. 1994;9:1564–7.PubMed
56.
go back to reference Persson U, Gullstrand B, Pettersson AG, Truedsson L, Segelmark MA. A candidate gene approach to ANCA-associated vasculitis reveals links to the C3 and CTLA-4 genes but not to the IL1-Ra and Fcă-RIIa genes. Kidney Blood Press Res. 2013;37:641–8.PubMedCrossRef Persson U, Gullstrand B, Pettersson AG, Truedsson L, Segelmark MA. A candidate gene approach to ANCA-associated vasculitis reveals links to the C3 and CTLA-4 genes but not to the IL1-Ra and Fcă-RIIa genes. Kidney Blood Press Res. 2013;37:641–8.PubMedCrossRef
57.
go back to reference Brown KM, Kondeatis E, Vaughan RW, et al. Influence of donor C3 allotype on late renal-transplantation outcome. N Engl J Med. 2006;354:2014–23.PubMedCrossRef Brown KM, Kondeatis E, Vaughan RW, et al. Influence of donor C3 allotype on late renal-transplantation outcome. N Engl J Med. 2006;354:2014–23.PubMedCrossRef
58.
go back to reference Matsuyama W, Nakagawa M, Takashima H, Muranaga F, Sano Y, Osame M. Identification of a novel mutation(Tyr1081Ter) in sisters with hereditary component C3 deficiency and SLE-like symptoms. Hum Mutat. 2001;17(1):79.PubMedCrossRef Matsuyama W, Nakagawa M, Takashima H, Muranaga F, Sano Y, Osame M. Identification of a novel mutation(Tyr1081Ter) in sisters with hereditary component C3 deficiency and SLE-like symptoms. Hum Mutat. 2001;17(1):79.PubMedCrossRef
59.
go back to reference Miyagawa H, Yamai M, Sakaguchi D, et al. Association of polymorphisms in complement component C3 gene with susceptibility to systemic lupus erythematosus. Rheumatology (Oxford). 2008;47(2):158–64.CrossRef Miyagawa H, Yamai M, Sakaguchi D, et al. Association of polymorphisms in complement component C3 gene with susceptibility to systemic lupus erythematosus. Rheumatology (Oxford). 2008;47(2):158–64.CrossRef
60.
go back to reference Rhodes B, Hunnangkul S, Morris DL, Hsaio LC, Graham DS, Nitsch D. The heritability and genetics of complement C3 expression in UK SLE families. Genes Immun. 2009;10(5):525–30.PubMedCrossRef Rhodes B, Hunnangkul S, Morris DL, Hsaio LC, Graham DS, Nitsch D. The heritability and genetics of complement C3 expression in UK SLE families. Genes Immun. 2009;10(5):525–30.PubMedCrossRef
61.
go back to reference Chauvet S, Roumenina LT, Bruneau S, et al. A familial C3GN secondary to defective C3 regulation by complement receptor 1 and complement factor H. J Am Soc Nephrol. 2016;27(6):1665–77.PubMedCrossRef Chauvet S, Roumenina LT, Bruneau S, et al. A familial C3GN secondary to defective C3 regulation by complement receptor 1 and complement factor H. J Am Soc Nephrol. 2016;27(6):1665–77.PubMedCrossRef
62.
go back to reference Servais A, Noël LH, Roumenina LT, et al. Acquired and genetic complement abnormalities play critical role in dense deposit disease and other C3 glomerulopathies. Kidney Int. 2012;82(4):454–64.PubMedCrossRef Servais A, Noël LH, Roumenina LT, et al. Acquired and genetic complement abnormalities play critical role in dense deposit disease and other C3 glomerulopathies. Kidney Int. 2012;82(4):454–64.PubMedCrossRef
63.
go back to reference Tortajada A, Montes T, Martínez-Barricarte R, Morgan BP, Harris CL, de Córdoba SR. The disease protective complement factor H allotypic variant Ile62 shows increased binding for C3b and enhanced cofactor activity. Hum Mol Genet. 2009;18:3452–61.PubMedPubMedCentralCrossRef Tortajada A, Montes T, Martínez-Barricarte R, Morgan BP, Harris CL, de Córdoba SR. The disease protective complement factor H allotypic variant Ile62 shows increased binding for C3b and enhanced cofactor activity. Hum Mol Genet. 2009;18:3452–61.PubMedPubMedCentralCrossRef
64.
go back to reference Iatropoulos P, Noris M, Melea C, et al. Complement gene variants determine the risk of immunoglobulin-associated MPGN and C3 glomerulopathy and predict long-term renal outcome. Mol Immunol. 2016;71:131–42.PubMedCrossRef Iatropoulos P, Noris M, Melea C, et al. Complement gene variants determine the risk of immunoglobulin-associated MPGN and C3 glomerulopathy and predict long-term renal outcome. Mol Immunol. 2016;71:131–42.PubMedCrossRef
65.
go back to reference Tan M, Hao JB, Chu H, et al. Genetic variants in FH are associated with renal histopathologic subtypes of lupus nephritis: a large cohort study from China. Lupus. 2017;1:961203317702254. Tan M, Hao JB, Chu H, et al. Genetic variants in FH are associated with renal histopathologic subtypes of lupus nephritis: a large cohort study from China. Lupus. 2017;1:961203317702254.
66.
go back to reference Skerka C, Lauer N, Weinberger AA, et al. Defective complement control of factor H (Y402H) and FHL-1 in age-related macular degeneration. Mol Immunol. 2007;44(13):3398–406.PubMedCrossRef Skerka C, Lauer N, Weinberger AA, et al. Defective complement control of factor H (Y402H) and FHL-1 in age-related macular degeneration. Mol Immunol. 2007;44(13):3398–406.PubMedCrossRef
67.
go back to reference Servais A, Noël LH, Frémeaux-Bacchi V, Lesavre P. C3 glomerulopathy. Contrib Nephrol. 2013;181:185–93.PubMedCrossRef Servais A, Noël LH, Frémeaux-Bacchi V, Lesavre P. C3 glomerulopathy. Contrib Nephrol. 2013;181:185–93.PubMedCrossRef
68.
go back to reference Sethi S, Fervenza FC, Zhang Y, Nasr SH, Leung N, Vrana J. Proliferative glomerulonephritis secondary to dysfunction of the alternative pathway of complement. Clin J Am Soc Nephrol. 2011;6(5):1009–17.PubMedPubMedCentralCrossRef Sethi S, Fervenza FC, Zhang Y, Nasr SH, Leung N, Vrana J. Proliferative glomerulonephritis secondary to dysfunction of the alternative pathway of complement. Clin J Am Soc Nephrol. 2011;6(5):1009–17.PubMedPubMedCentralCrossRef
69.
go back to reference Zhao J, Wu H, Khosravi M, et al. Association of genetic variants in complement factor H and factor H-related genes with systemic lupus erythematosus susceptibility. PLoS Genet. 2011;7(5):e1002079.PubMedPubMedCentralCrossRef Zhao J, Wu H, Khosravi M, et al. Association of genetic variants in complement factor H and factor H-related genes with systemic lupus erythematosus susceptibility. PLoS Genet. 2011;7(5):e1002079.PubMedPubMedCentralCrossRef
70.
go back to reference Zhu L, Zhai YL, Wang FM, et al. Variants in complement factor H and complement factor H-related protein genes, CFHR3 and CFHR1, affect complement activation in IgA nephropathy. J Am Soc Nephrol. 2015;26(5):1195–204.PubMedCrossRef Zhu L, Zhai YL, Wang FM, et al. Variants in complement factor H and complement factor H-related protein genes, CFHR3 and CFHR1, affect complement activation in IgA nephropathy. J Am Soc Nephrol. 2015;26(5):1195–204.PubMedCrossRef
71.
72.
go back to reference Kiryluk K, Li Y, Scolari F, et al. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat Genet. 2014;46(11):1187–96.PubMedPubMedCentralCrossRef Kiryluk K, Li Y, Scolari F, et al. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat Genet. 2014;46(11):1187–96.PubMedPubMedCentralCrossRef
73.
go back to reference Nozal P, Garrido S, Martínez-Ara J, et al. Case report: lupus nephritis with autoantibodies to complement alternative pathway proteins and C3 gene mutation. BMC Nephrol. 2015;16:40.PubMedPubMedCentralCrossRef Nozal P, Garrido S, Martínez-Ara J, et al. Case report: lupus nephritis with autoantibodies to complement alternative pathway proteins and C3 gene mutation. BMC Nephrol. 2015;16:40.PubMedPubMedCentralCrossRef
74.
go back to reference Tsukamoto H, Horiuchi T, Kokuba H, et al. Molecular analysis of a novel hereditary C3 deficiency with systemic lupus erythematosus. Biochem Biophys Res Commun. 2005;330(1):298–304.PubMedCrossRef Tsukamoto H, Horiuchi T, Kokuba H, et al. Molecular analysis of a novel hereditary C3 deficiency with systemic lupus erythematosus. Biochem Biophys Res Commun. 2005;330(1):298–304.PubMedCrossRef
75.
go back to reference Gale DP, de Jorge EG, Cook HT, et al. Identification of a mutation in complement factor H-related protein 5 in patients of Cypriot origin with glomerulonephritis. Lancet. 2010;376(9743):794–801.PubMedPubMedCentralCrossRef Gale DP, de Jorge EG, Cook HT, et al. Identification of a mutation in complement factor H-related protein 5 in patients of Cypriot origin with glomerulonephritis. Lancet. 2010;376(9743):794–801.PubMedPubMedCentralCrossRef
76.
77.
go back to reference Xiao X, Ghosseinc C, Tortajada A, et al. Familial C3 glomerulonephritis caused by a novel CFHR5-CFHR2 fusion gene. Mol Immunol. 2016;77:89–96.PubMedCrossRef Xiao X, Ghosseinc C, Tortajada A, et al. Familial C3 glomerulonephritis caused by a novel CFHR5-CFHR2 fusion gene. Mol Immunol. 2016;77:89–96.PubMedCrossRef
78.
go back to reference Togarsimalemath SK, Sethi SK, Duggal R, et al. A novel CFHR1-CFHR5 hybrid leads to a familial dominant C3 glomerulopathy. Kidney Int. 2017;92(4):876–87.PubMedCrossRef Togarsimalemath SK, Sethi SK, Duggal R, et al. A novel CFHR1-CFHR5 hybrid leads to a familial dominant C3 glomerulopathy. Kidney Int. 2017;92(4):876–87.PubMedCrossRef
79.
go back to reference Alfakeeh K, Azar M, Alfadhel M, Abdullah AM, Aloudah N, Alsaad KO. Rare genetic variant in the CFB gene presenting as atypical hemolytic uremic syndrome and immune complex diffuse membranoproliferative glomerulonephritis, with crescents, successfully treated with eculizumab. Pediatr Nephrol. 2017;32(5):885–91.PubMedCrossRef Alfakeeh K, Azar M, Alfadhel M, Abdullah AM, Aloudah N, Alsaad KO. Rare genetic variant in the CFB gene presenting as atypical hemolytic uremic syndrome and immune complex diffuse membranoproliferative glomerulonephritis, with crescents, successfully treated with eculizumab. Pediatr Nephrol. 2017;32(5):885–91.PubMedCrossRef
80.
go back to reference Marinozzi MC, Vergoz L, Rybkine T, et al. Complement factor B mutations in atypical hemolytic uremic syndrome-disease-relevant or benign? J Am Soc Nephrol. 2014;25(9):2053–65.PubMedPubMedCentralCrossRef Marinozzi MC, Vergoz L, Rybkine T, et al. Complement factor B mutations in atypical hemolytic uremic syndrome-disease-relevant or benign? J Am Soc Nephrol. 2014;25(9):2053–65.PubMedPubMedCentralCrossRef
81.
go back to reference Medjeral-Thomas NR, O’Shaughnessy MM, O’Regan JA, et al. C3 glomerulopathy: clinicopathologic features and predictors of outcome. Clin J Am Soc Nephrol. 2014;9(1):46–53.PubMedCrossRef Medjeral-Thomas NR, O’Shaughnessy MM, O’Regan JA, et al. C3 glomerulopathy: clinicopathologic features and predictors of outcome. Clin J Am Soc Nephrol. 2014;9(1):46–53.PubMedCrossRef
84.
go back to reference Ito N, Ohashi R, Nagata M. C3 glomerulopathy and current dilemmas. Clin Exp Nephrol. 2017;21(4):541–51.PubMedCrossRef Ito N, Ohashi R, Nagata M. C3 glomerulopathy and current dilemmas. Clin Exp Nephrol. 2017;21(4):541–51.PubMedCrossRef
85.
go back to reference Misra A, Peethambaram A, Garg A. Clinical features and metabolic and autoimmune derangements in acquired partial lipodystrophy: report of 35 cases and review of the literature. Medicine (Baltimore). 2004;83(1):18–34.CrossRef Misra A, Peethambaram A, Garg A. Clinical features and metabolic and autoimmune derangements in acquired partial lipodystrophy: report of 35 cases and review of the literature. Medicine (Baltimore). 2004;83(1):18–34.CrossRef
86.
go back to reference Rose KL, Paixao-Cavalcante D, Fish J, et al. Factor I is required for the development of membranoproliferative glomerulonephritis in factor H-deficient mice. J Clin Invest. 2008;118(2):608–18.PubMedPubMedCentral Rose KL, Paixao-Cavalcante D, Fish J, et al. Factor I is required for the development of membranoproliferative glomerulonephritis in factor H-deficient mice. J Clin Invest. 2008;118(2):608–18.PubMedPubMedCentral
87.
go back to reference Jansen JH. Porcine membranoproliferative glomerulonephritis with intramembranous dense deposits (porcine dense deposit disease). APMIS. 1993;101(4):281–9.PubMedCrossRef Jansen JH. Porcine membranoproliferative glomerulonephritis with intramembranous dense deposits (porcine dense deposit disease). APMIS. 1993;101(4):281–9.PubMedCrossRef
88.
go back to reference Høgåsen K, Jansen JH, Mollnes TE, Hovdenes J, Harboe M. Hereditary porcine membranoproliferative glomerulonephritis type II is caused by factor H deficiency. J Clin Invest. 1995;95(3):1054–61.PubMedPubMedCentralCrossRef Høgåsen K, Jansen JH, Mollnes TE, Hovdenes J, Harboe M. Hereditary porcine membranoproliferative glomerulonephritis type II is caused by factor H deficiency. J Clin Invest. 1995;95(3):1054–61.PubMedPubMedCentralCrossRef
89.
go back to reference Pickering MC, Cook HT, Warren J, et al. Uncontrolled C3 activation causes membranoproliferative glomerulonephritis in mice deficient in complement factor H. Nat Genet. 2002;31(4):424–8.PubMedCrossRef Pickering MC, Cook HT, Warren J, et al. Uncontrolled C3 activation causes membranoproliferative glomerulonephritis in mice deficient in complement factor H. Nat Genet. 2002;31(4):424–8.PubMedCrossRef
90.
go back to reference Pickering MC, Warren J, Rose KL, et al. Prevention of C5 activation ameliorates spontaneous and experimental glomerulonephritis in factor H-deficient mice. PNAS. 2006;103(25):9649–54.PubMedCrossRef Pickering MC, Warren J, Rose KL, et al. Prevention of C5 activation ameliorates spontaneous and experimental glomerulonephritis in factor H-deficient mice. PNAS. 2006;103(25):9649–54.PubMedCrossRef
91.
go back to reference Ruseva MM, Vernon KA, Lesher AM, et al. Loss of properdin exacerbates C3 glomerulopathy resulting from factor H deficiency. J Am Soc Nephrol. 2013;24(1):43–52.PubMedCrossRef Ruseva MM, Vernon KA, Lesher AM, et al. Loss of properdin exacerbates C3 glomerulopathy resulting from factor H deficiency. J Am Soc Nephrol. 2013;24(1):43–52.PubMedCrossRef
92.
go back to reference Lesher AM, Zhou L, Kimura Y, et al. Combination of factor H mutation and properdin deficiency causes severe C3 glomerulonephritis. J Am Soc Nephrol. 2013;24(1):53–65.PubMedCrossRef Lesher AM, Zhou L, Kimura Y, et al. Combination of factor H mutation and properdin deficiency causes severe C3 glomerulonephritis. J Am Soc Nephrol. 2013;24(1):53–65.PubMedCrossRef
94.
go back to reference Sethi S, Sukov WR, Zhang Y, et al. Dense deposit disease associated with monoclonal gammopathy of undetermined significance. Am J Kidney Dis. 2010;56(5):977–82.PubMedPubMedCentralCrossRef Sethi S, Sukov WR, Zhang Y, et al. Dense deposit disease associated with monoclonal gammopathy of undetermined significance. Am J Kidney Dis. 2010;56(5):977–82.PubMedPubMedCentralCrossRef
95.
go back to reference Marinozzi MCh, Roumenina LT, Chauvet S, et al. Anti-factor B and anti-C3b autoantibodies in C3 glomerulopathy and Ig-associated membranoproliferative GN. J Am Soc Nephrol. 2017;28(5):1603–13.PubMedPubMedCentralCrossRef Marinozzi MCh, Roumenina LT, Chauvet S, et al. Anti-factor B and anti-C3b autoantibodies in C3 glomerulopathy and Ig-associated membranoproliferative GN. J Am Soc Nephrol. 2017;28(5):1603–13.PubMedPubMedCentralCrossRef
96.
go back to reference Paixão-Cavalcante D, López-Trascasa M, Skattum L, et al. Sensitive and specific assays for C3 nephritic factors clarify mechanisms underlying complement dysregulation. Kidney Int. 2012;82(10):1084–92.PubMedPubMedCentralCrossRef Paixão-Cavalcante D, López-Trascasa M, Skattum L, et al. Sensitive and specific assays for C3 nephritic factors clarify mechanisms underlying complement dysregulation. Kidney Int. 2012;82(10):1084–92.PubMedPubMedCentralCrossRef
97.
go back to reference Daha MR, Fearon DT, Austen KF. C3 nephritic factor (C3NeF): stabilization of fluid phase and cell-bound alternative pathway convertase. J Immunol. 1976;116(1):1–7.PubMed Daha MR, Fearon DT, Austen KF. C3 nephritic factor (C3NeF): stabilization of fluid phase and cell-bound alternative pathway convertase. J Immunol. 1976;116(1):1–7.PubMed
98.
go back to reference Marinozzi MC, Chauvet S, Le Quintrec M, et al. C5 nephritic factors drive the biological phenotype of C3 glomerulopathies. Kidney Int. 2017;92(5):1232–41.PubMedCrossRef Marinozzi MC, Chauvet S, Le Quintrec M, et al. C5 nephritic factors drive the biological phenotype of C3 glomerulopathies. Kidney Int. 2017;92(5):1232–41.PubMedCrossRef
99.
go back to reference Blanc C, Togarsimalemath SK, Chauvet S, et al. Anti-factor H autoantibodies in C3 glomerulopathies and in atypical hemolytic uremic syndrome: one target, two diseases. J Immunol. 2015;194(11):5129–38.PubMedCrossRef Blanc C, Togarsimalemath SK, Chauvet S, et al. Anti-factor H autoantibodies in C3 glomerulopathies and in atypical hemolytic uremic syndrome: one target, two diseases. J Immunol. 2015;194(11):5129–38.PubMedCrossRef
100.
go back to reference Martínez-Barricarte R, Heurich M, Valdes-Cañedo F, Vazquez-Martul E, Torreira E, Montes T. Human C3 mutation reveals a mechanism of dense deposit disease pathogenesis and provides insights into complement activation and regulation. J Clin Invest. 2010;120(10):3702–12.PubMedPubMedCentralCrossRef Martínez-Barricarte R, Heurich M, Valdes-Cañedo F, Vazquez-Martul E, Torreira E, Montes T. Human C3 mutation reveals a mechanism of dense deposit disease pathogenesis and provides insights into complement activation and regulation. J Clin Invest. 2010;120(10):3702–12.PubMedPubMedCentralCrossRef
101.
go back to reference Chen P, Zhu L, Yu F, et al. Different types of glomerulonephritis associated with the dysregulation of the complement alternative pathway in 2 brothers: a case report. Medicine (Baltimore). 2017;96(24):e7144.CrossRef Chen P, Zhu L, Yu F, et al. Different types of glomerulonephritis associated with the dysregulation of the complement alternative pathway in 2 brothers: a case report. Medicine (Baltimore). 2017;96(24):e7144.CrossRef
102.
go back to reference Habbig S, Mihatsch MJ, Heinen S, et al. C3 deposition glomerulopathy due to a functional factor H defect. Kidney Int. 2009;75(11):1230–4.PubMedCrossRef Habbig S, Mihatsch MJ, Heinen S, et al. C3 deposition glomerulopathy due to a functional factor H defect. Kidney Int. 2009;75(11):1230–4.PubMedCrossRef
103.
go back to reference Noris M, Remuzzi G. Glomerular diseases dependent on complement activation, including atypical hemolytic uremic syndrome, membranoproliferative glomerulonephritis, and C3 glomerulopathy: core curriculum 2015. Am J Kidney Dis. 2015;66(2):359–75.PubMedPubMedCentralCrossRef Noris M, Remuzzi G. Glomerular diseases dependent on complement activation, including atypical hemolytic uremic syndrome, membranoproliferative glomerulonephritis, and C3 glomerulopathy: core curriculum 2015. Am J Kidney Dis. 2015;66(2):359–75.PubMedPubMedCentralCrossRef
104.
go back to reference Schramm EC, Roumenina LT, Rybkine T, et al. Mapping interactions between complement C3 and regulators using mutations in atypical hemolytic uremic syndrome. Blood. 2015;125(15):2359–69.PubMedPubMedCentralCrossRef Schramm EC, Roumenina LT, Rybkine T, et al. Mapping interactions between complement C3 and regulators using mutations in atypical hemolytic uremic syndrome. Blood. 2015;125(15):2359–69.PubMedPubMedCentralCrossRef
106.
go back to reference Goodship TH, Cook HT, Fakhouri F, et al. Atypical hemolytic uremic syndrome and C3 glomerulopathy: conclusions from a “kidney disease: improving global outcomes” (KDIGO) controversies conference. Kidney Int. 2017;91(3):539–51.PubMedCrossRef Goodship TH, Cook HT, Fakhouri F, et al. Atypical hemolytic uremic syndrome and C3 glomerulopathy: conclusions from a “kidney disease: improving global outcomes” (KDIGO) controversies conference. Kidney Int. 2017;91(3):539–51.PubMedCrossRef
107.
go back to reference Roumenina LT, Rayes J, Frimat M, Fremeaux-Bacchi V. Endothelial cells: source, barrier, and target of defensive mediators. Immunol Rev. 2016;274(1):307–29.PubMedCrossRef Roumenina LT, Rayes J, Frimat M, Fremeaux-Bacchi V. Endothelial cells: source, barrier, and target of defensive mediators. Immunol Rev. 2016;274(1):307–29.PubMedCrossRef
108.
go back to reference Dragon-Durey MA, Sethi SK, Bagga A, et al. Clinical features of anti-factor H autoantibody-associated hemolytic uremic syndrome. J Am Soc Nephrol. 2010;21(12):2180–7.PubMedPubMedCentralCrossRef Dragon-Durey MA, Sethi SK, Bagga A, et al. Clinical features of anti-factor H autoantibody-associated hemolytic uremic syndrome. J Am Soc Nephrol. 2010;21(12):2180–7.PubMedPubMedCentralCrossRef
109.
go back to reference Józsi M, Licht C, Strobel S, et al. Factor H autoantibodies in atypical hemolytic uremic syndrome correlate with CFHR1/CFHR3 deficiency. Blood. 2008;111(3):1512–4.PubMedCrossRef Józsi M, Licht C, Strobel S, et al. Factor H autoantibodies in atypical hemolytic uremic syndrome correlate with CFHR1/CFHR3 deficiency. Blood. 2008;111(3):1512–4.PubMedCrossRef
110.
go back to reference Murphy B, Georgiou T, Machet D, Hill P, McRae J. Factor H–related protein-5: a novel component of human glomerular immune deposits. Am J Kidney Dis. 2002;39(1):24–7.PubMedCrossRef Murphy B, Georgiou T, Machet D, Hill P, McRae J. Factor H–related protein-5: a novel component of human glomerular immune deposits. Am J Kidney Dis. 2002;39(1):24–7.PubMedCrossRef
111.
go back to reference Salvadori M, Rosso G. Reclassification of membranoproliferative glomerulonephritis: identification of a new GN: C3GN. World J Nephrol. 2016;5(4):308–20.PubMedPubMedCentralCrossRef Salvadori M, Rosso G. Reclassification of membranoproliferative glomerulonephritis: identification of a new GN: C3GN. World J Nephrol. 2016;5(4):308–20.PubMedPubMedCentralCrossRef
112.
go back to reference Smykał-Jankowiak K, Niemir ZI, Polcyn-Adamczak M. Do circulating antibodies against C1q reflect the activity of lupus nephritis? Pol Arch Med Wewn. 2011;121(9):287–95.PubMed Smykał-Jankowiak K, Niemir ZI, Polcyn-Adamczak M. Do circulating antibodies against C1q reflect the activity of lupus nephritis? Pol Arch Med Wewn. 2011;121(9):287–95.PubMed
113.
go back to reference Tongmao Z. Genetic polymorphisms of C3 and Bf in the Chinese population. Hum Hered. 1983;33(1):36–8.PubMedCrossRef Tongmao Z. Genetic polymorphisms of C3 and Bf in the Chinese population. Hum Hered. 1983;33(1):36–8.PubMedCrossRef
114.
go back to reference Yang X, Wei RB, Wang Y, et al. Decreased serum C3 levels in immunoglobulin A (IgA) nephropathy with chronic kidney disease: a propensity score matching study. Med Sci Monit. 2017;23:673–81.PubMedPubMedCentralCrossRef Yang X, Wei RB, Wang Y, et al. Decreased serum C3 levels in immunoglobulin A (IgA) nephropathy with chronic kidney disease: a propensity score matching study. Med Sci Monit. 2017;23:673–81.PubMedPubMedCentralCrossRef
115.
go back to reference Jullien P, Laurent B, Claisse G, et al. Deletion variants of CFHR1 and CFHR3 associate with mesangial immune deposits but not with progression of IgA nephropathy. J Am Soc Nephrol. 2018;29(2):661–9.PubMedCrossRef Jullien P, Laurent B, Claisse G, et al. Deletion variants of CFHR1 and CFHR3 associate with mesangial immune deposits but not with progression of IgA nephropathy. J Am Soc Nephrol. 2018;29(2):661–9.PubMedCrossRef
116.
go back to reference Medjeral-Thomas NR, Lomax-Browne HJ, Beckwith H, et al. Circulating complement factor H-related proteins 1 and 5 correlate with disease activity in IgA nephropathy. Kidney Int. 2017;92(4):942–52.PubMedPubMedCentralCrossRef Medjeral-Thomas NR, Lomax-Browne HJ, Beckwith H, et al. Circulating complement factor H-related proteins 1 and 5 correlate with disease activity in IgA nephropathy. Kidney Int. 2017;92(4):942–52.PubMedPubMedCentralCrossRef
117.
go back to reference Tortajada A, Gutiérrez E, Goicoechea de Jorge E, et al. Elevated factor H-related protein 1 and factor H pathogenic variants decrease complement regulation in IgA nephropathy. Kidney Int. 2017;92(4):953–63.PubMedCrossRef Tortajada A, Gutiérrez E, Goicoechea de Jorge E, et al. Elevated factor H-related protein 1 and factor H pathogenic variants decrease complement regulation in IgA nephropathy. Kidney Int. 2017;92(4):953–63.PubMedCrossRef
118.
go back to reference Niemir ZI, Wągrowska-Danilewicz M. Renal involvement in systemic lupus erythematosus. Pol Merkur Lekarski. 2010;28(164):144–51.PubMed Niemir ZI, Wągrowska-Danilewicz M. Renal involvement in systemic lupus erythematosus. Pol Merkur Lekarski. 2010;28(164):144–51.PubMed
119.
go back to reference Almaani S, Meara A, Rovin BH. Update on lupus nephritis. Clin J Am Soc Nephrol. 2017;12(5):825–35.PubMedCrossRef Almaani S, Meara A, Rovin BH. Update on lupus nephritis. Clin J Am Soc Nephrol. 2017;12(5):825–35.PubMedCrossRef
120.
go back to reference Wakiguchi H, Takei S, Kubota T, Miyazono A, Kawano Y. Treatable renal disease in children with silent lupus nephritis detected by baseline biopsy: association with serum C3 levels. Clin Rheumatol. 2017;36(2):433–7.PubMedCrossRef Wakiguchi H, Takei S, Kubota T, Miyazono A, Kawano Y. Treatable renal disease in children with silent lupus nephritis detected by baseline biopsy: association with serum C3 levels. Clin Rheumatol. 2017;36(2):433–7.PubMedCrossRef
121.
go back to reference Smykał-Jankowiak K, Niemir ZI. Structure and function of complement protein C1q and its role in the development of autoimmune diseases. Postepy Hig Med Dosw (Online). 2009;63:134–41. Smykał-Jankowiak K, Niemir ZI. Structure and function of complement protein C1q and its role in the development of autoimmune diseases. Postepy Hig Med Dosw (Online). 2009;63:134–41.
122.
go back to reference Orbai AM, Truedsson L, Sturfelt G, et al. Anti-C1q antibodies in systemic lupus erythematosus. Lupus. 2015;24(1):42–9.PubMedCrossRef Orbai AM, Truedsson L, Sturfelt G, et al. Anti-C1q antibodies in systemic lupus erythematosus. Lupus. 2015;24(1):42–9.PubMedCrossRef
123.
go back to reference Manenti L, Urban ML, Vaglio A, David S. Persistent reduction of serum C3 and lupus nephritis outcome: a retrospective observational study. Nephrol Dial Transpl. 2015;30(Suppl 3):422–3.CrossRef Manenti L, Urban ML, Vaglio A, David S. Persistent reduction of serum C3 and lupus nephritis outcome: a retrospective observational study. Nephrol Dial Transpl. 2015;30(Suppl 3):422–3.CrossRef
124.
go back to reference Wang SY, Zhang Y, Xu Y, Chen JH. Persistence of low serum C3 level is associated with higher relapse rate and influences prognosis in lupus nephritis. Hong Kong J Nephrol. 2015;17(2):S56.CrossRef Wang SY, Zhang Y, Xu Y, Chen JH. Persistence of low serum C3 level is associated with higher relapse rate and influences prognosis in lupus nephritis. Hong Kong J Nephrol. 2015;17(2):S56.CrossRef
125.
go back to reference Song D, Guo W, Wang F, et al. Complement alternative pathway’s activation in patients with lupus nephritis. Am J Med Sci. 2017;353(3):247–57.PubMedCrossRef Song D, Guo W, Wang F, et al. Complement alternative pathway’s activation in patients with lupus nephritis. Am J Med Sci. 2017;353(3):247–57.PubMedCrossRef
126.
go back to reference Vasilev VV, Noe R, Dragon-Durey MA, et al. Functional characterization of autoantibodies against complement component C3 in patients with lupus nephritis. J Biol Chem. 2015;290(42):25343–55.PubMedPubMedCentralCrossRef Vasilev VV, Noe R, Dragon-Durey MA, et al. Functional characterization of autoantibodies against complement component C3 in patients with lupus nephritis. J Biol Chem. 2015;290(42):25343–55.PubMedPubMedCentralCrossRef
127.
go back to reference Birmingham DJ, Bitter JE, Ndukwe EG, et al. Relationship of circulating anti-C3b and anti-C1q IgG to lupus nephritis and its flare. Clin J Am Soc Nephrol. 2016;11(1):47–53.PubMedCrossRef Birmingham DJ, Bitter JE, Ndukwe EG, et al. Relationship of circulating anti-C3b and anti-C1q IgG to lupus nephritis and its flare. Clin J Am Soc Nephrol. 2016;11(1):47–53.PubMedCrossRef
128.
129.
go back to reference Chen M, Xing GQ, Liu FYG, Zhao MH. Complement deposition in renal histopathology of patients with ANCA-associated pauci-immune glomerulonephritis. Nephrol Dial Transplant. 2009;24(4):1247–52.PubMedCrossRef Chen M, Xing GQ, Liu FYG, Zhao MH. Complement deposition in renal histopathology of patients with ANCA-associated pauci-immune glomerulonephritis. Nephrol Dial Transplant. 2009;24(4):1247–52.PubMedCrossRef
131.
go back to reference Kościelska-Kasprzak K, Bartoszek D, Myszka M, Żabińska M, Klinger M. The complement cascade and renal disease. Arch Immunol Ther Exp (Warsz). 2014;62(1):47–57.CrossRef Kościelska-Kasprzak K, Bartoszek D, Myszka M, Żabińska M, Klinger M. The complement cascade and renal disease. Arch Immunol Ther Exp (Warsz). 2014;62(1):47–57.CrossRef
132.
go back to reference Chen M, Daha MR, Kallenberg CG. The complement system in systemic autoimmune disease. J Autoimmun. 2010;34(3):J276–86.PubMedCrossRef Chen M, Daha MR, Kallenberg CG. The complement system in systemic autoimmune disease. J Autoimmun. 2010;34(3):J276–86.PubMedCrossRef
133.
go back to reference Manenti L, Vaglio A, Gnappi E, et al. Association of serum C3 concentration and histologic signs of thrombotic microangiopathy with outcomes among patients with ANCA-associated renal vasculitis. Clin J Am Soc Nephrol. 2015;10:2143–51.PubMedPubMedCentralCrossRef Manenti L, Vaglio A, Gnappi E, et al. Association of serum C3 concentration and histologic signs of thrombotic microangiopathy with outcomes among patients with ANCA-associated renal vasculitis. Clin J Am Soc Nephrol. 2015;10:2143–51.PubMedPubMedCentralCrossRef
134.
go back to reference Gou SJ, Juan J, Chen M, Yu F, Zhao MH. Circulating complement activation in patients with anti-neutrophil cytoplasmic antibody-associated vasculitis. Kidney Int. 2013;83:129–37.PubMedCrossRef Gou SJ, Juan J, Chen M, Yu F, Zhao MH. Circulating complement activation in patients with anti-neutrophil cytoplasmic antibody-associated vasculitis. Kidney Int. 2013;83:129–37.PubMedCrossRef
135.
go back to reference Molad Y, Tovar A, Ofer-Shiber S. Association of low serum complement C3 with reduced patient and renal survival in anti-myeloperoxidase-associated small-vessel vasculitis. Nephron Clin Pract. 2014;126:67–74.PubMedCrossRef Molad Y, Tovar A, Ofer-Shiber S. Association of low serum complement C3 with reduced patient and renal survival in anti-myeloperoxidase-associated small-vessel vasculitis. Nephron Clin Pract. 2014;126:67–74.PubMedCrossRef
136.
go back to reference Xiao H, Schreiber A, Heeringa P, Falk RJ, Jennette JC. Alternative complement pathway in the pathogenesis of disease mediated by anti-neuthrophil cytoplasmic autoantibodies. Am J Pathol. 2007;170(1):52–64.PubMedPubMedCentralCrossRef Xiao H, Schreiber A, Heeringa P, Falk RJ, Jennette JC. Alternative complement pathway in the pathogenesis of disease mediated by anti-neuthrophil cytoplasmic autoantibodies. Am J Pathol. 2007;170(1):52–64.PubMedPubMedCentralCrossRef
137.
go back to reference Xiao H, Dairaghi DJ. Powers JP el al. C5a receptor (CD88) blockade protects against MPO-ANCA GN. J Am Soc Nephrol. 2014;25(2):225–31.PubMedCrossRef Xiao H, Dairaghi DJ. Powers JP el al. C5a receptor (CD88) blockade protects against MPO-ANCA GN. J Am Soc Nephrol. 2014;25(2):225–31.PubMedCrossRef
138.
go back to reference Chen M, Jayne DRW, Zhao MH. Complement in ANCA associated vasculitis: mechanisms and implications for menagment. Nat Rev Nephrol. 2017;13(6):359–67.PubMedCrossRef Chen M, Jayne DRW, Zhao MH. Complement in ANCA associated vasculitis: mechanisms and implications for menagment. Nat Rev Nephrol. 2017;13(6):359–67.PubMedCrossRef
140.
go back to reference Chen SF, Wang FM, Li ZY, Yu F, Zhao MH, Chen M. Plasma complement factor H is associated with disease activity of patients with ANCA-associated vasculitis. Arthritis Res Ther. 2015;17:129.PubMedPubMedCentralCrossRef Chen SF, Wang FM, Li ZY, Yu F, Zhao MH, Chen M. Plasma complement factor H is associated with disease activity of patients with ANCA-associated vasculitis. Arthritis Res Ther. 2015;17:129.PubMedPubMedCentralCrossRef
142.
go back to reference Doi T, Mayumi M, Kanatsu K, Suehiro F, Hamashima Y. Distribution of IgG subclasses in membranous nephropathy. Clin Exp Immunol. 1984;58(1):57–62.PubMedPubMedCentral Doi T, Mayumi M, Kanatsu K, Suehiro F, Hamashima Y. Distribution of IgG subclasses in membranous nephropathy. Clin Exp Immunol. 1984;58(1):57–62.PubMedPubMedCentral
143.
go back to reference Borza DB. Alternative pathway dysregulation and the conundrum of complement activation by IgG4 immune complexes in membranous nephropathy. Front Immunol. 2016;7:157.PubMedPubMedCentralCrossRef Borza DB. Alternative pathway dysregulation and the conundrum of complement activation by IgG4 immune complexes in membranous nephropathy. Front Immunol. 2016;7:157.PubMedPubMedCentralCrossRef
144.
go back to reference Segawa Y, Hisano S, Matsushita M, et al. IgG subclasses and complement pathway in segmental and global membranous nephropathy. Pediatr Nephrol. 2010;25(6):1091–9.PubMedCrossRef Segawa Y, Hisano S, Matsushita M, et al. IgG subclasses and complement pathway in segmental and global membranous nephropathy. Pediatr Nephrol. 2010;25(6):1091–9.PubMedCrossRef
145.
go back to reference Brenchley PE, Coupes B, Short CD, O’Donoghue DJ, Ballardie FW, Mallick NP. Urinary C3dg and C5b-9 indicate active immune disease in human membranous nephropathy. Kidney Int. 1992;41:933–7.PubMedCrossRef Brenchley PE, Coupes B, Short CD, O’Donoghue DJ, Ballardie FW, Mallick NP. Urinary C3dg and C5b-9 indicate active immune disease in human membranous nephropathy. Kidney Int. 1992;41:933–7.PubMedCrossRef
147.
go back to reference Niel O, Dallocchio A, Thouret MC, et al. C3 nephritic factor can be associated with membranous glomerulonephritis. Pediatr Nephrol. 2015;30(2):353–5.PubMedCrossRef Niel O, Dallocchio A, Thouret MC, et al. C3 nephritic factor can be associated with membranous glomerulonephritis. Pediatr Nephrol. 2015;30(2):353–5.PubMedCrossRef
148.
go back to reference Ricklin D, Mastellos DC, Reis ES, Lambris JD. The renaissance of complement therapeutics. Nat Rev Nephrol. 2018;14(1):26–47.PubMedCrossRef Ricklin D, Mastellos DC, Reis ES, Lambris JD. The renaissance of complement therapeutics. Nat Rev Nephrol. 2018;14(1):26–47.PubMedCrossRef
Metadata
Title
The role of the alternative pathway of complement activation in glomerular diseases
Authors
Emilia Łukawska
Magdalena Polcyn-Adamczak
Zofia I. Niemir
Publication date
01-08-2018
Publisher
Springer International Publishing
Published in
Clinical and Experimental Medicine / Issue 3/2018
Print ISSN: 1591-8890
Electronic ISSN: 1591-9528
DOI
https://doi.org/10.1007/s10238-018-0491-8

Other articles of this Issue 3/2018

Clinical and Experimental Medicine 3/2018 Go to the issue