Skip to main content
Top
Published in: Gut Pathogens 1/2019

Open Access 01-12-2019 | Vibrionaceae | Research

Differential transcriptome analysis of the disease tolerant Madagascar–Malaysia crossbred black tiger shrimp, Penaeus monodon hepatopancreas in response to acute hepatopancreatic necrosis disease (AHPND) infection: inference on immune gene response and interaction

Authors: Tze Chiew Christie Soo, Sridevi Devadas, Mohamed Shariff Mohamed Din, Subha Bhassu

Published in: Gut Pathogens | Issue 1/2019

Login to get access

Abstract

Background

Penaeus monodon is the second most widely cultured marine shrimp species in the global shrimp aquaculture industry. However, the growth of P. monodon production has been constantly impaired by disease outbreaks. Recently, there is a lethal bacterial infection, known as acute hepatopancreatic necrosis disease (AHPND) caused by Vibrio parahaemolyticus AHPND strain (VpAHPND), which led to mass mortalities in P. monodon. Unfortunately, there is still insufficient knowledge about the underlying immune response of P. monodon upon AHPND infection. The present study aims to provide an insight into the antibacterial immune response elicited by P. monodon hepatopancreas towards AHPND infection.

Methods

We have employed high-throughput RNA-Seq technology to uncover the transcriptome changes of P. monodon hepatopancreas when challenged with VpAHPND. The shrimps were challenged with VpAHPND through immersion method with dissected hepatopancreas samples for the control group (APm-CTL) and treatment group at 3 (APm-T3), 6 (APm-T6), and 24 (APm-T24) hours post-AHPND infection sent for RNA-Seq. The transcriptome de novo assembly and Unigene expression determination were conducted using Trinity, Tgicl, Bowtie2, and RSEM software. The differentially expressed transcripts were functionally annotated mainly through COG, GO, and KEGG databases.

Results

The sequencing reads generated were filtered to obtain 312.77 Mb clean reads and assembled into 48662 Unigenes. Based on the DEGs pattern identified, it is inferred that the PAMPs carried by VpAHPND or associated toxins are capable of activating PRRs, which leads to subsequent pathway activation, transcriptional modification, and antibacterial responses (Phagocytosis, AMPs, proPO system). DAMPs are released in response to cell stress or damage to further activate the sequential immune responses. The comprehensive interactions between VpAHPND, chitin, GbpA, mucin, chitinase, and chitin deacetylase were postulated to be involved in bacterial colonization or antibacterial response.

Conclusions

The outcomes of this research correlate the different stages of P. monodon immune response to different time points of AHPND infection. This finding supports the development of biomarkers for the detection of early stages of VpAHPND colonization in P. monodon through host immune expression changes. The potential genes to be utilized as biomarkers include but not limited to C-type lectin, HMGB1, IMD, ALF, serine proteinase, and DSCAM.
Appendix
Available only for authorised users
Literature
1.
go back to reference Dastidar PG, Mallik A, Mandal N. Contribution of shrimp disease research to the development of the shrimp aquaculture industry: an analysis of the research and innovation structure across the countries. Scientometrics. 2013;97(3):659–74.CrossRef Dastidar PG, Mallik A, Mandal N. Contribution of shrimp disease research to the development of the shrimp aquaculture industry: an analysis of the research and innovation structure across the countries. Scientometrics. 2013;97(3):659–74.CrossRef
4.
go back to reference Chen Y, Li X, He J. Recent advances in researches on shrimp immune pathway involved in white spot syndrome virus genes regulation. J Aquac Res Dev. 2014;5(3):1. Chen Y, Li X, He J. Recent advances in researches on shrimp immune pathway involved in white spot syndrome virus genes regulation. J Aquac Res Dev. 2014;5(3):1.
5.
go back to reference Hong X, Lu L, Xu D. Progress in research on acute hepatopancreatic necrosis disease (AHPND). Aquacult Int. 2016;24(2):577–93.CrossRef Hong X, Lu L, Xu D. Progress in research on acute hepatopancreatic necrosis disease (AHPND). Aquacult Int. 2016;24(2):577–93.CrossRef
6.
go back to reference Soonthornchai W, Chaiyapechara S, Jarayabhand P, Söderhäll K, Jiravanichpaisal P. Interaction of Vibrio spp. with the inner surface of the digestive tract of Penaeus monodon. PLoS ONE. 2015;10(8):e0135783.CrossRef Soonthornchai W, Chaiyapechara S, Jarayabhand P, Söderhäll K, Jiravanichpaisal P. Interaction of Vibrio spp. with the inner surface of the digestive tract of Penaeus monodon. PLoS ONE. 2015;10(8):e0135783.CrossRef
7.
go back to reference Lee CT, Chen IT, Yang YT, Ko TP, Huang YT, Huang JY, et al. The opportunistic marine pathogen Vibrio parahaemolyticus becomes virulent by acquiring a plasmid that expresses a deadly toxin. Proc Natl Acad Sci. 2015;112(34):10798–803.CrossRef Lee CT, Chen IT, Yang YT, Ko TP, Huang YT, Huang JY, et al. The opportunistic marine pathogen Vibrio parahaemolyticus becomes virulent by acquiring a plasmid that expresses a deadly toxin. Proc Natl Acad Sci. 2015;112(34):10798–803.CrossRef
8.
go back to reference Zorriehzahra MJ, Banaederakhshan R. Early mortality syndrome (EMS) as new emerging threat in shrimp industry. Adv Anim Vet Sci. 2015;3(2S):64–72.CrossRef Zorriehzahra MJ, Banaederakhshan R. Early mortality syndrome (EMS) as new emerging threat in shrimp industry. Adv Anim Vet Sci. 2015;3(2S):64–72.CrossRef
9.
go back to reference Kondo H, Van PT, Dang LT, Hirono I. Draft genome sequence of non-Vibrio parahaemolyticus acute hepatopancreatic necrosis disease strain KC13. 17.5, isolated from diseased shrimp in Vietnam. Genome Announc. 2015;3(5):e00978-15.CrossRef Kondo H, Van PT, Dang LT, Hirono I. Draft genome sequence of non-Vibrio parahaemolyticus acute hepatopancreatic necrosis disease strain KC13. 17.5, isolated from diseased shrimp in Vietnam. Genome Announc. 2015;3(5):e00978-15.CrossRef
10.
go back to reference Devadas S, Banerjee S, Yusoff FM, Bhassu S, Shariff M. Experimental methodologies and diagnostic procedures for acute hepatopancreatic necrosis disease (AHPND). Aquaculture. 2018;499:389–400.CrossRef Devadas S, Banerjee S, Yusoff FM, Bhassu S, Shariff M. Experimental methodologies and diagnostic procedures for acute hepatopancreatic necrosis disease (AHPND). Aquaculture. 2018;499:389–400.CrossRef
11.
go back to reference Sudhagar A, Kumar G, El-Matbouli M. Transcriptome analysis based on RNA-Seq in understanding pathogenic mechanisms of diseases and the immune system of fish: a comprehensive review. Int J Mol Sci. 2018;19(1):245.CrossRef Sudhagar A, Kumar G, El-Matbouli M. Transcriptome analysis based on RNA-Seq in understanding pathogenic mechanisms of diseases and the immune system of fish: a comprehensive review. Int J Mol Sci. 2018;19(1):245.CrossRef
12.
go back to reference Sirikharin R, Taengchaiyaphum S, Sanguanrut P, Chi TD, Mavichak R, Proespraiwong P, et al. Characterization and PCR detection of binary, Pir-like toxins from Vibrio parahaemolyticus isolates that cause acute hepatopancreatic necrosis disease (AHPND) in shrimp. PLoS ONE. 2015;10(5):e0126987.CrossRef Sirikharin R, Taengchaiyaphum S, Sanguanrut P, Chi TD, Mavichak R, Proespraiwong P, et al. Characterization and PCR detection of binary, Pir-like toxins from Vibrio parahaemolyticus isolates that cause acute hepatopancreatic necrosis disease (AHPND) in shrimp. PLoS ONE. 2015;10(5):e0126987.CrossRef
13.
go back to reference Devadas S, Bhassu S, Soo TC, Iqbal SN, Yusoff FM, Shariff M. Draft genome sequence of a Vibrio parahaemolyticus strain, KS17. S5-1, with multiple antibiotic resistance genes, which causes acute hepatopancreatic necrosis disease in Penaeus monodon in the West Coast of Peninsular Malaysia. Microbiol Res Announc. 2018;7(2):e00829. Devadas S, Bhassu S, Soo TC, Iqbal SN, Yusoff FM, Shariff M. Draft genome sequence of a Vibrio parahaemolyticus strain, KS17. S5-1, with multiple antibiotic resistance genes, which causes acute hepatopancreatic necrosis disease in Penaeus monodon in the West Coast of Peninsular Malaysia. Microbiol Res Announc. 2018;7(2):e00829.
14.
go back to reference Tran L, Nunan L, Redman RM, Mohney LL, Pantoja CR, Fitzsimmons K, et al. Determination of the infectious nature of the agent of acute hepatopancreatic necrosis syndrome affecting penaeid shrimp. Dis Aquat Organ. 2013;105(1):45–55.CrossRef Tran L, Nunan L, Redman RM, Mohney LL, Pantoja CR, Fitzsimmons K, et al. Determination of the infectious nature of the agent of acute hepatopancreatic necrosis syndrome affecting penaeid shrimp. Dis Aquat Organ. 2013;105(1):45–55.CrossRef
15.
go back to reference Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–52.CrossRef Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–52.CrossRef
16.
go back to reference Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357.CrossRef Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357.CrossRef
17.
go back to reference Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011;12(1):323.CrossRef Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011;12(1):323.CrossRef
19.
go back to reference Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10.CrossRef Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10.CrossRef
20.
go back to reference Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, et al. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008;36(10):3420–35.CrossRef Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, et al. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008;36(10):3420–35.CrossRef
21.
go back to reference Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30(9):1236–40.CrossRef Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30(9):1236–40.CrossRef
22.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402–8.CrossRef Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402–8.CrossRef
23.
go back to reference Pereira JM, Hamon MA, Cossart P. A lasting impression: epigenetic memory of bacterial infections? Cell Host Microbe. 2016;19(5):579–82.CrossRef Pereira JM, Hamon MA, Cossart P. A lasting impression: epigenetic memory of bacterial infections? Cell Host Microbe. 2016;19(5):579–82.CrossRef
24.
go back to reference Pruzzo C, Vezzulli L, Colwell RR. Global impact of Vibrio cholerae interactions with chitin. Environ Microbiol. 2008;10(6):1400–10.CrossRef Pruzzo C, Vezzulli L, Colwell RR. Global impact of Vibrio cholerae interactions with chitin. Environ Microbiol. 2008;10(6):1400–10.CrossRef
25.
go back to reference O’Boyle N, Boyd A. Manipulation of intestinal epithelial cell function by the cell contact-dependent type III secretion systems of Vibrio parahaemolyticus. Front Cell Infect Microbiol. 2014;3:114.PubMedPubMedCentral O’Boyle N, Boyd A. Manipulation of intestinal epithelial cell function by the cell contact-dependent type III secretion systems of Vibrio parahaemolyticus. Front Cell Infect Microbiol. 2014;3:114.PubMedPubMedCentral
26.
go back to reference Tiruvayipati S, Bhassu S. Host, pathogen and environment: a bacterial gbpA gene expression study in response to magnesium environment and presence of prawn carapace and commercial chitin. Gut Pathog. 2016;8(1):23.CrossRef Tiruvayipati S, Bhassu S. Host, pathogen and environment: a bacterial gbpA gene expression study in response to magnesium environment and presence of prawn carapace and commercial chitin. Gut Pathog. 2016;8(1):23.CrossRef
27.
go back to reference Tiruvayipati S, Bhassu S. Host, pathogen and the environment: the case of Macrobrachium rosenbergii, Vibrio parahaemolyticus and magnesium. Gut Pathog. 2016;8(1):15.CrossRef Tiruvayipati S, Bhassu S. Host, pathogen and the environment: the case of Macrobrachium rosenbergii, Vibrio parahaemolyticus and magnesium. Gut Pathog. 2016;8(1):15.CrossRef
28.
go back to reference Macfarlane S, Woodmansey EJ, Macfarlane GT. Colonization of mucin by human intestinal bacteria and establishment of biofilm communities in a two-stage continuous culture system. Appl Environ Microbiol. 2005;71(11):7483–92.CrossRef Macfarlane S, Woodmansey EJ, Macfarlane GT. Colonization of mucin by human intestinal bacteria and establishment of biofilm communities in a two-stage continuous culture system. Appl Environ Microbiol. 2005;71(11):7483–92.CrossRef
29.
go back to reference Bhowmick R, Ghosal A, Das B, Koley H, Saha DR, Ganguly S, et al. Intestinal adherence of Vibrio cholerae involves a coordinated interaction between colonization factor GbpA and mucin. Infect Immun. 2008;76(11):4968–77.CrossRef Bhowmick R, Ghosal A, Das B, Koley H, Saha DR, Ganguly S, et al. Intestinal adherence of Vibrio cholerae involves a coordinated interaction between colonization factor GbpA and mucin. Infect Immun. 2008;76(11):4968–77.CrossRef
30.
go back to reference Landry RM, An D, Hupp JT, Singh PK, Parsek MR. Mucin-Pseudomonas aeruginosa interactions promote biofilm formation and antibiotic resistance. Mol Microbiol. 2006;59(1):142–51.CrossRef Landry RM, An D, Hupp JT, Singh PK, Parsek MR. Mucin-Pseudomonas aeruginosa interactions promote biofilm formation and antibiotic resistance. Mol Microbiol. 2006;59(1):142–51.CrossRef
31.
go back to reference Niu S, Yang L, Zuo H, Zheng J, Weng S, He J, et al. A chitinase from pacific white shrimp Litopenaeus vannamei involved in immune regulation. Dev Comp Immunol. 2018;85:161–9.CrossRef Niu S, Yang L, Zuo H, Zheng J, Weng S, He J, et al. A chitinase from pacific white shrimp Litopenaeus vannamei involved in immune regulation. Dev Comp Immunol. 2018;85:161–9.CrossRef
32.
go back to reference Sun Y, Zhang J, Xiang J. Immune function against bacteria of chitin deacetylase 1 (EcCDA1) from Exopalaemon carinicauda. Fish Shellfish Immunol. 2018;75:115–23.CrossRef Sun Y, Zhang J, Xiang J. Immune function against bacteria of chitin deacetylase 1 (EcCDA1) from Exopalaemon carinicauda. Fish Shellfish Immunol. 2018;75:115–23.CrossRef
33.
go back to reference Zhao Y, Park RD, Muzzarelli RA. Chitin deacetylases: properties and applications. Mar Drugs. 2010;8(1):24–46.CrossRef Zhao Y, Park RD, Muzzarelli RA. Chitin deacetylases: properties and applications. Mar Drugs. 2010;8(1):24–46.CrossRef
34.
go back to reference Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT. PAMP s and DAMP s: signal 0 s that spur autophagy and immunity. Immunol Rev. 2012;249(1):158–75.CrossRef Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT. PAMP s and DAMP s: signal 0 s that spur autophagy and immunity. Immunol Rev. 2012;249(1):158–75.CrossRef
35.
go back to reference Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol. 2007;81(1):1–5.CrossRef Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol. 2007;81(1):1–5.CrossRef
36.
go back to reference Chen YY, Chen JC, Lin YC, Kitikiew S, Li HF, Bai JC, et al. Endogenous molecules induced by a Pathogen-Associated Molecular Pattern (PAMP) elicit innate immunity in shrimp. PLoS ONE. 2014;9(12):e115232.CrossRef Chen YY, Chen JC, Lin YC, Kitikiew S, Li HF, Bai JC, et al. Endogenous molecules induced by a Pathogen-Associated Molecular Pattern (PAMP) elicit innate immunity in shrimp. PLoS ONE. 2014;9(12):e115232.CrossRef
37.
go back to reference Li F, Xiang J. Signaling pathways regulating innate immune responses in shrimp. Fish Shellfish Immunol. 2013;34(4):973–80.CrossRef Li F, Xiang J. Signaling pathways regulating innate immune responses in shrimp. Fish Shellfish Immunol. 2013;34(4):973–80.CrossRef
38.
go back to reference Barber GN. STING-dependent cytosolic DNA sensing pathways. Trends Immunol. 2014;35(2):88–93.CrossRef Barber GN. STING-dependent cytosolic DNA sensing pathways. Trends Immunol. 2014;35(2):88–93.CrossRef
39.
go back to reference Li H, Wang S, Lǚ K, Yin B, Xiao B, Li S, et al. An invertebrate STING from shrimp activates an innate immune defense against bacterial infection. FEBS Lett. 2017;591(7):1010–7.CrossRef Li H, Wang S, Lǚ K, Yin B, Xiao B, Li S, et al. An invertebrate STING from shrimp activates an innate immune defense against bacterial infection. FEBS Lett. 2017;591(7):1010–7.CrossRef
40.
go back to reference Chen H, Jiang Z. The essential adaptors of innate immune signaling. Protein Cell. 2013;4(1):27–39.CrossRef Chen H, Jiang Z. The essential adaptors of innate immune signaling. Protein Cell. 2013;4(1):27–39.CrossRef
41.
go back to reference Kondo T, Kawai T, Akira S. Dissecting negative regulation of Toll-like receptor signaling. Trends Immunol. 2012;33(9):449–58.CrossRef Kondo T, Kawai T, Akira S. Dissecting negative regulation of Toll-like receptor signaling. Trends Immunol. 2012;33(9):449–58.CrossRef
42.
go back to reference Amparyup P, Charoensapsri W, Tassanakajon A. Prophenoloxidase system and its role in shrimp immune responses against major pathogens. Fish Shellfish Immunol. 2013;34(4):990–1001.CrossRef Amparyup P, Charoensapsri W, Tassanakajon A. Prophenoloxidase system and its role in shrimp immune responses against major pathogens. Fish Shellfish Immunol. 2013;34(4):990–1001.CrossRef
43.
go back to reference Rao XJ, Ling E, Yu XQ. The role of lysozyme in the prophenoloxidase activation system of Manduca sexta: an in vitro approach. Dev Comp Immunol. 2010;34(3):264–71.CrossRef Rao XJ, Ling E, Yu XQ. The role of lysozyme in the prophenoloxidase activation system of Manduca sexta: an in vitro approach. Dev Comp Immunol. 2010;34(3):264–71.CrossRef
44.
go back to reference Urade Y, Hayaishi O. Prostaglandin D synthase: structure and function. Vitam Horm. 2000;58:89–120.CrossRef Urade Y, Hayaishi O. Prostaglandin D synthase: structure and function. Vitam Horm. 2000;58:89–120.CrossRef
45.
go back to reference Chang YH, Kumar R, Ng TH, Wang HC. What vaccination studies tell us about immunological memory within the innate immune system of cultured shrimp and crayfish. Dev Comp Immunol. 2018;80:53–66.CrossRef Chang YH, Kumar R, Ng TH, Wang HC. What vaccination studies tell us about immunological memory within the innate immune system of cultured shrimp and crayfish. Dev Comp Immunol. 2018;80:53–66.CrossRef
46.
go back to reference Soonthornchai W, Chaiyapechara S, Klinbunga S, Thongda W, Tangphatsornruang S, Yoocha T, et al. Differentially expressed transcripts in stomach of Penaeus monodon in response to AHPND infection. Dev Comp Immunol. 2016;65:53–63.CrossRef Soonthornchai W, Chaiyapechara S, Klinbunga S, Thongda W, Tangphatsornruang S, Yoocha T, et al. Differentially expressed transcripts in stomach of Penaeus monodon in response to AHPND infection. Dev Comp Immunol. 2016;65:53–63.CrossRef
Metadata
Title
Differential transcriptome analysis of the disease tolerant Madagascar–Malaysia crossbred black tiger shrimp, Penaeus monodon hepatopancreas in response to acute hepatopancreatic necrosis disease (AHPND) infection: inference on immune gene response and interaction
Authors
Tze Chiew Christie Soo
Sridevi Devadas
Mohamed Shariff Mohamed Din
Subha Bhassu
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Vibrionaceae
Published in
Gut Pathogens / Issue 1/2019
Electronic ISSN: 1757-4749
DOI
https://doi.org/10.1186/s13099-019-0319-4

Other articles of this Issue 1/2019

Gut Pathogens 1/2019 Go to the issue