Skip to main content
Top
Published in: Molecular Autism 1/2018

Open Access 01-12-2018 | Research

Abnormal coherence and sleep composition in children with Angelman syndrome: a retrospective EEG study

Authors: Hanna den Bakker, Michael S. Sidorov, Zheng Fan, David J. Lee, Lynne M. Bird, Catherine J. Chu, Benjamin D. Philpot

Published in: Molecular Autism | Issue 1/2018

Login to get access

Abstract

Background

Angelman syndrome (AS) is a neurodevelopmental disorder characterized by intellectual disability, speech and motor impairments, epilepsy, abnormal sleep, and phenotypic overlap with autism. Individuals with AS display characteristic EEG patterns including high-amplitude rhythmic delta waves. Here, we sought to quantitatively explore EEG architecture in AS beyond known spectral power phenotypes. We were motivated by studies of functional connectivity and sleep spindles in autism to study these EEG readouts in children with AS.

Methods

We analyzed retrospective wake and sleep EEGs from children with AS (age 4–11) and age-matched neurotypical controls. We assessed long-range and short-range functional connectivity by measuring coherence across multiple frequencies during wake and sleep. We quantified sleep spindles using automated and manual approaches.

Results

During wakefulness, children with AS showed enhanced long-range EEG coherence across a wide range of frequencies. During sleep, children with AS showed increased long-range EEG coherence specifically in the gamma band. EEGs from children with AS contained fewer sleep spindles, and these spindles were shorter in duration than their neurotypical counterparts.

Conclusions

We demonstrate two quantitative readouts of dysregulated sleep composition in children with AS—gamma coherence and spindles—and describe how functional connectivity patterns may be disrupted during wakefulness. Quantitative EEG phenotypes have potential as biomarkers and readouts of target engagement for future clinical trials and provide clues into how neural circuits are dysregulated in children with AS.
Appendix
Available only for authorised users
Literature
1.
go back to reference Thibert RL, Larson AM, Hsieh DT, Raby AR, Thiele EA. Neurologic manifestations of Angelman syndrome. Pediatr Neurol. 2013;48:271–9.CrossRefPubMed Thibert RL, Larson AM, Hsieh DT, Raby AR, Thiele EA. Neurologic manifestations of Angelman syndrome. Pediatr Neurol. 2013;48:271–9.CrossRefPubMed
3.
go back to reference Williams CA, Driscoll DJ, Dagli AI. Clinical and genetic aspects of Angelman syndrome. Genet Med. 2010;12:385–95.CrossRefPubMed Williams CA, Driscoll DJ, Dagli AI. Clinical and genetic aspects of Angelman syndrome. Genet Med. 2010;12:385–95.CrossRefPubMed
4.
go back to reference Korff CM, Kelley KR, Nordli DR. Notched delta, phenotype, and Angelman syndrome. J Clin Neurophysiol. 2005;22:238–43.CrossRefPubMed Korff CM, Kelley KR, Nordli DR. Notched delta, phenotype, and Angelman syndrome. J Clin Neurophysiol. 2005;22:238–43.CrossRefPubMed
5.
go back to reference Vendrame M, Loddenkemper T, Zarowski M, Gregas M, Shuhaiber H, Sarco DP, Morales A, Nespeca M, Sharpe C, Haas K, Barnes G, Glaze D, Kothare SV. Analysis of EEG patterns and genotypes in patients with Angelman syndrome. Epilepsy Behav. 2012;23:261–5.CrossRefPubMed Vendrame M, Loddenkemper T, Zarowski M, Gregas M, Shuhaiber H, Sarco DP, Morales A, Nespeca M, Sharpe C, Haas K, Barnes G, Glaze D, Kothare SV. Analysis of EEG patterns and genotypes in patients with Angelman syndrome. Epilepsy Behav. 2012;23:261–5.CrossRefPubMed
6.
go back to reference Sidorov MS, Deck GM, Dolatshahi M, Thibert RL, Bird LM, Chu CJ, Philpot BD. Delta rhythmicity is a reliable EEG biomarker in Angelman syndrome: a parallel mouse and human analysis. J Neurodev Disord. 2017;9:17.CrossRefPubMedPubMedCentral Sidorov MS, Deck GM, Dolatshahi M, Thibert RL, Bird LM, Chu CJ, Philpot BD. Delta rhythmicity is a reliable EEG biomarker in Angelman syndrome: a parallel mouse and human analysis. J Neurodev Disord. 2017;9:17.CrossRefPubMedPubMedCentral
7.
go back to reference Uemura M, Matsumoto A, Nakamura M, Watanabe K, Negoro T, Kumagai T, Miura K, Ohki T, Mizuno S, Okumura A, Aso K, Hayakawa F, Kondo Y. Evolution of seizures and electroencephalographical findings in 23 cases of deletion type Angelman syndrome. Brain Dev. 2005;27:383–8.CrossRefPubMed Uemura M, Matsumoto A, Nakamura M, Watanabe K, Negoro T, Kumagai T, Miura K, Ohki T, Mizuno S, Okumura A, Aso K, Hayakawa F, Kondo Y. Evolution of seizures and electroencephalographical findings in 23 cases of deletion type Angelman syndrome. Brain Dev. 2005;27:383–8.CrossRefPubMed
8.
go back to reference Srinivasan R, Winter WR, Ding J, Nunez PL. EEG and MEG coherence: measures of functional connectivity at distinct spatial scales of neocortical dynamics. J Neurosci Methods. 2007;166:41–52.CrossRefPubMedPubMedCentral Srinivasan R, Winter WR, Ding J, Nunez PL. EEG and MEG coherence: measures of functional connectivity at distinct spatial scales of neocortical dynamics. J Neurosci Methods. 2007;166:41–52.CrossRefPubMedPubMedCentral
9.
go back to reference Murias M, Webb SJ, Greenson J, Dawson G. Resting state cortical connectivity reflected in EEG coherence in individuals with autism. Biol Psychiatry. 2007;62:270–3.CrossRefPubMedPubMedCentral Murias M, Webb SJ, Greenson J, Dawson G. Resting state cortical connectivity reflected in EEG coherence in individuals with autism. Biol Psychiatry. 2007;62:270–3.CrossRefPubMedPubMedCentral
10.
go back to reference Shou G, Mosconi MW, Wang J, Ethridge LE, Sweeney JA, Ding L. Electrophysiological signatures of atypical intrinsic brain connectivity networks in autism. J Neural Eng. 2017;14:046010.CrossRefPubMed Shou G, Mosconi MW, Wang J, Ethridge LE, Sweeney JA, Ding L. Electrophysiological signatures of atypical intrinsic brain connectivity networks in autism. J Neural Eng. 2017;14:046010.CrossRefPubMed
11.
go back to reference Pineda JA, Juavinett A, Datko M. Self-regulation of brain oscillations as a treatment for aberrant brain connections in children with autism. Med Hypotheses. 2012;79:790–8.CrossRefPubMed Pineda JA, Juavinett A, Datko M. Self-regulation of brain oscillations as a treatment for aberrant brain connections in children with autism. Med Hypotheses. 2012;79:790–8.CrossRefPubMed
12.
go back to reference Barttfeld P, Wicker B, Cukier S, Navarta S, Lew S, Sigman M. A big-world network in ASD: dynamical connectivity analysis reflects a deficit in long-range connections and an excess of short-range connections. Neuropsychologia. 2011;49:254–63.CrossRefPubMed Barttfeld P, Wicker B, Cukier S, Navarta S, Lew S, Sigman M. A big-world network in ASD: dynamical connectivity analysis reflects a deficit in long-range connections and an excess of short-range connections. Neuropsychologia. 2011;49:254–63.CrossRefPubMed
13.
go back to reference Moseley RL, Ypma RJ, Holt RJ, Floris D, Chura LR, Spencer MD, Baron-Cohen S, Suckling J, Bullmore E, Rubinov M. Whole-brain functional hypoconnectivity as an endophenotype of autism in adolescents. Neuroimage Clin. 2015;9:140–52.CrossRefPubMedPubMedCentral Moseley RL, Ypma RJ, Holt RJ, Floris D, Chura LR, Spencer MD, Baron-Cohen S, Suckling J, Bullmore E, Rubinov M. Whole-brain functional hypoconnectivity as an endophenotype of autism in adolescents. Neuroimage Clin. 2015;9:140–52.CrossRefPubMedPubMedCentral
14.
go back to reference Coben R, Clarke AR, Hudspeth W, Barry RJ. EEG power and coherence in autistic spectrum disorder. Clin Neurophysiol. 2008;119:1002–9.CrossRefPubMed Coben R, Clarke AR, Hudspeth W, Barry RJ. EEG power and coherence in autistic spectrum disorder. Clin Neurophysiol. 2008;119:1002–9.CrossRefPubMed
16.
go back to reference Han YMYC, S A. Disordered cortical connectivity underlies the executive function deficits in children with autism spectrum disorders. Res Dev Disabil. 2017;61:19–31.CrossRefPubMed Han YMYC, S A. Disordered cortical connectivity underlies the executive function deficits in children with autism spectrum disorders. Res Dev Disabil. 2017;61:19–31.CrossRefPubMed
17.
go back to reference Schwartz S, Kessler R, Gaughan T, Buckley AW. Electroencephalogram coherence patterns in autism: an updated review. Pediatr Neurol. 2017;67:7–22.CrossRefPubMed Schwartz S, Kessler R, Gaughan T, Buckley AW. Electroencephalogram coherence patterns in autism: an updated review. Pediatr Neurol. 2017;67:7–22.CrossRefPubMed
18.
go back to reference Bie Mertz LG, Thaulov P, Trillingsgaard A, Christensen R, Vogel I, Hertz JM, Østergaard JR. Neurodevelopmental outcome in Angelman syndrome: genotype–phenotype correlations. Res Dev Disabil. 2014;35:1742–7.CrossRef Bie Mertz LG, Thaulov P, Trillingsgaard A, Christensen R, Vogel I, Hertz JM, Østergaard JR. Neurodevelopmental outcome in Angelman syndrome: genotype–phenotype correlations. Res Dev Disabil. 2014;35:1742–7.CrossRef
19.
go back to reference Bonati MT, Russo S, Finelli P, Valsecchi MR, Cogliati F, Cavalleri L, Roberts W, Elia M, Larizza L. Evaluation of autism traits in Angelman syndrome: a resource to unfold autism genes. Neurogenetics. 2007;8:169–78.CrossRefPubMed Bonati MT, Russo S, Finelli P, Valsecchi MR, Cogliati F, Cavalleri L, Roberts W, Elia M, Larizza L. Evaluation of autism traits in Angelman syndrome: a resource to unfold autism genes. Neurogenetics. 2007;8:169–78.CrossRefPubMed
20.
go back to reference Peters SU, Horowitz L, Barberi-Welge R, Taylor JL, Hundley RJ. Longitudinal follow-up of autism spectrum features and sensory behaviors in Angelman syndrome by deletion class. J Child Psychol Psychiatry. 2012;53:152–9.CrossRefPubMed Peters SU, Horowitz L, Barberi-Welge R, Taylor JL, Hundley RJ. Longitudinal follow-up of autism spectrum features and sensory behaviors in Angelman syndrome by deletion class. J Child Psychol Psychiatry. 2012;53:152–9.CrossRefPubMed
21.
go back to reference Sahoo T, Bacino CA, German JR, Shaw CA, Bird LM, Kimonis V, Anselm I, Waisbren S, Beaudet AL, Peters SU. Identification of novel deletions of 15q11q13 in Angelman syndrome by array-CGH: molecular characterization and genotype–phenotype correlations. Eur J Hum Genet. 2007;15:943–9.CrossRefPubMed Sahoo T, Bacino CA, German JR, Shaw CA, Bird LM, Kimonis V, Anselm I, Waisbren S, Beaudet AL, Peters SU. Identification of novel deletions of 15q11q13 in Angelman syndrome by array-CGH: molecular characterization and genotype–phenotype correlations. Eur J Hum Genet. 2007;15:943–9.CrossRefPubMed
22.
go back to reference Trillingsgaard A, Østergaard JR. Autism in Angelman syndrome: an exploration of comorbidity. Autism. 2004;8:163–74.CrossRefPubMed Trillingsgaard A, Østergaard JR. Autism in Angelman syndrome: an exploration of comorbidity. Autism. 2004;8:163–74.CrossRefPubMed
23.
go back to reference Moreno-De-Luca D, Sanders SJ, Willsey AJ, Mulle JG, Lowe JK, Geschwind DH, State MW, Martin CL, Ledbetter DH. Using large clinical data sets to infer pathogenicity for rare copy number variants in autism cohorts. Mol Psychiatry. 2013;18:1090–5.CrossRefPubMed Moreno-De-Luca D, Sanders SJ, Willsey AJ, Mulle JG, Lowe JK, Geschwind DH, State MW, Martin CL, Ledbetter DH. Using large clinical data sets to infer pathogenicity for rare copy number variants in autism cohorts. Mol Psychiatry. 2013;18:1090–5.CrossRefPubMed
24.
go back to reference Glessner JT, Wang K, Cai G, Korvatska O, Kim CE, Wood S, Hakonarson H. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature. 2009;459:569–73.CrossRefPubMedPubMedCentral Glessner JT, Wang K, Cai G, Korvatska O, Kim CE, Wood S, Hakonarson H. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature. 2009;459:569–73.CrossRefPubMedPubMedCentral
25.
go back to reference Matlis S, Boric K, Chu CJ, Kramer MA. Robust disruptions in electroencephalogram cortical oscillations and large-scale functional networks in autism. BMC Neurol. 2015;15:97.CrossRefPubMedPubMedCentral Matlis S, Boric K, Chu CJ, Kramer MA. Robust disruptions in electroencephalogram cortical oscillations and large-scale functional networks in autism. BMC Neurol. 2015;15:97.CrossRefPubMedPubMedCentral
26.
go back to reference Walz NC, Beebe D, Byars K. Sleep in individuals with Angelman syndrome: parent perceptions of patterns and problems. Am J Ment Retard. 2005;110:243–52.CrossRefPubMed Walz NC, Beebe D, Byars K. Sleep in individuals with Angelman syndrome: parent perceptions of patterns and problems. Am J Ment Retard. 2005;110:243–52.CrossRefPubMed
27.
go back to reference Pelc K, Cheron G, Boyd SG, Dan B. Are there distinctive sleep problems in Angelman syndrome? Sleep Med. 2008;9:434–41. Pelc K, Cheron G, Boyd SG, Dan B. Are there distinctive sleep problems in Angelman syndrome? Sleep Med. 2008;9:434–41.
28.
go back to reference Spruyt K, Braam W, Curfs LM. Sleep in Angelman syndrome: a review of evidence. Sleep Med Rev. 2018;37:69-84. Spruyt K, Braam W, Curfs LM. Sleep in Angelman syndrome: a review of evidence. Sleep Med Rev. 2018;37:69-84.
29.
go back to reference Trickett J, Heald M, Oliver C. Sleep in children with Angelman syndrome: parental concerns and priorities. Res Dev Disabil. 2017;69:105–15.CrossRefPubMed Trickett J, Heald M, Oliver C. Sleep in children with Angelman syndrome: parental concerns and priorities. Res Dev Disabil. 2017;69:105–15.CrossRefPubMed
30.
go back to reference Larson AM, Shinnick JE, Shaaya EA, Thiele EA, Thibert RL. Angelman syndrome in adulthood. Am J Med Genet. 2015;167A:331–44.CrossRefPubMed Larson AM, Shinnick JE, Shaaya EA, Thiele EA, Thibert RL. Angelman syndrome in adulthood. Am J Med Genet. 2015;167A:331–44.CrossRefPubMed
31.
go back to reference Goldman SE, Bichell TJ, Surdyka K, Malow BA. Sleep in children and adolescents with Angelman syndrome: association with parent sleep and stress. J Intellect Disabil Res. 2012;56:600–8. Goldman SE, Bichell TJ, Surdyka K, Malow BA. Sleep in children and adolescents with Angelman syndrome: association with parent sleep and stress. J Intellect Disabil Res. 2012;56:600–8.
32.
go back to reference Didden R, Korzilius H, Smits MG, Curfs LMG. Sleep problems in individuals with Angelman syndrome. Am J Ment Retard. 2004;109:275–84.CrossRefPubMed Didden R, Korzilius H, Smits MG, Curfs LMG. Sleep problems in individuals with Angelman syndrome. Am J Ment Retard. 2004;109:275–84.CrossRefPubMed
33.
go back to reference Bruni O, Ferri R, D’Agostino G, Miano S, Roccella M, Elia M. Sleep disturbances in Angelman syndrome: a questionnaire study. Brain Dev. 2004;26:233–40.CrossRefPubMed Bruni O, Ferri R, D’Agostino G, Miano S, Roccella M, Elia M. Sleep disturbances in Angelman syndrome: a questionnaire study. Brain Dev. 2004;26:233–40.CrossRefPubMed
34.
go back to reference Miano S, Bruni O, Leuzzi V, Elia M, Verrillo E, Ferri R. Sleep polygraphy in Angelman syndrome. Clin Neurophysiol. 2004;115:938–45.CrossRefPubMed Miano S, Bruni O, Leuzzi V, Elia M, Verrillo E, Ferri R. Sleep polygraphy in Angelman syndrome. Clin Neurophysiol. 2004;115:938–45.CrossRefPubMed
35.
go back to reference Ehlen JC, Jones KA, Pinckney L, Gray CL, Burette S, Weinberg RJ, Evans JA, Brager AJ, Zylka MJ, Paul KN, et al. Maternal Ube3a loss disrupts sleep homeostasis but leaves circadian rhythmicity largely intact. J Neurosci. 2015;35:13587–98.CrossRefPubMedPubMedCentral Ehlen JC, Jones KA, Pinckney L, Gray CL, Burette S, Weinberg RJ, Evans JA, Brager AJ, Zylka MJ, Paul KN, et al. Maternal Ube3a loss disrupts sleep homeostasis but leaves circadian rhythmicity largely intact. J Neurosci. 2015;35:13587–98.CrossRefPubMedPubMedCentral
36.
37.
go back to reference McCormick DA, Bal T. Sleep and arousal: thalamocortical mechanisms. Annu Rev Neurosci. 1997;20:185–215.CrossRefPubMed McCormick DA, Bal T. Sleep and arousal: thalamocortical mechanisms. Annu Rev Neurosci. 1997;20:185–215.CrossRefPubMed
39.
go back to reference Shibagaki M, Kiyono S, Watanabe K. Spindle evolution in normal and mentally retarded children: a review. Sleep. 1982;5:47–57.CrossRefPubMed Shibagaki M, Kiyono S, Watanabe K. Spindle evolution in normal and mentally retarded children: a review. Sleep. 1982;5:47–57.CrossRefPubMed
40.
go back to reference Limoges E, Mottron L, Bolduc C, Berthiaume C, Godbout R. Atypical sleep architecture and the autism phenotype. Brain. 2005;128:1049–61.CrossRefPubMed Limoges E, Mottron L, Bolduc C, Berthiaume C, Godbout R. Atypical sleep architecture and the autism phenotype. Brain. 2005;128:1049–61.CrossRefPubMed
41.
go back to reference Himanen SL, Virkkala J, Huupponen E, Hasan J. Spindle frequency remains slow in sleep apnea patients throughout the night. Sleep Med. 2003;4:229–34.CrossRefPubMed Himanen SL, Virkkala J, Huupponen E, Hasan J. Spindle frequency remains slow in sleep apnea patients throughout the night. Sleep Med. 2003;4:229–34.CrossRefPubMed
42.
go back to reference Espa F, Ondze B, Deglise P, Billiard M, Besset A. Sleep architecture, slow wave activity, and sleep spindles in adult patients with sleepwalking and sleep terrors. Clin Neurophysiol. 2000;111:929–39.CrossRefPubMed Espa F, Ondze B, Deglise P, Billiard M, Besset A. Sleep architecture, slow wave activity, and sleep spindles in adult patients with sleepwalking and sleep terrors. Clin Neurophysiol. 2000;111:929–39.CrossRefPubMed
43.
go back to reference Gruber R, Wise MS. Sleep spindle characteristics in children with neurodevelopmental disorders and their relation to cognition. Neural Plast. 2016;2016:4724792. Gruber R, Wise MS. Sleep spindle characteristics in children with neurodevelopmental disorders and their relation to cognition. Neural Plast. 2016;2016:4724792.
44.
go back to reference Petit D, Gagnon JF, Fantini ML, Ferini-Strambi L, Montplaisir J. Sleep and quantitative EEG in neurodegenerative disorders. J Psychosom Res. 2004;56:487–96.CrossRefPubMed Petit D, Gagnon JF, Fantini ML, Ferini-Strambi L, Montplaisir J. Sleep and quantitative EEG in neurodegenerative disorders. J Psychosom Res. 2004;56:487–96.CrossRefPubMed
45.
go back to reference Myatchin I, Lagae L. Sleep spindle abnormalities in children with generalized spike-wave discharges. Pediatr Neurol. 2007;36:106–11.CrossRefPubMed Myatchin I, Lagae L. Sleep spindle abnormalities in children with generalized spike-wave discharges. Pediatr Neurol. 2007;36:106–11.CrossRefPubMed
46.
go back to reference Wamsley EJ, Tucker MA, Shinn AK, Ono KE, McKinley SK, Ely AV, Goff DC, Stickgold R, Manoach DS. Reduced sleep spindles and spindle coherence in schizophrenia: mechanisms of impaired memory consolidation? Biol Psychiatry. 2012;71:154–61.CrossRefPubMed Wamsley EJ, Tucker MA, Shinn AK, Ono KE, McKinley SK, Ely AV, Goff DC, Stickgold R, Manoach DS. Reduced sleep spindles and spindle coherence in schizophrenia: mechanisms of impaired memory consolidation? Biol Psychiatry. 2012;71:154–61.CrossRefPubMed
47.
go back to reference Takagaki K, Russell J, Lippert MT, Motamedi GK. Development of the posterior basic rhythm in children with autism. Clin Neurophysiol. 2015;126:297–303.CrossRefPubMed Takagaki K, Russell J, Lippert MT, Motamedi GK. Development of the posterior basic rhythm in children with autism. Clin Neurophysiol. 2015;126:297–303.CrossRefPubMed
48.
go back to reference Machado C, Estevez M, Leisman G, Melillo R, Rodriguez R, DeFina P, Hernandez A, Perez-Nellar J, Naranjo R, Chinchilla M, et al. QEEG spectral and coherence assessment of autistic children in three different experimental conditions. J Autism Dev Disord. 2015;45:406–24.CrossRefPubMed Machado C, Estevez M, Leisman G, Melillo R, Rodriguez R, DeFina P, Hernandez A, Perez-Nellar J, Naranjo R, Chinchilla M, et al. QEEG spectral and coherence assessment of autistic children in three different experimental conditions. J Autism Dev Disord. 2015;45:406–24.CrossRefPubMed
49.
go back to reference Machado C, Rodriguez R, Estevez M, Leisman G, Melillo R, Chinchilla M, Portela L. Anatomic and functional connectivity relationship in autistic children during three different experimental conditions. Brain Connect. 2015;5:487–96.CrossRefPubMed Machado C, Rodriguez R, Estevez M, Leisman G, Melillo R, Chinchilla M, Portela L. Anatomic and functional connectivity relationship in autistic children during three different experimental conditions. Brain Connect. 2015;5:487–96.CrossRefPubMed
50.
go back to reference Mathewson KJ, Jetha MK, Drmic IE, Bryson SE, Goldberg JO, Schmidt LA. Regional EEG alpha power, coherence, and behavioral symptomatology in autism spectrum disorder. Clin Neurophysiol. 2012;123:1798–809.CrossRefPubMed Mathewson KJ, Jetha MK, Drmic IE, Bryson SE, Goldberg JO, Schmidt LA. Regional EEG alpha power, coherence, and behavioral symptomatology in autism spectrum disorder. Clin Neurophysiol. 2012;123:1798–809.CrossRefPubMed
51.
go back to reference Han YM, Chan AS. Disordered cortical connectivity underlies the executive function deficits in children with autism spectrum disorders. Res Dev Disabil. 2017;61:19–31.CrossRefPubMed Han YM, Chan AS. Disordered cortical connectivity underlies the executive function deficits in children with autism spectrum disorders. Res Dev Disabil. 2017;61:19–31.CrossRefPubMed
52.
go back to reference Peters JM, Taquet M, Vega C, Jeste SS, Fernández IS, Tan J, Nelson CA, Sahin M, Warfield SK. Brain functional networks in syndromic and non-syndromic autism: a graph theoretical study of EEG connectivity. BMC Med. 2013;11:54.CrossRefPubMedPubMedCentral Peters JM, Taquet M, Vega C, Jeste SS, Fernández IS, Tan J, Nelson CA, Sahin M, Warfield SK. Brain functional networks in syndromic and non-syndromic autism: a graph theoretical study of EEG connectivity. BMC Med. 2013;11:54.CrossRefPubMedPubMedCentral
54.
56.
go back to reference Chu CJ, Leahy J, Pathmanathan J, Kramer MA, Cash SS. The maturation of cortical sleep rhythms and networks over early development. Clin Neurophysiol. 2014;125:1360–70.CrossRefPubMed Chu CJ, Leahy J, Pathmanathan J, Kramer MA, Cash SS. The maturation of cortical sleep rhythms and networks over early development. Clin Neurophysiol. 2014;125:1360–70.CrossRefPubMed
57.
go back to reference Chu CJ, Kramer MA, Pathmanathan J, Bianchi MT, Westover MB, Wizon L, Cash SS. Emergence of stable functional networks in long-term human electroencephalography. J Neurosci. 2012;32:2703–13.CrossRefPubMed Chu CJ, Kramer MA, Pathmanathan J, Bianchi MT, Westover MB, Wizon L, Cash SS. Emergence of stable functional networks in long-term human electroencephalography. J Neurosci. 2012;32:2703–13.CrossRefPubMed
58.
go back to reference Guevara MA, Corsi-Cabrera M. EEG coherence or EEG correlation? Int J Psychophysiol. 1996;23:145–53.CrossRefPubMed Guevara MA, Corsi-Cabrera M. EEG coherence or EEG correlation? Int J Psychophysiol. 1996;23:145–53.CrossRefPubMed
60.
go back to reference ‘t Wallant DC, Maquet P, Phillips C. Sleep spindles as an electrographic element: description and automatic detection methods. Neural Plast 2016;2016:6783812. ‘t Wallant DC, Maquet P, Phillips C. Sleep spindles as an electrographic element: description and automatic detection methods. Neural Plast 2016;2016:6783812.
61.
62.
go back to reference Duckrow RBZ, P H. Coherence of the electroencephalogram during the first sleep cycle. Clin Neurophysiol. 2005;116:1088–95.CrossRefPubMed Duckrow RBZ, P H. Coherence of the electroencephalogram during the first sleep cycle. Clin Neurophysiol. 2005;116:1088–95.CrossRefPubMed
63.
go back to reference Warby SC, Wendt SL, Welinder P, Munk EG, Carrillo O, Sorensen HB, Jennum P, Peppard PE, Perona P, Mignot E. Sleep-spindle detection: crowdsourcing and evaluating performance of experts, non-experts and automated methods. Nat Methods. 2014;11:385–92.CrossRefPubMedPubMedCentral Warby SC, Wendt SL, Welinder P, Munk EG, Carrillo O, Sorensen HB, Jennum P, Peppard PE, Perona P, Mignot E. Sleep-spindle detection: crowdsourcing and evaluating performance of experts, non-experts and automated methods. Nat Methods. 2014;11:385–92.CrossRefPubMedPubMedCentral
64.
go back to reference Jeste SS, Frohlich J, Loo SK. Electrophysiological biomarkers of diagnosis and outcome in neurodevelopmental disorders. Curr Opin Neurol. 2015;28:110–6.CrossRefPubMed Jeste SS, Frohlich J, Loo SK. Electrophysiological biomarkers of diagnosis and outcome in neurodevelopmental disorders. Curr Opin Neurol. 2015;28:110–6.CrossRefPubMed
65.
go back to reference Judson MC, Burette AC, Thaxton CL, Pribisko AL, Shen MD, Rumple AM, Del Cid WA, Paniagua B, Styner M, Weinberg RJ, Philpot BD. Decreased axon caliber underlies loss of Fiber tract integrity, disproportional reductions in white matter volume, and microcephaly in Angelman syndrome model mice. J Neurosci. 2017;37:7347–61.CrossRefPubMedPubMedCentral Judson MC, Burette AC, Thaxton CL, Pribisko AL, Shen MD, Rumple AM, Del Cid WA, Paniagua B, Styner M, Weinberg RJ, Philpot BD. Decreased axon caliber underlies loss of Fiber tract integrity, disproportional reductions in white matter volume, and microcephaly in Angelman syndrome model mice. J Neurosci. 2017;37:7347–61.CrossRefPubMedPubMedCentral
66.
go back to reference Tiwari VN, Jeong J, Wilson BJ, Behen ME, Chugani HT, Sundaram SK. Relationship between aberrant brain connectivity and clinical features in Angelman syndrome: a new method using tract based spatial statistics of DTI color-coded orientation maps. NeuroImage. 2012;59:349–55.CrossRefPubMed Tiwari VN, Jeong J, Wilson BJ, Behen ME, Chugani HT, Sundaram SK. Relationship between aberrant brain connectivity and clinical features in Angelman syndrome: a new method using tract based spatial statistics of DTI color-coded orientation maps. NeuroImage. 2012;59:349–55.CrossRefPubMed
67.
go back to reference Wilson BJ, Sundaram SK, Huq A, Jeong J, Halverson SR, Behen ME, Bui DQ, Chugani HT. Abnormal language pathway in children with Angelman syndrome. Pediatr Neurol. 2011;44:350–6.CrossRefPubMedPubMedCentral Wilson BJ, Sundaram SK, Huq A, Jeong J, Halverson SR, Behen ME, Bui DQ, Chugani HT. Abnormal language pathway in children with Angelman syndrome. Pediatr Neurol. 2011;44:350–6.CrossRefPubMedPubMedCentral
68.
go back to reference Lee K, Williams LM, Breakspear M, Gordonc E. Synchronous gamma activity: a review and contribution to an integrative neuroscience model of schizophrenia. Brain Res Rev. 2003;41:57–78.CrossRefPubMed Lee K, Williams LM, Breakspear M, Gordonc E. Synchronous gamma activity: a review and contribution to an integrative neuroscience model of schizophrenia. Brain Res Rev. 2003;41:57–78.CrossRefPubMed
69.
go back to reference Cavelli M, Castro S, Schwarzkopf N, Chase MH, Falconi A, Torterolo P. Coherent neocortical gamma oscillations decrease during REM sleep in the rat. Behav Brain Res. 2015;281:318–25.CrossRefPubMed Cavelli M, Castro S, Schwarzkopf N, Chase MH, Falconi A, Torterolo P. Coherent neocortical gamma oscillations decrease during REM sleep in the rat. Behav Brain Res. 2015;281:318–25.CrossRefPubMed
70.
go back to reference Castro S, Cavelli M, Vollono P, Chase MH, Falconi A, Torterolo P. Inter-hemispheric coherence of neocortical gamma oscillations during sleep and wakefulness. Neurosci Lett. 2014;578:197–202.CrossRefPubMed Castro S, Cavelli M, Vollono P, Chase MH, Falconi A, Torterolo P. Inter-hemispheric coherence of neocortical gamma oscillations during sleep and wakefulness. Neurosci Lett. 2014;578:197–202.CrossRefPubMed
71.
go back to reference Fell J, Staedtgen M, Burr W, Kockelmann E, Helmstaedter C, Schaller C, Elger CE, Fernández G. Rhinal–hippocampal EEG coherence is reduced during human sleep. Eur J Neurosci. 2003;18:1711–6.CrossRefPubMed Fell J, Staedtgen M, Burr W, Kockelmann E, Helmstaedter C, Schaller C, Elger CE, Fernández G. Rhinal–hippocampal EEG coherence is reduced during human sleep. Eur J Neurosci. 2003;18:1711–6.CrossRefPubMed
72.
go back to reference Lewis LD, Voigts J, Flores FJ, Schmitt LI, Wilson MA, Halassa MM, Brown EN. Thalamic reticular nucleus induces fast and local modulation of arousal state. Elife. 2015;4:e08760.PubMedPubMedCentral Lewis LD, Voigts J, Flores FJ, Schmitt LI, Wilson MA, Halassa MM, Brown EN. Thalamic reticular nucleus induces fast and local modulation of arousal state. Elife. 2015;4:e08760.PubMedPubMedCentral
Metadata
Title
Abnormal coherence and sleep composition in children with Angelman syndrome: a retrospective EEG study
Authors
Hanna den Bakker
Michael S. Sidorov
Zheng Fan
David J. Lee
Lynne M. Bird
Catherine J. Chu
Benjamin D. Philpot
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Molecular Autism / Issue 1/2018
Electronic ISSN: 2040-2392
DOI
https://doi.org/10.1186/s13229-018-0214-8

Other articles of this Issue 1/2018

Molecular Autism 1/2018 Go to the issue