Skip to main content
Top
Published in: Alzheimer's Research & Therapy 1/2015

Open Access 01-12-2015 | Research

Alpha-synucleinopathy and neuropsychological symptoms in a population-based cohort of the elderly

Authors: Julia Zaccai, Carol Brayne, Fiona E Matthews, Paul G Ince, on behalf of the MRC Cognitive Function and Ageing Neuropathology Study

Published in: Alzheimer's Research & Therapy | Issue 1/2015

Login to get access

Abstract

Introduction

Studies with strong selection biases propose that alpha-synucleinopathy (AS) spreads upwards and downwards in the neuraxis from the medulla, that amygdala-dominant AS is strongly associated with Alzheimer’s disease (AD), and that a more severe involvement of the cerebral cortex is correlated with increasing risk of dementia. This study examines the association of AS patterns and observed neuropsychological symptoms in brains of a population-representative donor cohort.

Methods

Brains donated in 2 out of 6 cognitive function and ageing study cohorts (Cambridgeshire and Nottingham) were examined. Over 80% were >80 years old at death. The respondents were evaluated prospectively in life for cognitive decline and dementia. Immunocytochemistry for tau and alpha-synuclein (using LB509 by Zymed Laboratories) was carried out in 208 brains to establish Braak stage and the pattern and severity of AS following the dementia with Lewy bodies (DLB) consensus recommendations. Dementia, specific neuropsychological measures as measured using the Cambridge cognitive examination, the presence of hallucinations and Parkinson’s disease were investigated.

Results

Four patterns of AS were observed: no AS pathology (n = 92), AS pathology following the DLB consensus guidelines (n = 33, of which five were ‘neocortical’), amygdala-predominant AS (n = 18), and other AS patterns (n = 33). Each group was subdivided according to high/low neurofibrillary tangles (NFT) Braak stage. Results showed no association between dementia and these patterns of AS, adjusting for the presence of NFT or not. The risk of visual hallucinations shows a weak association with AS in the substantia nigra (odds ratio (OR) = 3.2; 95% confidence interval (CI) 0.5 to 15.5; P = 0.09) and amygdala (OR = 3.0; 95% CI 0.7 to 12.3; P = 0.07). The analysis is similar for auditory hallucinations in subcortical regions.

Conclusions

Among the whole population of older people, AS does not increase the risks for dementia, irrespective of Braak stage of NFT pathology. There was no evidence that the pattern of AS pathology in cortical areas was relevant to the risk of hallucination. In general, the hypothesis that AS as measured using these methods per se is a key determinant of cognitive clinical phenotypes is not supported.
Literature
1.
go back to reference Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, et al. The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer's disease. Neurology. 1991;41:479–86.CrossRefPubMed Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, et al. The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer's disease. Neurology. 1991;41:479–86.CrossRefPubMed
2.
go back to reference Braak H, Braak E. Staging of Alzheimer's disease-related neurofibrillary changes. Neurobiol Aging. 1995;16:271–8.CrossRefPubMed Braak H, Braak E. Staging of Alzheimer's disease-related neurofibrillary changes. Neurobiol Aging. 1995;16:271–8.CrossRefPubMed
3.
go back to reference Braak H, Del Tredici K, Rub U, de Vos RAI, Jansen Steur ENH, Braak E. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging. 2003;24:197–211.CrossRefPubMed Braak H, Del Tredici K, Rub U, de Vos RAI, Jansen Steur ENH, Braak E. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging. 2003;24:197–211.CrossRefPubMed
4.
go back to reference Neuropathology Group of the Medical Research Council Cognitive Function and Ageing Study. Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Lancet. 2001;357:169–75. Neuropathology Group of the Medical Research Council Cognitive Function and Ageing Study. Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Lancet. 2001;357:169–75.
5.
go back to reference Wakisaka Y, Furuta A, Tanizaki Y, Kiyohara Y, Iida M, Iwaki T. Age-associated prevalence and risk factors of Lewy body pathology in a general population: the Hisayama study. Acta Neuropathol. 2003;106:374–82.CrossRefPubMed Wakisaka Y, Furuta A, Tanizaki Y, Kiyohara Y, Iida M, Iwaki T. Age-associated prevalence and risk factors of Lewy body pathology in a general population: the Hisayama study. Acta Neuropathol. 2003;106:374–82.CrossRefPubMed
6.
go back to reference Parkkinen L, Pirttilä T, Alafuzoff I. Applicability of current staging/categorization of alpha-synuclein pathology and their clinical relevance. Acta Neuropathol. 2008;115:399–407.CrossRefPubMedCentralPubMed Parkkinen L, Pirttilä T, Alafuzoff I. Applicability of current staging/categorization of alpha-synuclein pathology and their clinical relevance. Acta Neuropathol. 2008;115:399–407.CrossRefPubMedCentralPubMed
7.
go back to reference Jellinger KA. Lewy body-related alpha-synucleinopathy in the aged human brain. J Neural Transm. 2004;111:1219–35.CrossRefPubMed Jellinger KA. Lewy body-related alpha-synucleinopathy in the aged human brain. J Neural Transm. 2004;111:1219–35.CrossRefPubMed
8.
go back to reference Horvath J, Herrmann FR, Burkhard PR, Bouras C, Kövari E. Neuropathology of dementia in a large cohort of patients with Parkinson's disease. Parkinsonism Relat Disord. 2013;19:864–8.CrossRefPubMed Horvath J, Herrmann FR, Burkhard PR, Bouras C, Kövari E. Neuropathology of dementia in a large cohort of patients with Parkinson's disease. Parkinsonism Relat Disord. 2013;19:864–8.CrossRefPubMed
9.
go back to reference Haroutunian V, Serby M, Purohit DP, Perl DP, Marin D, Lantz M, et al. Contribution of Lewy body inclusions to dementia in patients with and without Alzheimer disease neuropathological conditions. Arch Neurol. 2000;57:1145–50.CrossRefPubMed Haroutunian V, Serby M, Purohit DP, Perl DP, Marin D, Lantz M, et al. Contribution of Lewy body inclusions to dementia in patients with and without Alzheimer disease neuropathological conditions. Arch Neurol. 2000;57:1145–50.CrossRefPubMed
10.
go back to reference Hurtig HI, Trojanowski JQ, Galvin J, Ewbank D, Schmidt ML, Lee VM, et al. Alpha-synuclein cortical Lewy bodies correlate with dementia in Parkinson's disease. Neurology. 2000;54:1916–21.CrossRefPubMed Hurtig HI, Trojanowski JQ, Galvin J, Ewbank D, Schmidt ML, Lee VM, et al. Alpha-synuclein cortical Lewy bodies correlate with dementia in Parkinson's disease. Neurology. 2000;54:1916–21.CrossRefPubMed
11.
go back to reference Mattila PM, Rinne JO, Helenius H, Dickson DW, Roytta M. Alpha-synuclein-immunoreactive cortical Lewy bodies are associated with cognitive impairment in Parkinson's disease. Acta Neuropathol. 2000;100:285–90.CrossRefPubMed Mattila PM, Rinne JO, Helenius H, Dickson DW, Roytta M. Alpha-synuclein-immunoreactive cortical Lewy bodies are associated with cognitive impairment in Parkinson's disease. Acta Neuropathol. 2000;100:285–90.CrossRefPubMed
12.
go back to reference Olichney JM, Galasko D, Salmon DP, Hofstetter CR, Hansen LA, Katzman R, et al. Cognitive decline is faster in Lewy body variant than in Alzheimer's disease. Neurology. 1998;51:351–7.CrossRefPubMed Olichney JM, Galasko D, Salmon DP, Hofstetter CR, Hansen LA, Katzman R, et al. Cognitive decline is faster in Lewy body variant than in Alzheimer's disease. Neurology. 1998;51:351–7.CrossRefPubMed
13.
go back to reference Wang DS, Bennett DA, Mufson E, Cochran E, Dickson DW. Decreases in soluble alpha-synuclein in frontal cortex correlate with cognitive decline in the elderly. Neurosci Lett. 2004;359:104–8.CrossRefPubMed Wang DS, Bennett DA, Mufson E, Cochran E, Dickson DW. Decreases in soluble alpha-synuclein in frontal cortex correlate with cognitive decline in the elderly. Neurosci Lett. 2004;359:104–8.CrossRefPubMed
14.
go back to reference Parkkinen L, Soininen H, Alafuzoff I. Regional distribution of alpha-synuclein pathology in unimpaired aging and Alzheimer disease. J Neuropathol Exp Neurol. 2003;62:363–7.PubMed Parkkinen L, Soininen H, Alafuzoff I. Regional distribution of alpha-synuclein pathology in unimpaired aging and Alzheimer disease. J Neuropathol Exp Neurol. 2003;62:363–7.PubMed
15.
go back to reference Sonnen J, Larson EB, Crane PK, Haneuse S, Li G, Schellenberg GD, et al. Pathological correlates of dementia in a longitudinal, population-based sample of aging. Ann Neurol. 2007;62:406–13.CrossRefPubMed Sonnen J, Larson EB, Crane PK, Haneuse S, Li G, Schellenberg GD, et al. Pathological correlates of dementia in a longitudinal, population-based sample of aging. Ann Neurol. 2007;62:406–13.CrossRefPubMed
16.
go back to reference Jellinger KA. Age-associated prevalence and risk factors of Lewy body pathology in a general population. Acta Neuropathol. 2003;106:383–4.CrossRefPubMed Jellinger KA. Age-associated prevalence and risk factors of Lewy body pathology in a general population. Acta Neuropathol. 2003;106:383–4.CrossRefPubMed
17.
go back to reference Xuereb JH, Brayne C, Dufouil C, Gertz H, Wischik C, Harrington C, et al. Neuropathological findings in the very old. Results from the first 101 brains of a population-based longitudinal study of dementing disorders. Ann NY Acad Sci. 2000;903:490–6.CrossRefPubMed Xuereb JH, Brayne C, Dufouil C, Gertz H, Wischik C, Harrington C, et al. Neuropathological findings in the very old. Results from the first 101 brains of a population-based longitudinal study of dementing disorders. Ann NY Acad Sci. 2000;903:490–6.CrossRefPubMed
18.
go back to reference White L, Petrovitch H, Hardman J, Nelson J, Davis DG. Cerebrovascular pathology and dementia in autopsied Honolulu-Asia Aging Study participants. Ann NY Acad Sci. 2002;977:9–23.CrossRefPubMed White L, Petrovitch H, Hardman J, Nelson J, Davis DG. Cerebrovascular pathology and dementia in autopsied Honolulu-Asia Aging Study participants. Ann NY Acad Sci. 2002;977:9–23.CrossRefPubMed
19.
go back to reference McKeith I, Mintzer J, Aarsland D, Burn D, Chiu H, Cohen-Mansfield J, et al. Dementia with Lewy bodies. Lancet Neurol. 2004;3:19–28.CrossRefPubMed McKeith I, Mintzer J, Aarsland D, Burn D, Chiu H, Cohen-Mansfield J, et al. Dementia with Lewy bodies. Lancet Neurol. 2004;3:19–28.CrossRefPubMed
20.
go back to reference Zaccai J, Ince P, Brayne C. Population-based neuropathological studies of dementia: design, methods and areas of investigation - a systematic review. BMC Neurol. 2006;6:2.CrossRefPubMedCentralPubMed Zaccai J, Ince P, Brayne C. Population-based neuropathological studies of dementia: design, methods and areas of investigation - a systematic review. BMC Neurol. 2006;6:2.CrossRefPubMedCentralPubMed
21.
go back to reference Cognitive function and dementia in six areas of England and Wales: the distribution of MMSE and prevalence of GMS organicity level in the MRC CFA Study. The Medical Research Council Cognitive Function and Ageing Study (MRC CFAS). Psychol Med. 1998;28:319–35. Cognitive function and dementia in six areas of England and Wales: the distribution of MMSE and prevalence of GMS organicity level in the MRC CFA Study. The Medical Research Council Cognitive Function and Ageing Study (MRC CFAS). Psychol Med. 1998;28:319–35.
22.
go back to reference Folstein MF, Folstein SE, McHugh PR. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–98.CrossRefPubMed Folstein MF, Folstein SE, McHugh PR. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–98.CrossRefPubMed
23.
go back to reference Copeland JR, Dewey ME, Griffiths-Jones HM. A computerized psychiatric diagnostic system and case nomenclature for elderly subjects: GMS and AGECAT. Psychol Med. 1986;16:89–99.CrossRefPubMed Copeland JR, Dewey ME, Griffiths-Jones HM. A computerized psychiatric diagnostic system and case nomenclature for elderly subjects: GMS and AGECAT. Psychol Med. 1986;16:89–99.CrossRefPubMed
24.
go back to reference Roth M, Tym E, Mountjoy CQ, Hendrie H, Verma S, Goddard R. CAMDEX. A standardised instrument for the diagnosis of mental disorder in the elderly with special reference to the early detection of dementia. Br J Psychiatry. 1986;149:698–709.CrossRefPubMed Roth M, Tym E, Mountjoy CQ, Hendrie H, Verma S, Goddard R. CAMDEX. A standardised instrument for the diagnosis of mental disorder in the elderly with special reference to the early detection of dementia. Br J Psychiatry. 1986;149:698–709.CrossRefPubMed
25.
go back to reference Braak H, Braak E, Yilmazer D, de Vos RA, Jansen EN, Bohl J, et al. Amygdala pathology in Parkinson's disease. Acta Neuropathol. 1994;88:493–500.CrossRefPubMed Braak H, Braak E, Yilmazer D, de Vos RA, Jansen EN, Bohl J, et al. Amygdala pathology in Parkinson's disease. Acta Neuropathol. 1994;88:493–500.CrossRefPubMed
27.
go back to reference Del Tredici K, Rub U, De Vos RA, Bohl JR, Braak H. Where does parkinson disease pathology begin in the brain? J Neuropathol Exp Neurol. 2002;61:413–26.PubMed Del Tredici K, Rub U, De Vos RA, Bohl JR, Braak H. Where does parkinson disease pathology begin in the brain? J Neuropathol Exp Neurol. 2002;61:413–26.PubMed
28.
go back to reference Parkkinen L, Kauppinen T, Pirttila T, Autere JM, Alafuzoff I. Alpha-synuclein pathology does not predict extrapyramidal symptoms or dementia. Ann Neurol. 2005;57:82–91.CrossRefPubMed Parkkinen L, Kauppinen T, Pirttila T, Autere JM, Alafuzoff I. Alpha-synuclein pathology does not predict extrapyramidal symptoms or dementia. Ann Neurol. 2005;57:82–91.CrossRefPubMed
29.
go back to reference Saito Y, Kawashima A, Ruberu NN, Nyoka N, Fujiwara H, Koyama S, et al. Accumulation of phosphorylated alpha-synuclein in aging human brain. J Neuropathol Exp Neurol. 2003;62:644–54.PubMed Saito Y, Kawashima A, Ruberu NN, Nyoka N, Fujiwara H, Koyama S, et al. Accumulation of phosphorylated alpha-synuclein in aging human brain. J Neuropathol Exp Neurol. 2003;62:644–54.PubMed
30.
go back to reference McKeith IG, Galasko D, Kosaka K, Perry EK, Dickson DW, Hansen LA, et al. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. Neurology. 1996;47:1113–24.CrossRefPubMed McKeith IG, Galasko D, Kosaka K, Perry EK, Dickson DW, Hansen LA, et al. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. Neurology. 1996;47:1113–24.CrossRefPubMed
31.
go back to reference Zaccai J, Brayne C, McKeith I, Matthews F, Ince PG. Patterns and stages of alpha-synucleinopathy: Relevance in a population-based cohort. Neurology. 2008;70:1042–8.CrossRefPubMed Zaccai J, Brayne C, McKeith I, Matthews F, Ince PG. Patterns and stages of alpha-synucleinopathy: Relevance in a population-based cohort. Neurology. 2008;70:1042–8.CrossRefPubMed
32.
go back to reference Kosaka K, Iseki E, Odawara T, Yamamoto T. Cerebral type of Lewy body disease. Neuropathology. 1996;16:2–35.CrossRef Kosaka K, Iseki E, Odawara T, Yamamoto T. Cerebral type of Lewy body disease. Neuropathology. 1996;16:2–35.CrossRef
33.
go back to reference Hamilton RL. Lewy bodies in Alzheimer's disease: a neuropathological review of 145 cases using alpha-synuclein immunohistochemistry. Brain Pathol. 2000;10:378–84.CrossRefPubMed Hamilton RL. Lewy bodies in Alzheimer's disease: a neuropathological review of 145 cases using alpha-synuclein immunohistochemistry. Brain Pathol. 2000;10:378–84.CrossRefPubMed
34.
go back to reference Uchikado H, Lin WL, DeLucia MW, Dickson DW. Alzheimer disease with amygdala Lewy bodies: a distinct form of alpha-synucleinopathy. J Neuropathol Exp Neurol. 2006;65:685–97.CrossRefPubMed Uchikado H, Lin WL, DeLucia MW, Dickson DW. Alzheimer disease with amygdala Lewy bodies: a distinct form of alpha-synucleinopathy. J Neuropathol Exp Neurol. 2006;65:685–97.CrossRefPubMed
35.
go back to reference Marui W, Iseki E, Nakai T, Miura S, Kato M, Ueda K, et al. Progression and staging of Lewy pathology in brains from patients with dementia with Lewy bodies. J Neurol Sci. 2002;195:153–9.CrossRefPubMed Marui W, Iseki E, Nakai T, Miura S, Kato M, Ueda K, et al. Progression and staging of Lewy pathology in brains from patients with dementia with Lewy bodies. J Neurol Sci. 2002;195:153–9.CrossRefPubMed
36.
go back to reference Popescu A, Lippa CF, Lee VM, Trojanowski JQ. Lewy bodies in the amygdala: increase of alpha-synuclein aggregates in neurodegenerative diseases with tau-based inclusions. Arch Neurol. 2004;61:1915–9.CrossRefPubMed Popescu A, Lippa CF, Lee VM, Trojanowski JQ. Lewy bodies in the amygdala: increase of alpha-synuclein aggregates in neurodegenerative diseases with tau-based inclusions. Arch Neurol. 2004;61:1915–9.CrossRefPubMed
37.
go back to reference Kosaka K. Diffuse Lewy body disease. Rinsho Shinkeigaku. 1995;35:1455–6.PubMed Kosaka K. Diffuse Lewy body disease. Rinsho Shinkeigaku. 1995;35:1455–6.PubMed
38.
go back to reference Jellinger KA. A critical evaluation of current staging of alpha-synuclein pathology in Lewy body disorders. Biochim Biophys Acta. 2009;1792:730–40.CrossRefPubMed Jellinger KA. A critical evaluation of current staging of alpha-synuclein pathology in Lewy body disorders. Biochim Biophys Acta. 2009;1792:730–40.CrossRefPubMed
39.
go back to reference Foltynie T, Matthews FE, Ishihara L, Brayne C, MRC CFAS. The frequency and validity of self-reported diagnosis of Parkinson’s Disease in the UK elderly: MRC CFAS cohort. BMC Neurol. 2006;6:29.CrossRefPubMedCentralPubMed Foltynie T, Matthews FE, Ishihara L, Brayne C, MRC CFAS. The frequency and validity of self-reported diagnosis of Parkinson’s Disease in the UK elderly: MRC CFAS cohort. BMC Neurol. 2006;6:29.CrossRefPubMedCentralPubMed
40.
go back to reference Beach TG, White 3rd CL, Hladik CL, Sabbagh MN, Connor DJ, Shill HA, et al. Olfactory bulb alpha-synucleinopathy has high specificity and sensitivity for Lewy body disorders. Acta Neuropathol. 2009;117:169–74.CrossRefPubMedCentralPubMed Beach TG, White 3rd CL, Hladik CL, Sabbagh MN, Connor DJ, Shill HA, et al. Olfactory bulb alpha-synucleinopathy has high specificity and sensitivity for Lewy body disorders. Acta Neuropathol. 2009;117:169–74.CrossRefPubMedCentralPubMed
Metadata
Title
Alpha-synucleinopathy and neuropsychological symptoms in a population-based cohort of the elderly
Authors
Julia Zaccai
Carol Brayne
Fiona E Matthews
Paul G Ince
on behalf of the MRC Cognitive Function and Ageing Neuropathology Study
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Alzheimer's Research & Therapy / Issue 1/2015
Electronic ISSN: 1758-9193
DOI
https://doi.org/10.1186/s13195-015-0101-x

Other articles of this Issue 1/2015

Alzheimer's Research & Therapy 1/2015 Go to the issue