Skip to main content
Top
Published in: Journal of Medical Case Reports 1/2015

Open Access 01-12-2015 | Case report

PRKAR1A-negative familial Cushing’s syndrome: two case reports

Authors: Lee Ling Lim, Normayah Kitan, Sharmila Sunita Paramasivam, Jeyakantha Ratnasingam, Luqman Ibrahim, Siew Pheng Chan, Alexander Tong Boon Tan, Shireene Ratna Vethakkan

Published in: Journal of Medical Case Reports | Issue 1/2015

Login to get access

Abstract

Introduction

Determining the etiology of Cushing’s syndrome is very challenging to endocrinologists, with most of the difficulty arising from subtype differentiation of adrenocorticotropic hormone–dependent Cushing’s syndrome. We present the pitfalls of evaluating a rare cause of adrenocorticotropic hormone–independent Cushing’s syndrome in the transition period between adolescence and adulthood.

Case presentation

A sibling pair with familial isolated primary pigmented nodular adrenocortical disease is described. The index case, a 20-year-old Chinese woman, presented with premenopausal osteoporosis with T12 compression fracture and young hypertension. Biochemical analysis confirmed adrenocorticotropic hormone–independent Cushing’s syndrome (elevated 0800 h plasma cortisol 808 nmol/L with suppressed adrenocorticotropic hormone level <5 pg/ml). Computed tomography of her adrenal glands revealed a 0.7-cm left adrenal hypodense nodule. After a left adrenalectomy, she had residual hypercortisolism (progressive weight gain, new T10 compression fracture, and not glucocorticoid-dependent postoperatively). Completion of contralateral adrenalectomy was performed upon recognition of typical histologic characteristics of primary pigmented nodular adrenocortical disease found in an initial left adrenalectomy specimen. Similarly, her younger brother developed adrenocorticotropic hormone–independent Cushing’s syndrome at age 18 years, with typical cushingoid habitus, but no osteoporosis or hypertension. His adrenal computed tomographic scans showed micronodularities over bilateral adrenal glands. He was successfully treated with bilateral adrenalectomy. Screening for Carney’s complex and PRKAR1A gene mutation was negative. Signs and symptoms of Cushing’s syndrome resolved after bilateral adrenalectomy for both patients. They were placed on lifelong glucocorticoid and mineralocorticoid replacement therapy and long-term surveillance for Carney’s complex.

Conclusions

The cases of these two patients illustrate the difficulties involved in diagnosing primary pigmented nodular adrenocortical disease, a variant of adrenocorticotropic hormone–independent Cushing’s syndrome that is managed with bilateral adrenalectomy. A high index of suspicion for this disease is needed, especially in adolescents with adrenocorticotropic hormone–independent Cushing’s syndrome who have a significant family history, features of Carney’s complex, and no resolution of Cushing’s syndrome after unilateral adrenalectomy. Patients with primary pigmented nodular adrenocortical disease can either have bilateral/multiple adrenal nodules or normal adrenal glands visualized by computed tomography. Long-term surveillance is imperative in patients with confirmed Carney’s complex and in those who have not undergone complete genetic testing to exclude this hereditary disorder.
Literature
1.
go back to reference Lindholm J, Juul S, Jørgensen JOL, Astrup J, Bjerre P, Feldt-Rasmussen U, et al. Incidence and late prognosis of Cushing’s syndrome: a population-based study. J Clin Endocrinol Metab. 2001;86:117–23.PubMed Lindholm J, Juul S, Jørgensen JOL, Astrup J, Bjerre P, Feldt-Rasmussen U, et al. Incidence and late prognosis of Cushing’s syndrome: a population-based study. J Clin Endocrinol Metab. 2001;86:117–23.PubMed
2.
go back to reference Hsiao HP, Kirschner LS, Bourdeau I, Keil MF, Boikos SA, Verma S, et al. Clinical and genetic heterogeneity, overlap with other tumor syndromes, and atypical glucocorticoid hormone secretion in adrenocorticotropin-independent macronodular adrenal hyperplasia compared with other adrenocortical tumors. J Clin Endocrinol Metab. 2009;94:2930–7.PubMedCentralCrossRefPubMed Hsiao HP, Kirschner LS, Bourdeau I, Keil MF, Boikos SA, Verma S, et al. Clinical and genetic heterogeneity, overlap with other tumor syndromes, and atypical glucocorticoid hormone secretion in adrenocorticotropin-independent macronodular adrenal hyperplasia compared with other adrenocortical tumors. J Clin Endocrinol Metab. 2009;94:2930–7.PubMedCentralCrossRefPubMed
4.
go back to reference Nieman LK, Biller BM, Findling JW, Murad MH, Newell-Price J, Savage MO, et al. Treatment of Cushing’s syndrome: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2015;100:2807–31.CrossRefPubMed Nieman LK, Biller BM, Findling JW, Murad MH, Newell-Price J, Savage MO, et al. Treatment of Cushing’s syndrome: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2015;100:2807–31.CrossRefPubMed
5.
go back to reference Batista DL, Riar J, Keil M, Stratakis CA. Diagnostic tests for children who are referred for the investigation of Cushing syndrome. Pediatrics. 2007;120(3):e575–86.CrossRefPubMed Batista DL, Riar J, Keil M, Stratakis CA. Diagnostic tests for children who are referred for the investigation of Cushing syndrome. Pediatrics. 2007;120(3):e575–86.CrossRefPubMed
6.
go back to reference Sarlis NJ, Chrousos GP, Doppman JL, Carney JA, Stratakis CA. Primary pigmented nodular adrenocortical disease: re-evaluation of a patient with Carney complex 27 years after unilateral adrenalectomy. J Clin Endocrinol Metab. 1996;82:1274–8.CrossRef Sarlis NJ, Chrousos GP, Doppman JL, Carney JA, Stratakis CA. Primary pigmented nodular adrenocortical disease: re-evaluation of a patient with Carney complex 27 years after unilateral adrenalectomy. J Clin Endocrinol Metab. 1996;82:1274–8.CrossRef
7.
go back to reference Carney JA, Young Jr WF. Primary pigmented nodular adrenocortical disease and its associated conditions. Endocrinologist. 1992;2:6–21.CrossRef Carney JA, Young Jr WF. Primary pigmented nodular adrenocortical disease and its associated conditions. Endocrinologist. 1992;2:6–21.CrossRef
8.
go back to reference Chen JW, Wu SY, Pan WH. Clinical characteristics of young-onset hypertension—implications for different genders. Int J Cardiol. 2004;96(1):65–71.CrossRefPubMed Chen JW, Wu SY, Pan WH. Clinical characteristics of young-onset hypertension—implications for different genders. Int J Cardiol. 2004;96(1):65–71.CrossRefPubMed
10.
go back to reference Bourdeau I, Lacroix A, Schürch W, Caron P, Antakly T, Stratakis CA. Primary pigmented nodular adrenocortical disease: paradoxical responses of cortisol secretion to dexamethasone occur in vitro and are associated with increased expression of the glucocorticoid receptor. J Clin Endocrinol Metab. 2003;88:3931–7.CrossRefPubMed Bourdeau I, Lacroix A, Schürch W, Caron P, Antakly T, Stratakis CA. Primary pigmented nodular adrenocortical disease: paradoxical responses of cortisol secretion to dexamethasone occur in vitro and are associated with increased expression of the glucocorticoid receptor. J Clin Endocrinol Metab. 2003;88:3931–7.CrossRefPubMed
11.
go back to reference Martins RG, Agrawal R, Berney DM, Reznek R, Matson M, Grossman AB, et al. Differential diagnosis of adrenocorticotrophic hormone-independent Cushing syndrome: role of adrenal venous sampling. Endocr Pract. 2012;18:e153–7.CrossRefPubMed Martins RG, Agrawal R, Berney DM, Reznek R, Matson M, Grossman AB, et al. Differential diagnosis of adrenocorticotrophic hormone-independent Cushing syndrome: role of adrenal venous sampling. Endocr Pract. 2012;18:e153–7.CrossRefPubMed
12.
go back to reference Doppman JL, Travis WD, Nieman L, Miller DL, Chrousos GP, Gomez MT, et al. Cushing syndrome due to primary pigmented nodular adrenocortical disease: findings at CT and MR imaging. Radiology. 1989;172:415–20.CrossRefPubMed Doppman JL, Travis WD, Nieman L, Miller DL, Chrousos GP, Gomez MT, et al. Cushing syndrome due to primary pigmented nodular adrenocortical disease: findings at CT and MR imaging. Radiology. 1989;172:415–20.CrossRefPubMed
13.
go back to reference Rockall AG, Babar SA, Sohaib SA, Isidori AM, Diaz-Cano S, Monson JP, et al. CT and MR imaging of the adrenal glands in ACTH-independent Cushing syndrome. Radiographics. 2004;24(2):435–52.CrossRefPubMed Rockall AG, Babar SA, Sohaib SA, Isidori AM, Diaz-Cano S, Monson JP, et al. CT and MR imaging of the adrenal glands in ACTH-independent Cushing syndrome. Radiographics. 2004;24(2):435–52.CrossRefPubMed
14.
go back to reference Young Jr WF, du Plessis H, Thompson GB, Grant CS, Farley DR, Richards ML, et al. The clinical conundrum of corticotropin-independent autonomous cortisol secretion in patients with bilateral adrenal masses. World J Surg. 2008;32:856–62.CrossRefPubMed Young Jr WF, du Plessis H, Thompson GB, Grant CS, Farley DR, Richards ML, et al. The clinical conundrum of corticotropin-independent autonomous cortisol secretion in patients with bilateral adrenal masses. World J Surg. 2008;32:856–62.CrossRefPubMed
15.
go back to reference Carney JA, Gordon H, Carpenter PC, Shenoy BV, Go VL. The complex of myxomas, spotty pigmentation, and endocrine overactivity. Medicine. 1985;64:270–83.CrossRefPubMed Carney JA, Gordon H, Carpenter PC, Shenoy BV, Go VL. The complex of myxomas, spotty pigmentation, and endocrine overactivity. Medicine. 1985;64:270–83.CrossRefPubMed
16.
go back to reference Bertherat J, Horvath A, Groussin L, Grabar S, Boikos S, Cazabat L, et al. Mutations in regulatory subunit type 1A of cyclic adenosine 5′-monophosphatedependent protein kinase (PRKAR1A): phenotype analysis in 353 patients and 80 different genotypes. J Clin Endocrinol Metab. 2009;94:2085–91.PubMedCentralCrossRefPubMed Bertherat J, Horvath A, Groussin L, Grabar S, Boikos S, Cazabat L, et al. Mutations in regulatory subunit type 1A of cyclic adenosine 5′-monophosphatedependent protein kinase (PRKAR1A): phenotype analysis in 353 patients and 80 different genotypes. J Clin Endocrinol Metab. 2009;94:2085–91.PubMedCentralCrossRefPubMed
17.
go back to reference Stratakis CA, Kirschner LS, Carney JA. Clinical and molecular features of the Carney complex: diagnostic criteria and recommendations for patient evaluation. J Clin Endocrinol Metab. 2001;86:4041–6.CrossRefPubMed Stratakis CA, Kirschner LS, Carney JA. Clinical and molecular features of the Carney complex: diagnostic criteria and recommendations for patient evaluation. J Clin Endocrinol Metab. 2001;86:4041–6.CrossRefPubMed
18.
go back to reference Salpea P, Horvath A, London E, Faucz FR, Vetro A, Levy I, et al. Deletions of the PRKAR1A locus at 17q24.2-q24.3 in Carney complex: genotype-phenotype correlations and implications for genetic testing. J Clin Endocrinol Metab. 2014;99:E183–8.PubMedCentralCrossRefPubMed Salpea P, Horvath A, London E, Faucz FR, Vetro A, Levy I, et al. Deletions of the PRKAR1A locus at 17q24.2-q24.3 in Carney complex: genotype-phenotype correlations and implications for genetic testing. J Clin Endocrinol Metab. 2014;99:E183–8.PubMedCentralCrossRefPubMed
19.
go back to reference Young Jr WF, Thompson GB. Role for laparoscopic adrenalectomy in patients with Cushing’s syndrome. Arq Bras Endocrinol Metabol. 2007;51(8):1349–54.CrossRefPubMed Young Jr WF, Thompson GB. Role for laparoscopic adrenalectomy in patients with Cushing’s syndrome. Arq Bras Endocrinol Metabol. 2007;51(8):1349–54.CrossRefPubMed
20.
go back to reference Jo VY, Stelow EB, Dustin SM, Hanley KZ. Malignancy risk for fine-needle aspiration of thyroid lesions according to the Bethesda System for Reporting Thyroid Cytopathology. Am J Clin Pathol. 2010;134:450–6.CrossRefPubMed Jo VY, Stelow EB, Dustin SM, Hanley KZ. Malignancy risk for fine-needle aspiration of thyroid lesions according to the Bethesda System for Reporting Thyroid Cytopathology. Am J Clin Pathol. 2010;134:450–6.CrossRefPubMed
21.
go back to reference Stratakis CA, Courcoutsakis NA, Abati A, Filie A, Doppman JL, Carney JA, et al. Thyroid gland abnormalities in patients with the syndrome of spotty skin pigmentation, myxomas, endocrine overactivity, and schwannomas (Carney complex). J Clin Endocrinol Metab. 1997;82:2037–43.CrossRefPubMed Stratakis CA, Courcoutsakis NA, Abati A, Filie A, Doppman JL, Carney JA, et al. Thyroid gland abnormalities in patients with the syndrome of spotty skin pigmentation, myxomas, endocrine overactivity, and schwannomas (Carney complex). J Clin Endocrinol Metab. 1997;82:2037–43.CrossRefPubMed
Metadata
Title
PRKAR1A-negative familial Cushing’s syndrome: two case reports
Authors
Lee Ling Lim
Normayah Kitan
Sharmila Sunita Paramasivam
Jeyakantha Ratnasingam
Luqman Ibrahim
Siew Pheng Chan
Alexander Tong Boon Tan
Shireene Ratna Vethakkan
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Medical Case Reports / Issue 1/2015
Electronic ISSN: 1752-1947
DOI
https://doi.org/10.1186/s13256-015-0757-7

Other articles of this Issue 1/2015

Journal of Medical Case Reports 1/2015 Go to the issue