Skip to main content
Top
Published in: BMC Neurology 1/2015

Open Access 01-12-2015 | Research article

Robust disruptions in electroencephalogram cortical oscillations and large-scale functional networks in autism

Authors: Sean Matlis, Katica Boric, Catherine J. Chu, Mark A. Kramer

Published in: BMC Neurology | Issue 1/2015

Login to get access

Abstract

Background

Autism spectrum disorders (ASD) are increasingly prevalent and have a significant impact on the lives of patients and their families. Currently, the diagnosis is determined by clinical judgment and no definitive physiological biomarker for ASD exists. Quantitative biomarkers obtainable from clinical neuroimaging data – such as the scalp electroencephalogram (EEG) - would provide an important aid to clinicians in the diagnosis of ASD. The interpretation of prior studies in this area has been limited by mixed results and the lack of validation procedures. Here we use retrospective clinical data from a well-characterized population of children with ASD to evaluate the rhythms and coupling patterns present in the EEG to develop and validate an electrophysiological biomarker of ASD.

Methods

EEG data were acquired from a population of ASD (n = 27) and control (n = 55) children 4–8 years old. Data were divided into training (n = 13 ASD, n = 24 control) and validation (n = 14 ASD, n = 31 control) groups. Evaluation of spectral and functional network properties in the first group of patients motivated three biomarkers that were computed in the second group of age-matched patients for validation.

Results

Three biomarkers of ASD were identified in the first patient group: (1) reduced posterior/anterior power ratio in the alpha frequency range (8–14 Hz), which we label the “peak alpha ratio”, (2) reduced global density in functional networks, and (3) a reduction in the mean connectivity strength of a subset of functional network edges. Of these three biomarkers, the first and third were validated in a second group of patients. Using the two validated biomarkers, we were able to classify ASD subjects with 83 % sensitivity and 68 % specificity in a post-hoc analysis.

Conclusions

This study demonstrates that clinical EEG can provide quantitative biomarkers to assist diagnosis of autism. These results corroborate the general finding that ASD subjects have decreased alpha power gradients and network connectivities compared to control subjects. In addition, this study demonstrates the necessity of using statistical techniques to validate EEG biomarkers identified using exploratory methods.
Appendix
Available only for authorised users
Literature
1.
go back to reference American Psychiatric A. Task Force on DSM-V. Diagnostic and Statistical Manual of Mental Disorders. 2013;DSM-5:991. American Psychiatric A. Task Force on DSM-V. Diagnostic and Statistical Manual of Mental Disorders. 2013;DSM-5:991.
3.
go back to reference Autism and Developmental Disabilities Monitoring Network Surveillance Year 2008 Principal Investigators, Centers for Disease Control and Prevention. Prevalence of autism spectrum disorders--Autism and Developmental Disabilities Monitoring Network, 14 sites, United States, 2008. Morb Mortal Wkly Rep Surveill Summ Wash DC 2002. 2012;61:1–19. Autism and Developmental Disabilities Monitoring Network Surveillance Year 2008 Principal Investigators, Centers for Disease Control and Prevention. Prevalence of autism spectrum disorders--Autism and Developmental Disabilities Monitoring Network, 14 sites, United States, 2008. Morb Mortal Wkly Rep Surveill Summ Wash DC 2002. 2012;61:1–19.
4.
go back to reference Coben R, Clarke AR, Hudspeth W, Barry RJ. EEG power and coherence in autistic spectrum disorder. Clin Neurophysiol. 2008;119:1002–9.PubMed Coben R, Clarke AR, Hudspeth W, Barry RJ. EEG power and coherence in autistic spectrum disorder. Clin Neurophysiol. 2008;119:1002–9.PubMed
5.
go back to reference Committee on Educational Interventions for Children with Autism NRC: Educating Children with Autism. Washington, DC: National Academy Press; [S.l.]: [s.n.]; 2001. Committee on Educational Interventions for Children with Autism NRC: Educating Children with Autism. Washington, DC: National Academy Press; [S.l.]: [s.n.]; 2001.
6.
go back to reference Matson JL. Current status of differential diagnosis for children with autism spectrum disorders. Res Dev Disabil. 2007;28:109–18.PubMed Matson JL. Current status of differential diagnosis for children with autism spectrum disorders. Res Dev Disabil. 2007;28:109–18.PubMed
7.
go back to reference Bosl W, Tierney A, Tager-Flusberg H, Nelson C. EEG complexity as a biomarker for autism spectrum disorder risk. BMC Med. 2011;9:18.PubMedPubMedCentral Bosl W, Tierney A, Tager-Flusberg H, Nelson C. EEG complexity as a biomarker for autism spectrum disorder risk. BMC Med. 2011;9:18.PubMedPubMedCentral
8.
go back to reference Griffin R, Westbury C. Infant EEG activity as a biomarker for autism: a promising approach or a false promise? BMC Med. 2011;9:61.PubMedPubMedCentral Griffin R, Westbury C. Infant EEG activity as a biomarker for autism: a promising approach or a false promise? BMC Med. 2011;9:61.PubMedPubMedCentral
9.
go back to reference Bosl W, Tierney A, Tager-Flusberg H, Nelson C. Response: Infant EEG activity as a biomarker for autism: A promising approach or a false promise? BMC Med. 2011;9:60.PubMedPubMedCentral Bosl W, Tierney A, Tager-Flusberg H, Nelson C. Response: Infant EEG activity as a biomarker for autism: A promising approach or a false promise? BMC Med. 2011;9:60.PubMedPubMedCentral
10.
go back to reference Betancur C. Etiological heterogeneity in autism spectrum disorders: More than 100 genetic and genomic disorders and still counting. Brain Res. 2011;1380:42–77.PubMed Betancur C. Etiological heterogeneity in autism spectrum disorders: More than 100 genetic and genomic disorders and still counting. Brain Res. 2011;1380:42–77.PubMed
12.
go back to reference Belmonte MK, Allen G, Beckel-Mitchener A, Carper R a, Webb SJ. Autism and abnormal development of brain connectivity. J Neurosci Off J Soc Neurosci. 2004;24:9228–31. Belmonte MK, Allen G, Beckel-Mitchener A, Carper R a, Webb SJ. Autism and abnormal development of brain connectivity. J Neurosci Off J Soc Neurosci. 2004;24:9228–31.
13.
go back to reference Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10:186–98.PubMed Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10:186–98.PubMed
14.
go back to reference Frith C. Is autism a disconnection disorder? Lancet Neurol. 2004;3:577.PubMed Frith C. Is autism a disconnection disorder? Lancet Neurol. 2004;3:577.PubMed
15.
go back to reference Geschwind DH, Levitt P. Autism spectrum disorders: developmental disconnection syndromes. Curr Opin Neurobiol. 2007;17:103–11.PubMed Geschwind DH, Levitt P. Autism spectrum disorders: developmental disconnection syndromes. Curr Opin Neurobiol. 2007;17:103–11.PubMed
16.
go back to reference Just MA, Cherkassky VL, Keller T a, Minshew NJ. Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain J Neurol. 2004;127(Pt 8):1811–21. Just MA, Cherkassky VL, Keller T a, Minshew NJ. Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain J Neurol. 2004;127(Pt 8):1811–21.
17.
go back to reference Just MA, Cherkassky VL, Keller TA, Kana RK, Minshew NJ. Functional and Anatomical Cortical Underconnectivity in Autism: Evidence from an fMRI Study of an Executive Function Task and Corpus Callosum Morphometry. Cereb Cortex. 2007;17:951–61.PubMed Just MA, Cherkassky VL, Keller TA, Kana RK, Minshew NJ. Functional and Anatomical Cortical Underconnectivity in Autism: Evidence from an fMRI Study of an Executive Function Task and Corpus Callosum Morphometry. Cereb Cortex. 2007;17:951–61.PubMed
18.
go back to reference Just MA, Keller T a, Malave VL, Kana RK, Varma S. Autism as a neural systems disorder: A theory of frontal-posterior underconnectivity. Neurosci Biobehav Rev. 2012;1–22. Just MA, Keller T a, Malave VL, Kana RK, Varma S. Autism as a neural systems disorder: A theory of frontal-posterior underconnectivity. Neurosci Biobehav Rev. 2012;1–22.
19.
go back to reference Muller R-A, Shih P, Keehn B, Deyoe JR, Leyden KM, Shukla DK. Underconnected, but How? A Survey of Functional Connectivity MRI Studies in Autism Spectrum Disorders. Cereb Cortex. 2011;21:2233–43.PubMedPubMedCentral Muller R-A, Shih P, Keehn B, Deyoe JR, Leyden KM, Shukla DK. Underconnected, but How? A Survey of Functional Connectivity MRI Studies in Autism Spectrum Disorders. Cereb Cortex. 2011;21:2233–43.PubMedPubMedCentral
20.
21.
go back to reference Rippon G, Brock J, Brown C, Boucher J. Disordered connectivity in the autistic brain: Challenges for the “new psychophysiology”. Int J Psychophysiol. 2007;63:164–72.PubMed Rippon G, Brock J, Brown C, Boucher J. Disordered connectivity in the autistic brain: Challenges for the “new psychophysiology”. Int J Psychophysiol. 2007;63:164–72.PubMed
22.
go back to reference Sporns O. Networks of the Brain. Cambridge, Mass: MIT Press; 2011. Sporns O. Networks of the Brain. Cambridge, Mass: MIT Press; 2011.
23.
go back to reference Kolaczyk ED. Statistical Analysis of Network Data Methods and Models. New York; London: Springer; 2009. Kolaczyk ED. Statistical Analysis of Network Data Methods and Models. New York; London: Springer; 2009.
24.
go back to reference Sporns O, Tononi G, Edelman GM. Connectivity and complexity: the relationship between neuroanatomy and brain dynamics. Neural Netw Off J Int Neural Netw Soc. 2000;13:909–22. Sporns O, Tononi G, Edelman GM. Connectivity and complexity: the relationship between neuroanatomy and brain dynamics. Neural Netw Off J Int Neural Netw Soc. 2000;13:909–22.
25.
go back to reference Sporns O, Chialvo DR, Kaiser M, Hilgetag CC. Organization, development and function of complex brain networks. Trends Cogn Sci. 2004;8:418–25.PubMed Sporns O, Chialvo DR, Kaiser M, Hilgetag CC. Organization, development and function of complex brain networks. Trends Cogn Sci. 2004;8:418–25.PubMed
26.
go back to reference Buzsáki G. Rhythms of the Brain. Oxford. New York: Oxford University Press; 2006. Buzsáki G. Rhythms of the Brain. Oxford. New York: Oxford University Press; 2006.
27.
go back to reference Damarla SR, Keller TA, Kana RK, Cherkassky VL, Williams DL, Minshew NJ, Just MA. Cortical underconnectivity coupled with preserved visuospatial cognition in autism: Evidence from an fMRI study of an embedded figures task. Autism Res Off J Int Soc Autism Res. 2010;3:273–9. Damarla SR, Keller TA, Kana RK, Cherkassky VL, Williams DL, Minshew NJ, Just MA. Cortical underconnectivity coupled with preserved visuospatial cognition in autism: Evidence from an fMRI study of an embedded figures task. Autism Res Off J Int Soc Autism Res. 2010;3:273–9.
28.
go back to reference Kana RK, Keller TA, Cherkassky VL, Minshew NJ, Just MA. Sentence comprehension in autism: thinking in pictures with decreased functional connectivity. Brain. 2006;129:2484–93.PubMedPubMedCentral Kana RK, Keller TA, Cherkassky VL, Minshew NJ, Just MA. Sentence comprehension in autism: thinking in pictures with decreased functional connectivity. Brain. 2006;129:2484–93.PubMedPubMedCentral
29.
go back to reference Kana RK, Keller TA, Cherkassky VL, Minshew NJ, Just MA. Atypical frontal-posterior synchronization of Theory of Mind regions in autism during mental state attribution. Soc Neurosci. 2009;4:135–52.PubMed Kana RK, Keller TA, Cherkassky VL, Minshew NJ, Just MA. Atypical frontal-posterior synchronization of Theory of Mind regions in autism during mental state attribution. Soc Neurosci. 2009;4:135–52.PubMed
30.
go back to reference Kana RK, Keller TA, Minshew NJ, Just MA. Inhibitory Control in High-Functioning Autism: Decreased Activation and Underconnectivity in Inhibition Networks. Biol Psychiatry. 2007;62:198–206.PubMed Kana RK, Keller TA, Minshew NJ, Just MA. Inhibitory Control in High-Functioning Autism: Decreased Activation and Underconnectivity in Inhibition Networks. Biol Psychiatry. 2007;62:198–206.PubMed
31.
go back to reference Koshino H, Carpenter PA, Minshew NJ, Cherkassky VL, Keller TA, Just MA. Functional connectivity in an fMRI working memory task in high-functioning autism. Neuroimage. 2005;24:810–21.PubMed Koshino H, Carpenter PA, Minshew NJ, Cherkassky VL, Keller TA, Just MA. Functional connectivity in an fMRI working memory task in high-functioning autism. Neuroimage. 2005;24:810–21.PubMed
32.
go back to reference Koshino H, Kana RK, Keller TA, Cherkassky VL, Minshew NJ, Just MA. fMRI Investigation of Working Memory for Faces in Autism: Visual Coding and Underconnectivity with Frontal Areas. Cereb Cortex. 2008;18:289–300.PubMed Koshino H, Kana RK, Keller TA, Cherkassky VL, Minshew NJ, Just MA. fMRI Investigation of Working Memory for Faces in Autism: Visual Coding and Underconnectivity with Frontal Areas. Cereb Cortex. 2008;18:289–300.PubMed
33.
go back to reference Mason RA, Williams DL, Kana RK, Minshew N, Just MA. Theory of Mind disruption and recruitment of the right hemisphere during narrative comprehension in autism. Neuropsychologia. 2008;46:269–80.PubMed Mason RA, Williams DL, Kana RK, Minshew N, Just MA. Theory of Mind disruption and recruitment of the right hemisphere during narrative comprehension in autism. Neuropsychologia. 2008;46:269–80.PubMed
34.
go back to reference Minshew NJ, Williams DL. The new neurobiology of autism: Cortex, connectivity, and neuronal organization. Arch Neurol. 2007;64:945–50.PubMedPubMedCentral Minshew NJ, Williams DL. The new neurobiology of autism: Cortex, connectivity, and neuronal organization. Arch Neurol. 2007;64:945–50.PubMedPubMedCentral
35.
go back to reference Mizuno A, Liu Y, Williams DL, Keller TA, Minshew NJ, Just MA. The neural basis of deictic shifting in linguistic perspective-taking in high-functioning autism. Brain. 2011;134:2422–35.PubMedPubMedCentral Mizuno A, Liu Y, Williams DL, Keller TA, Minshew NJ, Just MA. The neural basis of deictic shifting in linguistic perspective-taking in high-functioning autism. Brain. 2011;134:2422–35.PubMedPubMedCentral
36.
go back to reference Müller R-A, Shih P, Keehn B, Deyoe JR, Leyden KM, Shukla DK. Underconnected, but how? A survey of functional connectivity MRI studies in autism spectrum disorders. Cereb Cortex N Y N 1991. 2011;21:2233–43. Müller R-A, Shih P, Keehn B, Deyoe JR, Leyden KM, Shukla DK. Underconnected, but how? A survey of functional connectivity MRI studies in autism spectrum disorders. Cereb Cortex N Y N 1991. 2011;21:2233–43.
37.
go back to reference Rubenstein JLR, Merzenich MM. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav. 2003;2:255–67.PubMed Rubenstein JLR, Merzenich MM. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav. 2003;2:255–67.PubMed
38.
go back to reference Schipul SE, Keller TA, Just MA. Inter-regional brain communication and its disturbance in autism. Front Syst Neurosci. 2011;5:10.PubMedPubMedCentral Schipul SE, Keller TA, Just MA. Inter-regional brain communication and its disturbance in autism. Front Syst Neurosci. 2011;5:10.PubMedPubMedCentral
39.
go back to reference Wass S. Distortions and disconnections: disrupted brain connectivity in autism. Brain Cogn. 2011;75:18–28.PubMed Wass S. Distortions and disconnections: disrupted brain connectivity in autism. Brain Cogn. 2011;75:18–28.PubMed
40.
go back to reference Barttfeld P, Wicker B, Cukier S, Navarta S, Lew S, Sigman M. A big-world network in ASD: Dynamical connectivity analysis reflects a deficit in long-range connections and an excess of short-range connections (EEG). Neuropsychologia. 2011;49:254–63.PubMed Barttfeld P, Wicker B, Cukier S, Navarta S, Lew S, Sigman M. A big-world network in ASD: Dynamical connectivity analysis reflects a deficit in long-range connections and an excess of short-range connections (EEG). Neuropsychologia. 2011;49:254–63.PubMed
41.
go back to reference Barttfeld P, Amoruso L, Ais J, Cukier S, Bavassi L, Tomio A, Manes F, Ibanez A, Sigman M. Organization of brain networks governed by long-range connections index autistic traits in the general population. J Neurodev Disord. 2013;5:16.PubMedPubMedCentral Barttfeld P, Amoruso L, Ais J, Cukier S, Bavassi L, Tomio A, Manes F, Ibanez A, Sigman M. Organization of brain networks governed by long-range connections index autistic traits in the general population. J Neurodev Disord. 2013;5:16.PubMedPubMedCentral
42.
go back to reference García Domínguez L, Stieben J, Pérez Velázquez JL, Shanker S. The imaginary part of coherency in autism: differences in cortical functional connectivity in preschool children. PLoS One. 2013;8, e75941.PubMedPubMedCentral García Domínguez L, Stieben J, Pérez Velázquez JL, Shanker S. The imaginary part of coherency in autism: differences in cortical functional connectivity in preschool children. PLoS One. 2013;8, e75941.PubMedPubMedCentral
43.
go back to reference Keown CL, Shih P, Nair A, Peterson N, Mulvey ME, Müller R-A. Local Functional Overconnectivity in Posterior Brain Regions Is Associated with Symptom Severity in Autism Spectrum Disorders. Cell Rep. 2013;5:567–72.PubMed Keown CL, Shih P, Nair A, Peterson N, Mulvey ME, Müller R-A. Local Functional Overconnectivity in Posterior Brain Regions Is Associated with Symptom Severity in Autism Spectrum Disorders. Cell Rep. 2013;5:567–72.PubMed
44.
go back to reference Mizuno A, Villalobos ME, Davies MM, Dahl BC, Müller R-A. Partially enhanced thalamocortical functional connectivity in autism. Brain Res. 2006;1104:160–74.PubMed Mizuno A, Villalobos ME, Davies MM, Dahl BC, Müller R-A. Partially enhanced thalamocortical functional connectivity in autism. Brain Res. 2006;1104:160–74.PubMed
45.
go back to reference Noonan SK, Haist F, Müller R-A. Aberrant functional connectivity in autism: Evidence from low-frequency BOLD signal fluctuations. Brain Res. 2009;1262:48–63.PubMedPubMedCentral Noonan SK, Haist F, Müller R-A. Aberrant functional connectivity in autism: Evidence from low-frequency BOLD signal fluctuations. Brain Res. 2009;1262:48–63.PubMedPubMedCentral
46.
go back to reference Supekar K, Uddin LQ, Khouzam A, Phillips J, Gaillard WD, Kenworthy LE, Yerys BE, Vaidya CJ, Menon V. Brain Hyperconnectivity in Children with Autism and its Links to Social Deficits. Cell Rep. 2013;5:738–47.PubMedPubMedCentral Supekar K, Uddin LQ, Khouzam A, Phillips J, Gaillard WD, Kenworthy LE, Yerys BE, Vaidya CJ, Menon V. Brain Hyperconnectivity in Children with Autism and its Links to Social Deficits. Cell Rep. 2013;5:738–47.PubMedPubMedCentral
47.
go back to reference Turner KC, Frost L, Linsenbardt D, McIlroy JR, Müller R-A. Atypically diffuse functional connectivity between caudate nuclei and cerebral cortex in autism. Behav Brain Funct. 2006;2:34.PubMedPubMedCentral Turner KC, Frost L, Linsenbardt D, McIlroy JR, Müller R-A. Atypically diffuse functional connectivity between caudate nuclei and cerebral cortex in autism. Behav Brain Funct. 2006;2:34.PubMedPubMedCentral
48.
go back to reference Villalobos ME, Mizuno A, Dahl BC, Kemmotsu N, Müller R-A. Reduced functional connectivity between V1 and inferior frontal cortex associated with visuomotor performance in autism. Neuroimage. 2005;25:916–25.PubMedPubMedCentral Villalobos ME, Mizuno A, Dahl BC, Kemmotsu N, Müller R-A. Reduced functional connectivity between V1 and inferior frontal cortex associated with visuomotor performance in autism. Neuroimage. 2005;25:916–25.PubMedPubMedCentral
49.
go back to reference Welchew DE, Ashwin C, Berkouk K, Salvador R, Suckling J, Baron-Cohen S, Bullmore E. Functional disconnectivity of the medial temporal lobe in Asperger’s syndrome. Biol Psychiatry. 2005;57:991–8.PubMed Welchew DE, Ashwin C, Berkouk K, Salvador R, Suckling J, Baron-Cohen S, Bullmore E. Functional disconnectivity of the medial temporal lobe in Asperger’s syndrome. Biol Psychiatry. 2005;57:991–8.PubMed
50.
go back to reference Léveillé C, Barbeau EB, Bolduc C, Limoges É, Berthiaume C, Chevrier É, Mottron L, Godbout R. Enhanced connectivity between visual cortex and other regions of the brain in autism: a REM sleep EEG coherence study. Autism Res. 2010;3:280–5.PubMed Léveillé C, Barbeau EB, Bolduc C, Limoges É, Berthiaume C, Chevrier É, Mottron L, Godbout R. Enhanced connectivity between visual cortex and other regions of the brain in autism: a REM sleep EEG coherence study. Autism Res. 2010;3:280–5.PubMed
51.
go back to reference Liu Y, Cherkassky VL, Minshew NJ, Just MA. Autonomy of lower-level perception from global processing in autism: Evidence from brain activation and functional connectivity. Neuropsychologia. 2011;49:2105–11.PubMedPubMedCentral Liu Y, Cherkassky VL, Minshew NJ, Just MA. Autonomy of lower-level perception from global processing in autism: Evidence from brain activation and functional connectivity. Neuropsychologia. 2011;49:2105–11.PubMedPubMedCentral
52.
go back to reference Mostofsky SH, Powell SK, Simmonds DJ, Goldberg MC, Caffo B, Pekar JJ. Decreased connectivity and cerebellar activity in autism during motor task performance. Brain. 2009;132:2413–25.PubMedPubMedCentral Mostofsky SH, Powell SK, Simmonds DJ, Goldberg MC, Caffo B, Pekar JJ. Decreased connectivity and cerebellar activity in autism during motor task performance. Brain. 2009;132:2413–25.PubMedPubMedCentral
53.
go back to reference Silber MH, Ancoli-Israel S, Bonnet MH, Chokroverty S, Grigg-Damberger MM, Hirshkowitz M, Kapen S, Keenan SA, Kryger MH, Penzel T, Pressman MR, Iber C. The visual scoring of sleep in adults. J Clin Sleep Med JCSM Off Publ Am Acad Sleep Med. 2007;3:121–31. Silber MH, Ancoli-Israel S, Bonnet MH, Chokroverty S, Grigg-Damberger MM, Hirshkowitz M, Kapen S, Keenan SA, Kryger MH, Penzel T, Pressman MR, Iber C. The visual scoring of sleep in adults. J Clin Sleep Med JCSM Off Publ Am Acad Sleep Med. 2007;3:121–31.
54.
go back to reference Nunez PL, Srinivasan R. Electric Fields of the Brain: The Neurophysics of EEG. Oxford. New York: Oxford University Press; 2006. Nunez PL, Srinivasan R. Electric Fields of the Brain: The Neurophysics of EEG. Oxford. New York: Oxford University Press; 2006.
55.
go back to reference Lepage KQ, Kramer MA, Chu CJ. A statistically robust EEG re-referencing procedure to mitigate reference effect. J Neurosci Methods. 2014;235:101–16.PubMedPubMedCentral Lepage KQ, Kramer MA, Chu CJ. A statistically robust EEG re-referencing procedure to mitigate reference effect. J Neurosci Methods. 2014;235:101–16.PubMedPubMedCentral
56.
go back to reference Bokil H, Andrews P, Kulkarni JE, Mehta S, Mitra PP. Chronux: A platform for analyzing neural signals. J Neurosci Methods. 2010;192:146–51.PubMedPubMedCentral Bokil H, Andrews P, Kulkarni JE, Mehta S, Mitra PP. Chronux: A platform for analyzing neural signals. J Neurosci Methods. 2010;192:146–51.PubMedPubMedCentral
57.
go back to reference Schomer DL, Silva FL da. Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Philadelphia, PA: Lippincott Williams & Wilkins; 2012. Schomer DL, Silva FL da. Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Philadelphia, PA: Lippincott Williams & Wilkins; 2012.
58.
go back to reference Knyazev GG. Antero-Posterior EEG Spectral Power Gradient as a Correlate of Extraversion and Behavioral Inhibition. Open Neuroimaging J. 2010;4:114–20. Knyazev GG. Antero-Posterior EEG Spectral Power Gradient as a Correlate of Extraversion and Behavioral Inhibition. Open Neuroimaging J. 2010;4:114–20.
59.
go back to reference Knyazev GG, Bocharov AV, Pylkova LV. Extraversion and fronto-posterior EEG spectral power gradient: An independent component analysis. Biol Psychol. 2012;89:515–24.PubMed Knyazev GG, Bocharov AV, Pylkova LV. Extraversion and fronto-posterior EEG spectral power gradient: An independent component analysis. Biol Psychol. 2012;89:515–24.PubMed
60.
go back to reference Pereda E, Quiroga RQ, Bhattacharya J. Nonlinear multivariate analysis of neurophysiological signals. Prog Neurobiol. 2005;77:1–37.PubMed Pereda E, Quiroga RQ, Bhattacharya J. Nonlinear multivariate analysis of neurophysiological signals. Prog Neurobiol. 2005;77:1–37.PubMed
61.
go back to reference Nunez PL, Srinivasan R, Westdorp AF, Wijesinghe RS, Tucker DM, Silberstein RB, Cadusch PJ. EEG coherency: I: statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalogr Clin Neurophysiol. 1997;103:499–515.PubMed Nunez PL, Srinivasan R, Westdorp AF, Wijesinghe RS, Tucker DM, Silberstein RB, Cadusch PJ. EEG coherency: I: statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalogr Clin Neurophysiol. 1997;103:499–515.PubMed
62.
go back to reference Ansari-Asl K, Senhadji L, Bellanger J-J, Wendling F. Quantitative evaluation of linear and nonlinear methods characterizing interdependencies between brain signals. Phys Rev E Stat Nonlin Soft Matter Phys. 2006;74(3 Pt 1):31916.PubMedCentral Ansari-Asl K, Senhadji L, Bellanger J-J, Wendling F. Quantitative evaluation of linear and nonlinear methods characterizing interdependencies between brain signals. Phys Rev E Stat Nonlin Soft Matter Phys. 2006;74(3 Pt 1):31916.PubMedCentral
63.
go back to reference Osterhage H, Mormann F, Wagner T, Lehnertz K. MEASURING THE DIRECTIONALITY OF COUPLING: PHASE VERSUS STATE SPACE DYNAMICS AND APPLICATION TO EEG TIME SERIES. Int J Neural Syst. 2007;17:139–48.PubMed Osterhage H, Mormann F, Wagner T, Lehnertz K. MEASURING THE DIRECTIONALITY OF COUPLING: PHASE VERSUS STATE SPACE DYNAMICS AND APPLICATION TO EEG TIME SERIES. Int J Neural Syst. 2007;17:139–48.PubMed
64.
go back to reference Chu CJ, Kramer MA, Pathmanathan J, Bianchi MT, Westover MB, Wizon L, Cash SS. Emergence of Stable Functional Networks in Long-Term Human Electroencephalography. J Neurosci. 2012;32:2703–13.PubMed Chu CJ, Kramer MA, Pathmanathan J, Bianchi MT, Westover MB, Wizon L, Cash SS. Emergence of Stable Functional Networks in Long-Term Human Electroencephalography. J Neurosci. 2012;32:2703–13.PubMed
65.
go back to reference Kramer MA, Eden UT, Kolaczyk ED, Zepeda R, Eskandar EN, Cash SS. Coalescence and Fragmentation of Cortical Networks during Focal Seizures. J Neurosci. 2010;30:10076–85.PubMedPubMedCentral Kramer MA, Eden UT, Kolaczyk ED, Zepeda R, Eskandar EN, Cash SS. Coalescence and Fragmentation of Cortical Networks during Focal Seizures. J Neurosci. 2010;30:10076–85.PubMedPubMedCentral
66.
go back to reference Kramer MA, Eden UT, Lepage KQ, Kolaczyk ED, Bianchi MT, Cash SS. Emergence of Persistent Networks in Long-Term Intracranial EEG Recordings. J Neurosci. 2011;31:15757–67.PubMedPubMedCentral Kramer MA, Eden UT, Lepage KQ, Kolaczyk ED, Bianchi MT, Cash SS. Emergence of Persistent Networks in Long-Term Intracranial EEG Recordings. J Neurosci. 2011;31:15757–67.PubMedPubMedCentral
67.
go back to reference Kramer M, Eden U, Cash S, Kolaczyk E. Network inference with confidence from multivariate time series. Phys Rev E. 2009;79. Kramer M, Eden U, Cash S, Kolaczyk E. Network inference with confidence from multivariate time series. Phys Rev E. 2009;79.
68.
go back to reference Siegel M, Donner TH, Engel AK. Spectral fingerprints of large-scale neuronal interactions. Nat Rev Neurosci. 2012;13:121–34.PubMed Siegel M, Donner TH, Engel AK. Spectral fingerprints of large-scale neuronal interactions. Nat Rev Neurosci. 2012;13:121–34.PubMed
69.
go back to reference Hipp JF, Engel AK, Siegel M. Oscillatory Synchronization in Large-Scale Cortical Networks Predicts Perception. Neuron. 2011;69:387–96.PubMed Hipp JF, Engel AK, Siegel M. Oscillatory Synchronization in Large-Scale Cortical Networks Predicts Perception. Neuron. 2011;69:387–96.PubMed
70.
go back to reference Garcia JO, Grossman ED, Srinivasan R. Evoked potentials in large-scale cortical networks elicited by TMS of the visual cortex. J Neurophysiol. 2011;106:1734–46.PubMedPubMedCentral Garcia JO, Grossman ED, Srinivasan R. Evoked potentials in large-scale cortical networks elicited by TMS of the visual cortex. J Neurophysiol. 2011;106:1734–46.PubMedPubMedCentral
71.
go back to reference Varela F, Lachaux JP, Rodriguez E, Martinerie J. The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci. 2001;2:229–39.PubMed Varela F, Lachaux JP, Rodriguez E, Martinerie J. The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci. 2001;2:229–39.PubMed
72.
go back to reference Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J R Stat Soc Ser B Methodol. 1995;57:289–300. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J R Stat Soc Ser B Methodol. 1995;57:289–300.
73.
go back to reference Mitra P, Bokil H. Observed Brain Dynamics. 1 edition. Oxford. New York: Oxford University Press; 2007. Mitra P, Bokil H. Observed Brain Dynamics. 1 edition. Oxford. New York: Oxford University Press; 2007.
74.
go back to reference Thut G, Nietzel A, Brandt SA, Pascual-Leone A. α-Band Electroencephalographic Activity over Occipital Cortex Indexes Visuospatial Attention Bias and Predicts Visual Target Detection. J Neurosci. 2006;26:9494–502.PubMed Thut G, Nietzel A, Brandt SA, Pascual-Leone A. α-Band Electroencephalographic Activity over Occipital Cortex Indexes Visuospatial Attention Bias and Predicts Visual Target Detection. J Neurosci. 2006;26:9494–502.PubMed
75.
go back to reference Worden MS, Foxe JJ, Wang N, Simpson GV. Anticipatory Biasing of Visuospatial Attention Indexed by Retinotopically Specific α-Bank Electroencephalography Increases over Occipital Cortex. J Neurosci. 2000;20:RC63–3. Worden MS, Foxe JJ, Wang N, Simpson GV. Anticipatory Biasing of Visuospatial Attention Indexed by Retinotopically Specific α-Bank Electroencephalography Increases over Occipital Cortex. J Neurosci. 2000;20:RC63–3.
76.
go back to reference Goncharova II, McFarland DJ, Vaughan TM, Wolpaw JR. EMG contamination of EEG: spectral and topographical characteristics. Clin Neurophysiol. 2003;114:1580–93.PubMed Goncharova II, McFarland DJ, Vaughan TM, Wolpaw JR. EMG contamination of EEG: spectral and topographical characteristics. Clin Neurophysiol. 2003;114:1580–93.PubMed
77.
go back to reference Boersma M, Kemner C, de Reus MA, Collin G, Snijders TM, Hofman D, Buitelaar JK, Stam CJ, van den Heuvel MP. Disrupted Functional Brain Networks in Autistic Toddlers. Brain Connect. 2013;3:41–9.PubMed Boersma M, Kemner C, de Reus MA, Collin G, Snijders TM, Hofman D, Buitelaar JK, Stam CJ, van den Heuvel MP. Disrupted Functional Brain Networks in Autistic Toddlers. Brain Connect. 2013;3:41–9.PubMed
78.
go back to reference Isler JR, Martien KM, Grieve PG, Stark RI, Herbert MR. Reduced functional connectivity in visual evoked potentials in children with autism spectrum disorder. Clin Neurophysiol. 2010;121:2035–43.PubMed Isler JR, Martien KM, Grieve PG, Stark RI, Herbert MR. Reduced functional connectivity in visual evoked potentials in children with autism spectrum disorder. Clin Neurophysiol. 2010;121:2035–43.PubMed
79.
go back to reference Khan S, Gramfort A, Shetty NR, Kitzbichler MG, Ganesan S, Moran JM, Lee SM, Gabrieli JDE, Tager-Flusberg HB, Joseph RM, Herbert MR, Hamalainen MS, Kenet T. Local and long-range functional connectivity is reduced in concert in autism spectrum disorders. Proc Natl Acad Sci. 2013;110:3107–12.PubMedPubMedCentral Khan S, Gramfort A, Shetty NR, Kitzbichler MG, Ganesan S, Moran JM, Lee SM, Gabrieli JDE, Tager-Flusberg HB, Joseph RM, Herbert MR, Hamalainen MS, Kenet T. Local and long-range functional connectivity is reduced in concert in autism spectrum disorders. Proc Natl Acad Sci. 2013;110:3107–12.PubMedPubMedCentral
80.
go back to reference Vissers ME, Cohen MX, Geurts HM. Brain connectivity and high functioning autism: a promising path of research that needs refined models, methodological convergence, and stronger behavioral links. Neurosci Biobehav Rev. 2012;36:604–25.PubMed Vissers ME, Cohen MX, Geurts HM. Brain connectivity and high functioning autism: a promising path of research that needs refined models, methodological convergence, and stronger behavioral links. Neurosci Biobehav Rev. 2012;36:604–25.PubMed
81.
go back to reference Weng S-J, Wiggins JL, Peltier SJ, Carrasco M, Risi S, Lord C, Monk CS. Alterations of resting state functional connectivity in the default network in adolescents with autism spectrum disorders. Brain Res. 2010;1313:202–14.PubMed Weng S-J, Wiggins JL, Peltier SJ, Carrasco M, Risi S, Lord C, Monk CS. Alterations of resting state functional connectivity in the default network in adolescents with autism spectrum disorders. Brain Res. 2010;1313:202–14.PubMed
82.
go back to reference Fombonne E. The Changing Epidemiology of Autism. J Appl Res Intellect Disabil. 2005;18:281–94. Fombonne E. The Changing Epidemiology of Autism. J Appl Res Intellect Disabil. 2005;18:281–94.
83.
go back to reference Newschaffer CJ, Croen LA, Daniels J, Giarelli E, Grether JK, Levy SE, Mandell DS, Miller LA, Pinto-Martin J, Reaven J, Reynolds AM, Rice CE, Schendel D, Windham GC. The Epidemiology of Autism Spectrum Disorders*. Annu Rev Public Health. 2007;28:235–58.PubMed Newschaffer CJ, Croen LA, Daniels J, Giarelli E, Grether JK, Levy SE, Mandell DS, Miller LA, Pinto-Martin J, Reaven J, Reynolds AM, Rice CE, Schendel D, Windham GC. The Epidemiology of Autism Spectrum Disorders*. Annu Rev Public Health. 2007;28:235–58.PubMed
84.
go back to reference Baron-Cohen S, Lombardo MV, Auyeung B, Ashwin E, Chakrabarti B, Knickmeyer R. Why Are Autism Spectrum Conditions More Prevalent in Males? PLoS Biol. 2011;9, e1001081.PubMedPubMedCentral Baron-Cohen S, Lombardo MV, Auyeung B, Ashwin E, Chakrabarti B, Knickmeyer R. Why Are Autism Spectrum Conditions More Prevalent in Males? PLoS Biol. 2011;9, e1001081.PubMedPubMedCentral
85.
go back to reference Khouzam HR, El-Gabalawi F, Pirwani N, Priest F. Asperger’s disorder: A review of its diagnosis and treatment. Compr Psychiatry. 2004;45:184–91.PubMed Khouzam HR, El-Gabalawi F, Pirwani N, Priest F. Asperger’s disorder: A review of its diagnosis and treatment. Compr Psychiatry. 2004;45:184–91.PubMed
86.
go back to reference He BJ, Zempel JM, Snyder AZ, Raichle ME. The Temporal Structures and Functional Significance of Scale-free Brain Activity. Neuron. 2010;66:353–69.PubMedPubMedCentral He BJ, Zempel JM, Snyder AZ, Raichle ME. The Temporal Structures and Functional Significance of Scale-free Brain Activity. Neuron. 2010;66:353–69.PubMedPubMedCentral
87.
go back to reference Vinck M, Oostenveld R, van Wingerden M, Battaglia F, Pennartz CMA. An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. Neuroimage. 2011;55:1548–65.PubMed Vinck M, Oostenveld R, van Wingerden M, Battaglia F, Pennartz CMA. An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. Neuroimage. 2011;55:1548–65.PubMed
88.
go back to reference Courchesne E, Pierce K. Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection. Curr Opin Neurobiol. 2005;15:225–30.PubMed Courchesne E, Pierce K. Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection. Curr Opin Neurobiol. 2005;15:225–30.PubMed
89.
go back to reference Lázár AS, Lázár ZI, Bíró A, Győri M, Tárnok Z, Prekop C, Keszei A, Stefanik K, Gádoros J, Halász P. Reduced fronto-cortical brain connectivity during NREM sleep in Asperger syndrome: An EEG spectral and phase coherence study. Clin Neurophysiol. 2010;121:1844–54.PubMed Lázár AS, Lázár ZI, Bíró A, Győri M, Tárnok Z, Prekop C, Keszei A, Stefanik K, Gádoros J, Halász P. Reduced fronto-cortical brain connectivity during NREM sleep in Asperger syndrome: An EEG spectral and phase coherence study. Clin Neurophysiol. 2010;121:1844–54.PubMed
90.
go back to reference Mathewson KJ, Jetha MK, Drmic IE, Bryson SE, Goldberg JO, Schmidt LA. Regional EEG alpha power, coherence, and behavioral symptomatology in autism spectrum disorder. Clin Neurophysiol. 2012;123:1798–809.PubMed Mathewson KJ, Jetha MK, Drmic IE, Bryson SE, Goldberg JO, Schmidt LA. Regional EEG alpha power, coherence, and behavioral symptomatology in autism spectrum disorder. Clin Neurophysiol. 2012;123:1798–809.PubMed
91.
go back to reference Murias M, Webb SJ, Greenson J, Dawson G. Resting state cortical connectivity reflected in EEG coherence in individuals with autism. Biol Psychiatry. 2007;62:270–3.PubMedPubMedCentral Murias M, Webb SJ, Greenson J, Dawson G. Resting state cortical connectivity reflected in EEG coherence in individuals with autism. Biol Psychiatry. 2007;62:270–3.PubMedPubMedCentral
92.
go back to reference Koldewyn K, Yendiki A, Weigelt S, Gweon H, Julian J, Richardson H, Malloy C, Saxe R, Fischl B, Kanwisher N. Differences in the right inferior longitudinal fasciculus but no general disruption of white matter tracts in children with autism spectrum disorder. Proc Natl Acad Sci. 2014;111:1981–6.PubMedPubMedCentral Koldewyn K, Yendiki A, Weigelt S, Gweon H, Julian J, Richardson H, Malloy C, Saxe R, Fischl B, Kanwisher N. Differences in the right inferior longitudinal fasciculus but no general disruption of white matter tracts in children with autism spectrum disorder. Proc Natl Acad Sci. 2014;111:1981–6.PubMedPubMedCentral
93.
go back to reference Button KS, Ioannidis JPA, Mokrysz C, Nosek BA, Flint J, Robinson ESJ, Munafò MR. Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci. 2013;14:365–76.PubMed Button KS, Ioannidis JPA, Mokrysz C, Nosek BA, Flint J, Robinson ESJ, Munafò MR. Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci. 2013;14:365–76.PubMed
94.
go back to reference Chu-Shore CJ, Kramer MA, Bianchi MT, Caviness VS, Cash SS. Network Analysis: Applications for the Developing Brain. J Child Neurol. 2011;26:488–500.PubMedPubMedCentral Chu-Shore CJ, Kramer MA, Bianchi MT, Caviness VS, Cash SS. Network Analysis: Applications for the Developing Brain. J Child Neurol. 2011;26:488–500.PubMedPubMedCentral
95.
go back to reference Ecker C, Ronan L, Feng Y, Daly E, Murphy C, Ginestet CE, Brammer M, Fletcher PC, Bullmore ET, Suckling J, Baron-Cohen S, Williams S, Loth E, Murphy DGM, Bailey AJ, Baron-Cohen S, Bolton PF, Bullmore ET, Carrington S, Chakrabarti B, Daly EM, Deoni SC, Ecker C, Happe F, Henty J, Jezzard P, Johnston P, Jones DK, Lai MC, Lombardo MV, et al. Intrinsic gray-matter connectivity of the brain in adults with autism spectrum disorder. Proc Natl Acad Sci. 2013;110:13222–7.PubMedPubMedCentral Ecker C, Ronan L, Feng Y, Daly E, Murphy C, Ginestet CE, Brammer M, Fletcher PC, Bullmore ET, Suckling J, Baron-Cohen S, Williams S, Loth E, Murphy DGM, Bailey AJ, Baron-Cohen S, Bolton PF, Bullmore ET, Carrington S, Chakrabarti B, Daly EM, Deoni SC, Ecker C, Happe F, Henty J, Jezzard P, Johnston P, Jones DK, Lai MC, Lombardo MV, et al. Intrinsic gray-matter connectivity of the brain in adults with autism spectrum disorder. Proc Natl Acad Sci. 2013;110:13222–7.PubMedPubMedCentral
96.
go back to reference Stigler KA, McDonald BC, Anand A, Saykin AJ, McDougle CJ. Structural and functional magnetic resonance imaging of autism spectrum disorders. Brain Res. 2011;1380:146–61.PubMed Stigler KA, McDonald BC, Anand A, Saykin AJ, McDougle CJ. Structural and functional magnetic resonance imaging of autism spectrum disorders. Brain Res. 2011;1380:146–61.PubMed
97.
go back to reference Duffy FH, Als H. A stable pattern of EEG spectral coherence distinguishes children with autism from neuro-typical controls-a large case control study. BMC Med. 2012;10:64.PubMedPubMedCentral Duffy FH, Als H. A stable pattern of EEG spectral coherence distinguishes children with autism from neuro-typical controls-a large case control study. BMC Med. 2012;10:64.PubMedPubMedCentral
98.
go back to reference Peters JM, Taquet M, Vega C, Jeste SS, Fernández I, Tan J, Nelson CA, Sahin M, Warfield SK. Brain functional networks in syndromic and non-syndromic autism: a graph theoretical study of EEG connectivity. BMC Med. 2013;11:54.PubMedPubMedCentral Peters JM, Taquet M, Vega C, Jeste SS, Fernández I, Tan J, Nelson CA, Sahin M, Warfield SK. Brain functional networks in syndromic and non-syndromic autism: a graph theoretical study of EEG connectivity. BMC Med. 2013;11:54.PubMedPubMedCentral
99.
go back to reference Happé F, Ronald A, Plomin R. Time to give up on a single explanation for autism. Nat Neurosci. 2006;9:1218–20.PubMed Happé F, Ronald A, Plomin R. Time to give up on a single explanation for autism. Nat Neurosci. 2006;9:1218–20.PubMed
100.
go back to reference Kikuchi M, Shitamichi K, Yoshimura Y, Ueno S, Hiraishi H, Hirosawa T, Munesue T, Nakatani H, Tsubokawa T, Haruta Y, Oi M, Niida Y, Remijn GB, Takahashi T, Suzuki M, Higashida H, Minabe Y. Altered brain connectivity in 3-to 7-year-old children with autism spectrum disorder. NeuroImage Clin. 2013;2:394–401.PubMedPubMedCentral Kikuchi M, Shitamichi K, Yoshimura Y, Ueno S, Hiraishi H, Hirosawa T, Munesue T, Nakatani H, Tsubokawa T, Haruta Y, Oi M, Niida Y, Remijn GB, Takahashi T, Suzuki M, Higashida H, Minabe Y. Altered brain connectivity in 3-to 7-year-old children with autism spectrum disorder. NeuroImage Clin. 2013;2:394–401.PubMedPubMedCentral
101.
go back to reference Monk CS, Peltier SJ, Wiggins JL, Weng S-J, Carrasco M, Risi S, Lord C. Abnormalities of intrinsic functional connectivity in autism spectrum disorders. Neuroimage. 2009;47:764–72.PubMedPubMedCentral Monk CS, Peltier SJ, Wiggins JL, Weng S-J, Carrasco M, Risi S, Lord C. Abnormalities of intrinsic functional connectivity in autism spectrum disorders. Neuroimage. 2009;47:764–72.PubMedPubMedCentral
102.
go back to reference Duffy FH, Shankardass A, McAnulty GB, Als H. The relationship of Asperger’s syndrome to autism: a preliminary EEG coherence study. BMC Med. 2013;11:175.PubMedPubMedCentral Duffy FH, Shankardass A, McAnulty GB, Als H. The relationship of Asperger’s syndrome to autism: a preliminary EEG coherence study. BMC Med. 2013;11:175.PubMedPubMedCentral
103.
go back to reference Baron-Cohen S, Wheelwright S, Skinner R, Martin J, Clubley E. The Autism-Spectrum Quotient (AQ): Evidence from Asperger Syndrome/High-Functioning Autism, Malesand Females, Scientists and Mathematicians. J Autism Dev Disord. 2001;31:5–17.PubMed Baron-Cohen S, Wheelwright S, Skinner R, Martin J, Clubley E. The Autism-Spectrum Quotient (AQ): Evidence from Asperger Syndrome/High-Functioning Autism, Malesand Females, Scientists and Mathematicians. J Autism Dev Disord. 2001;31:5–17.PubMed
104.
go back to reference Hoekstra RA, Vinkhuyzen AAE, Wheelwright S, Bartels M, Boomsma DI, Baron-Cohen S, Posthuma D, van der Sluis S. The Construction and Validation of an Abridged Version of the Autism-Spectrum Quotient (AQ-Short). J Autism Dev Disord. 2011;41:589–96.PubMed Hoekstra RA, Vinkhuyzen AAE, Wheelwright S, Bartels M, Boomsma DI, Baron-Cohen S, Posthuma D, van der Sluis S. The Construction and Validation of an Abridged Version of the Autism-Spectrum Quotient (AQ-Short). J Autism Dev Disord. 2011;41:589–96.PubMed
105.
go back to reference Arfken CL, Carney S, Boutros NN. Translating biological parameters into clinically useful diagnostic tests. Curr Psychiatry Rep. 2009;11:320–3.PubMed Arfken CL, Carney S, Boutros NN. Translating biological parameters into clinically useful diagnostic tests. Curr Psychiatry Rep. 2009;11:320–3.PubMed
106.
go back to reference Arfken CL, Joseph A, Sandhu GR, Roehrs T, Douglass AB, Boutros NN. The status of sleep abnormalities as a diagnostic test for major depressive disorder. J Affect Disord. 2014;156:36–45.PubMed Arfken CL, Joseph A, Sandhu GR, Roehrs T, Douglass AB, Boutros NN. The status of sleep abnormalities as a diagnostic test for major depressive disorder. J Affect Disord. 2014;156:36–45.PubMed
Metadata
Title
Robust disruptions in electroencephalogram cortical oscillations and large-scale functional networks in autism
Authors
Sean Matlis
Katica Boric
Catherine J. Chu
Mark A. Kramer
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Neurology / Issue 1/2015
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-015-0355-8

Other articles of this Issue 1/2015

BMC Neurology 1/2015 Go to the issue