Skip to main content
Top
Published in: Molecular Autism 1/2022

Open Access 01-12-2022 | Autism Spectrum Disorder | Letter to the Editor

Clinical trial of insulin-like growth factor-1 in Phelan-McDermid syndrome

Authors: A. Kolevzon, M. S. Breen, P. M. Siper, D. Halpern, Y. Frank, H. Rieger, J. Weismann, M. P. Trelles, B. Lerman, R. Rapaport, J. D. Buxbaum

Published in: Molecular Autism | Issue 1/2022

Login to get access

Abstract

Background

Phelan-McDermid syndrome (PMS) is caused by haploinsufficiency of the SHANK3 gene and is characterized by global developmental delays and autism spectrum disorder (ASD). Based on several converging lines of preclinical and clinical evidence supporting the use of insulin-like growth factor-1 (IGF-1) in PMS, this study aims to follow-up a previous pilot study with IGF-1 to further evaluate this novel therapeutic for core symptoms of ASD in children with PMS.

Methods

Ten children aged 5–9 with PMS were enrolled. Participants were randomized to receive IGF-1 or placebo (saline) using a 12-week, double-blind, crossover design. Efficacy was assessed using the primary outcome of the Aberrant Behavior Checklist—Social Withdrawal (ABC-SW) subscale as well as secondary outcome measures reflecting core symptoms of ASD. To increase power and sample size, we jointly analyzed the effect of IGF-1 reported here together with results from our previous controlled trail of IGF-1 in children with PMS (combined N = 19).

Results

Results on the ABC-SW did not reach statistical significance, however significant improvements in sensory reactivity symptoms were observed. In our pooled analyses, IGF-1 treatment also led to significant improvements in repetitive behaviors and hyperactivity. There were no other statistically significant effects seen across other clinical outcome measures. IGF-1 was well tolerated and there were no serious adverse events.

Limitations

The small sample size and expectancy bias due to relying on parent reported outcome measures may contribute to limitations in interpreting results.

Conclusion

IGF-1 is efficacious in improving sensory reactivity symptoms, repetitive behaviors, and hyperactivity  in children with PMS.
Trial registration NCT01525901.
Appendix
Available only for authorised users
Literature
1.
go back to reference Boeckers TM. The postsynaptic density. Cell Tissue Res. 2006;326(2):409–22.CrossRef Boeckers TM. The postsynaptic density. Cell Tissue Res. 2006;326(2):409–22.CrossRef
2.
go back to reference Bonaglia MC, Giorda R, Beri S, De Agostini C, Novara F, Fichera M, et al. Molecular mechanisms generating and stabilizing terminal 22q13 deletions in 44 subjects with Phelan/McDermid syndrome. PLoS Genet. 2011;7(7):e1002173.CrossRef Bonaglia MC, Giorda R, Beri S, De Agostini C, Novara F, Fichera M, et al. Molecular mechanisms generating and stabilizing terminal 22q13 deletions in 44 subjects with Phelan/McDermid syndrome. PLoS Genet. 2011;7(7):e1002173.CrossRef
3.
go back to reference Bonaglia MC, Giorda R, Mani E, Aceti G, Anderlid BM, Baroncini A, et al. Identification of a recurrent breakpoint within the SHANK3 gene in the 22q13.3 deletion syndrome. J Med Genet. 2006;43(10):822–8.CrossRef Bonaglia MC, Giorda R, Mani E, Aceti G, Anderlid BM, Baroncini A, et al. Identification of a recurrent breakpoint within the SHANK3 gene in the 22q13.3 deletion syndrome. J Med Genet. 2006;43(10):822–8.CrossRef
5.
go back to reference Nishijima T, Piriz J, Duflot S, Fernandez AM, Gaitan G, Gomez-Pinedo U, Verdugo JM, Leroy F, Soya H, Nuñez A, Torres-Aleman I. Neuronal activity drives localized blood-brain-barrier transport of serum insulin-like growth factor-I into the CNS. Neuron. 2010;67(5):834–46.CrossRef Nishijima T, Piriz J, Duflot S, Fernandez AM, Gaitan G, Gomez-Pinedo U, Verdugo JM, Leroy F, Soya H, Nuñez A, Torres-Aleman I. Neuronal activity drives localized blood-brain-barrier transport of serum insulin-like growth factor-I into the CNS. Neuron. 2010;67(5):834–46.CrossRef
6.
go back to reference O’Kusky JR, Ye P, D’Ercole AJ. Insulin-like growth factor-I promotes neurogenesis and synaptogenesis in the hippocampal dentate gyrus during postnatal development. J Neurosci. 2000;20(22):8435–42.CrossRef O’Kusky JR, Ye P, D’Ercole AJ. Insulin-like growth factor-I promotes neurogenesis and synaptogenesis in the hippocampal dentate gyrus during postnatal development. J Neurosci. 2000;20(22):8435–42.CrossRef
7.
go back to reference Bozdagi O, Tavassoli T, Buxbaum JD. Insulin-like growth factor-1 rescues synaptic and motor deficits in a mouse model of autism and developmental delay. Mol Autism. 2013;4(1):9.CrossRef Bozdagi O, Tavassoli T, Buxbaum JD. Insulin-like growth factor-1 rescues synaptic and motor deficits in a mouse model of autism and developmental delay. Mol Autism. 2013;4(1):9.CrossRef
10.
go back to reference Khwaja OS, Ho E, Barnes KV, O’Leary HM, Pereira LM, Finkelstein Y, Nelson CA III, Vogel-Farley V, DeGregorio G, Holm IA, Khatwa U, Kapur K, Alexander ME, Finnegan DM, Cantwell NG, Walco AC, Rappaport L, Gregas M, Fichorova RN, Shannon MW, Sur M, Kaufmann WE. Safety, pharmacokinetics, and preliminary assessment of efficacy of mecasermin (recombinant human IGF-1) for the treatment of Rett syndrome. Proc Natl Acad Sci USA. 2014;111(12):4596–601.CrossRef Khwaja OS, Ho E, Barnes KV, O’Leary HM, Pereira LM, Finkelstein Y, Nelson CA III, Vogel-Farley V, DeGregorio G, Holm IA, Khatwa U, Kapur K, Alexander ME, Finnegan DM, Cantwell NG, Walco AC, Rappaport L, Gregas M, Fichorova RN, Shannon MW, Sur M, Kaufmann WE. Safety, pharmacokinetics, and preliminary assessment of efficacy of mecasermin (recombinant human IGF-1) for the treatment of Rett syndrome. Proc Natl Acad Sci USA. 2014;111(12):4596–601.CrossRef
11.
go back to reference Pini G, Congiu L, Benincasa A, DiMarco P, Bigoni S, Dyer AH, Mortimer N, Della-Chiesa A, O’Leary S, McNamara R, Mitchell KJ, Gill M, Tropea D. Illness severity, social and cognitive ability, and EEG Analysis of ten patients with Rett syndrome treated with Mecasermin (recombinant human IGF-1). Autism Res Treat. 2016;2016:5073078 (Epub 2016 Jan 26).PubMedPubMedCentral Pini G, Congiu L, Benincasa A, DiMarco P, Bigoni S, Dyer AH, Mortimer N, Della-Chiesa A, O’Leary S, McNamara R, Mitchell KJ, Gill M, Tropea D. Illness severity, social and cognitive ability, and EEG Analysis of ten patients with Rett syndrome treated with Mecasermin (recombinant human IGF-1). Autism Res Treat. 2016;2016:5073078 (Epub 2016 Jan 26).PubMedPubMedCentral
12.
go back to reference Berry-Kravis E, Horrigan JP, Tartaglia N, Hagerman R, Kolevzon A, Erickson CA, Hatti S, Snape M, Yaroshinsky A, Stoms G; FXS-001 Investigators, Glass L, Jones NE. A double-blind, randomized, placebo-controlled clinical study of trofinetide in the treatment of fragile X syndrome. Pediatr Neurol. 2020;110:30–41. Berry-Kravis E, Horrigan JP, Tartaglia N, Hagerman R, Kolevzon A, Erickson CA, Hatti S, Snape M, Yaroshinsky A, Stoms G; FXS-001 Investigators, Glass L, Jones NE. A double-blind, randomized, placebo-controlled clinical study of trofinetide in the treatment of fragile X syndrome. Pediatr Neurol. 2020;110:30–41.
13.
go back to reference Lord C, Rutter M, DiLavore PC, Risi S, Gotham K, Bishop D. The autism diagnostic observation schedule, second edition (ADOS-2) manual (part 1): modules 1–4. Western Psychological Services; 2012. Lord C, Rutter M, DiLavore PC, Risi S, Gotham K, Bishop D. The autism diagnostic observation schedule, second edition (ADOS-2) manual (part 1): modules 1–4. Western Psychological Services; 2012.
14.
go back to reference Lord C, Rutter M, Le Couteur A. Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord. 1994;24:659–85.CrossRef Lord C, Rutter M, Le Couteur A. Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord. 1994;24:659–85.CrossRef
15.
go back to reference American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-5®). American Psychiatric Publishing; 2013.CrossRef American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-5®). American Psychiatric Publishing; 2013.CrossRef
16.
go back to reference Aman MG, Singh NN, Stewart AW, Field CJ. The aberrant behavior checklist: a behavior rating scale for the assessment of treatment effects. Am J Ment Defic. 1985;89(5):485–91.PubMed Aman MG, Singh NN, Stewart AW, Field CJ. The aberrant behavior checklist: a behavior rating scale for the assessment of treatment effects. Am J Ment Defic. 1985;89(5):485–91.PubMed
19.
go back to reference Guy W. Clinical global impressions ECDEU assessment manual for psychopharmacology. Rockville, MD: National Institute for Mental Health; 1976. Guy W. Clinical global impressions ECDEU assessment manual for psychopharmacology. Rockville, MD: National Institute for Mental Health; 1976.
20.
go back to reference Wellek S, Blettner M. On the proper use of the crossover design in clinical trials: part 18 of a series on evaluation of scientific publications. Deutsch Ärztebl Int. 2012;109(15):276. Wellek S, Blettner M. On the proper use of the crossover design in clinical trials: part 18 of a series on evaluation of scientific publications. Deutsch Ärztebl Int. 2012;109(15):276.
Metadata
Title
Clinical trial of insulin-like growth factor-1 in Phelan-McDermid syndrome
Authors
A. Kolevzon
M. S. Breen
P. M. Siper
D. Halpern
Y. Frank
H. Rieger
J. Weismann
M. P. Trelles
B. Lerman
R. Rapaport
J. D. Buxbaum
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Molecular Autism / Issue 1/2022
Electronic ISSN: 2040-2392
DOI
https://doi.org/10.1186/s13229-022-00493-7

Other articles of this Issue 1/2022

Molecular Autism 1/2022 Go to the issue