Skip to main content
Top
Published in: Diabetology & Metabolic Syndrome 1/2019

Open Access 01-12-2019 | Obesity | Research

Higher adiponectin concentrations are associated with reduced metabolic syndrome risk independently of weight status in Brazilian adolescents

Authors: Karen Sparrenberger, Mariana Sbaraini, Felipe Vogt Cureau, Gabriela Heiden Teló, Luciana Bahia, Beatriz D. Schaan

Published in: Diabetology & Metabolic Syndrome | Issue 1/2019

Login to get access

Abstract

Objective

To evaluate the association between adiponectin concentrations and metabolic syndrome (MetS) risk and to investigate if this association is independent of weight status in adolescents.

Methods

Adiponectin concentrations and MetS risk were assessed in 4546 Brazilian adolescents (12–17 years old) enrolled in The Study of Cardiovascular Risks in Adolescents (“ERICA”), a cross-sectional multicenter study in Brazil. For analyses, adiponectin was categorized in sex and age-specific quartiles and MetS risk was expressed as a continuous score, calculated as the average of the standardized values (z-score) of the five MetS components. Multiple linear regression models were used to investigate the association between the quartiles of adiponectin and MetS risk.

Results

Adiponectin was inversely associated with waist circumference and log-transformed triglycerides, and positively associated with HDL-c. We also observed an inverse association between adiponectin concentrations and MetS risk. After adjustment for sociodemographic variables, physical activity, skipping breakfast and body mass index (BMI), higher quartiles of adiponectin remained inversely associated with waist circumference and MetS risk. A direct association between adiponectin and HDL-c was also observed. In further analysis, the sample was stratified by weight status and an inverse association between quartiles of adiponectin and MetS risk was observed in both normal weight and overweight/obese adolescents.

Conclusion

Higher adiponectin concentrations were independently and inverse associated with MetS risk in Brazilian adolescents, even after adjusting for BMI. These results were similar in normal weight and overweight/obese adolescents, suggesting that adiponectin may play a role in early development of MetS.
Appendix
Available only for authorised users
Literature
1.
go back to reference O’Neill S, O’Driscoll L. Metabolic syndrome: a closer look at the growing epidemic and its associated pathologies. Obes Rev. 2015;16:1–12.CrossRef O’Neill S, O’Driscoll L. Metabolic syndrome: a closer look at the growing epidemic and its associated pathologies. Obes Rev. 2015;16:1–12.CrossRef
2.
go back to reference Reaven GM. The metabolic syndrome: time to get off the merry-go-round? J Intern Med. 2011;269:127–36.CrossRef Reaven GM. The metabolic syndrome: time to get off the merry-go-round? J Intern Med. 2011;269:127–36.CrossRef
3.
go back to reference Tavares LF, Yokoo EM, Rosa MLG, Fonseca SC. Metabolic syndrome in Brazilian children and adolescents: systematic review. Cad Saude Col. 2010;18:469–76. Tavares LF, Yokoo EM, Rosa MLG, Fonseca SC. Metabolic syndrome in Brazilian children and adolescents: systematic review. Cad Saude Col. 2010;18:469–76.
4.
go back to reference Magnussen CG, Venn A, Thomson R, Juonala M, Srinivasan SR, Viikari JSA, et al. The Association of Pediatric LDL-cholesterol and HDL-cholesterol dyslipidemia classifications and change in dyslipidemia status with carotid intima-media thickness in adulthood: evidence from the cardiovascular risk in young Finns study, the Bogalusa heart study, and the childhood determinants of adult health (CDAH) study. J Am Coll Cardiol. 2009;53:860–9.CrossRef Magnussen CG, Venn A, Thomson R, Juonala M, Srinivasan SR, Viikari JSA, et al. The Association of Pediatric LDL-cholesterol and HDL-cholesterol dyslipidemia classifications and change in dyslipidemia status with carotid intima-media thickness in adulthood: evidence from the cardiovascular risk in young Finns study, the Bogalusa heart study, and the childhood determinants of adult health (CDAH) study. J Am Coll Cardiol. 2009;53:860–9.CrossRef
5.
go back to reference Weiss R. Childhood metabolic syndrome: must we define it to deal with it? Diabetes Care. 2011;34(Suppl 2):S171–6.CrossRef Weiss R. Childhood metabolic syndrome: must we define it to deal with it? Diabetes Care. 2011;34(Suppl 2):S171–6.CrossRef
6.
go back to reference Ebert T, Gebhardt C, Scholz M, Wohland T, Schleinitz D, Fasshauer M, et al. Relationship between 12 adipocytokines and distinct components of the metabolic syndrome. J Clinical Endocrinol Metab. 2018;103:1015–23.CrossRef Ebert T, Gebhardt C, Scholz M, Wohland T, Schleinitz D, Fasshauer M, et al. Relationship between 12 adipocytokines and distinct components of the metabolic syndrome. J Clinical Endocrinol Metab. 2018;103:1015–23.CrossRef
7.
go back to reference Calton EK, Miller VS, Soares MJ. Factors determining the risk of the metabolic syndrome: is there a central role for adiponectin? Eur J Clin Nutr. 2013;67:485–91.CrossRef Calton EK, Miller VS, Soares MJ. Factors determining the risk of the metabolic syndrome: is there a central role for adiponectin? Eur J Clin Nutr. 2013;67:485–91.CrossRef
8.
go back to reference Sahin-Efe A, Katsikeris F, Mantzoros CS. Advances in adipokines. Metabolism. 2012;61:1659–65.CrossRef Sahin-Efe A, Katsikeris F, Mantzoros CS. Advances in adipokines. Metabolism. 2012;61:1659–65.CrossRef
9.
go back to reference Katsiki N, Mantzoros C, Mikhailidis DP. Adiponectin, lipids and atherosclerosis. Curr Opin Lipidol. 2017;28:347–54.CrossRef Katsiki N, Mantzoros C, Mikhailidis DP. Adiponectin, lipids and atherosclerosis. Curr Opin Lipidol. 2017;28:347–54.CrossRef
10.
go back to reference Sparrenberger K, Cureau FV, Telo GH, Schaan BD. Adiponectin levels in Brazilian adolescents: distribution and associated factors in ERICA survey. Clin Chim Acta. 2018;479:126–31.CrossRef Sparrenberger K, Cureau FV, Telo GH, Schaan BD. Adiponectin levels in Brazilian adolescents: distribution and associated factors in ERICA survey. Clin Chim Acta. 2018;479:126–31.CrossRef
11.
go back to reference Nappo A, Gonzalez-Gil EM, Ahrens W, Bammann K, Michels N, Moreno LA, et al. Analysis of the association of leptin and adiponectin concentrations with metabolic syndrome in children: results from the IDEFICS study. Nutr Metab Cardiovasc Dis. 2017;27:543–51.CrossRef Nappo A, Gonzalez-Gil EM, Ahrens W, Bammann K, Michels N, Moreno LA, et al. Analysis of the association of leptin and adiponectin concentrations with metabolic syndrome in children: results from the IDEFICS study. Nutr Metab Cardiovasc Dis. 2017;27:543–51.CrossRef
12.
go back to reference Vicente SE, Corgosinho FC, Campos RM, Masquio DC, Silva LO, Kravchychyn AC, et al. The impact of adiponectin levels on biomarkers of inflammation among adolescents with obesity. Obes Med. 2017;5:4–10.CrossRef Vicente SE, Corgosinho FC, Campos RM, Masquio DC, Silva LO, Kravchychyn AC, et al. The impact of adiponectin levels on biomarkers of inflammation among adolescents with obesity. Obes Med. 2017;5:4–10.CrossRef
13.
go back to reference Jaakkola JM, Pahkala K, Viitala M, Ronnemaa T, Viikari J, Niinikoski H, et al. Association of adiponectin with adolescent cardiovascular health in a dietary intervention study. J Pediatr. 2015;167(353–60):e1. Jaakkola JM, Pahkala K, Viitala M, Ronnemaa T, Viikari J, Niinikoski H, et al. Association of adiponectin with adolescent cardiovascular health in a dietary intervention study. J Pediatr. 2015;167(353–60):e1.
14.
go back to reference Shafiee G, Ahadi Z, Qorbani M, Kelishadi R, Ziauddin H, Larijani B, et al. Association of adiponectin and metabolic syndrome in adolescents: the caspian- III study. J Diabetes Metab Disord. 2015;14:89.CrossRef Shafiee G, Ahadi Z, Qorbani M, Kelishadi R, Ziauddin H, Larijani B, et al. Association of adiponectin and metabolic syndrome in adolescents: the caspian- III study. J Diabetes Metab Disord. 2015;14:89.CrossRef
15.
go back to reference Li P, Jiang R, Li L, Liu C, Yang F, Qiu Y. Correlation of serum adiponectin and adiponectin gene polymorphism with metabolic syndrome in Chinese adolescents. Eur J Clin Nutr. 2015;69:62–7.CrossRef Li P, Jiang R, Li L, Liu C, Yang F, Qiu Y. Correlation of serum adiponectin and adiponectin gene polymorphism with metabolic syndrome in Chinese adolescents. Eur J Clin Nutr. 2015;69:62–7.CrossRef
16.
go back to reference Liu YL, Liang HR, Liu HT, Li SY, Zhou YY, Cheng HL, et al. Association of serum adiponectin levels with artherosclerosis and the metabolic syndrome in obese children. J Pediatr Endocrinol Metab. 2010;23:743–51.CrossRef Liu YL, Liang HR, Liu HT, Li SY, Zhou YY, Cheng HL, et al. Association of serum adiponectin levels with artherosclerosis and the metabolic syndrome in obese children. J Pediatr Endocrinol Metab. 2010;23:743–51.CrossRef
17.
go back to reference Mangge H, Almer G, Haj-Yahya S, Pilz S, Gasser R, Moller R, et al. Preatherosclerosis and adiponectin subfractions in obese adolescents. Obesity. 2008;16:2578–84.CrossRef Mangge H, Almer G, Haj-Yahya S, Pilz S, Gasser R, Moller R, et al. Preatherosclerosis and adiponectin subfractions in obese adolescents. Obesity. 2008;16:2578–84.CrossRef
18.
go back to reference Madeira IR, Bordallo MA, Carvalho CN, Gazolla FM, de Souza FM, de Matos HJ, et al. The role of metabolic syndrome components and adipokines in insulin resistance in prepubertal children. J Pediatr Endocrinol Metab. 2011;24:289–95.CrossRef Madeira IR, Bordallo MA, Carvalho CN, Gazolla FM, de Souza FM, de Matos HJ, et al. The role of metabolic syndrome components and adipokines in insulin resistance in prepubertal children. J Pediatr Endocrinol Metab. 2011;24:289–95.CrossRef
19.
go back to reference Riestra P, Garcia-Anguita A, Lasuncion MA, Cano B, de Oya M, Garces C. Relationship of adiponectin with metabolic syndrome components in pubertal children. Atherosclerosis. 2011;216:467–70.CrossRef Riestra P, Garcia-Anguita A, Lasuncion MA, Cano B, de Oya M, Garces C. Relationship of adiponectin with metabolic syndrome components in pubertal children. Atherosclerosis. 2011;216:467–70.CrossRef
20.
go back to reference Vasconcellos MT, Silva PL, Szklo M, Kuschnir MC, Klein CH, Abreu Gde A, et al. Sampling design for the Study of cardiovascular risks in adolescents (ERICA). Cad Saude Publica. 2015;31:921–30.CrossRef Vasconcellos MT, Silva PL, Szklo M, Kuschnir MC, Klein CH, Abreu Gde A, et al. Sampling design for the Study of cardiovascular risks in adolescents (ERICA). Cad Saude Publica. 2015;31:921–30.CrossRef
21.
go back to reference Cureau FV, Bloch KV, Henz A, Schaan CW, Klein CH, Oliveira CL, et al. Challenges for conducting blood collection and biochemical analysis in a large multicenter school-based study with adolescents: lessons from ERICA in Brazil. Cad Saude Publica. 2017;33:e00122816.CrossRef Cureau FV, Bloch KV, Henz A, Schaan CW, Klein CH, Oliveira CL, et al. Challenges for conducting blood collection and biochemical analysis in a large multicenter school-based study with adolescents: lessons from ERICA in Brazil. Cad Saude Publica. 2017;33:e00122816.CrossRef
22.
go back to reference Bloch KV, Cardoso MA, Sichieri R. Study of Cardiovascular Risk Factors in Adolescents (ERICA): results and potentiality. Rev Saude Publica. 2016;50:1. Bloch KV, Cardoso MA, Sichieri R. Study of Cardiovascular Risk Factors in Adolescents (ERICA): results and potentiality. Rev Saude Publica. 2016;50:1.
23.
go back to reference Zimmet P, Alberti KG, Kaufman F, Tajima N, Silink M, Arslanian S, et al. The metabolic syndrome in children and adolescents—an IDF consensus report. Pediatric diabetes. 2007;8:299–306.CrossRef Zimmet P, Alberti KG, Kaufman F, Tajima N, Silink M, Arslanian S, et al. The metabolic syndrome in children and adolescents—an IDF consensus report. Pediatric diabetes. 2007;8:299–306.CrossRef
24.
go back to reference Heshmat R, Heidari M, Ejtahed H-S, Motlagh ME, Mahdavi-Gorab A, Ziaodini H, et al. Validity of a continuous metabolic syndrome score as an index for modeling metabolic syndrome in children and adolescents: the CASPIAN-V study. Diabetol Metab Syndr. 2017;9:89.CrossRef Heshmat R, Heidari M, Ejtahed H-S, Motlagh ME, Mahdavi-Gorab A, Ziaodini H, et al. Validity of a continuous metabolic syndrome score as an index for modeling metabolic syndrome in children and adolescents: the CASPIAN-V study. Diabetol Metab Syndr. 2017;9:89.CrossRef
25.
go back to reference Villa JK, Silva AR, Santos TS, Ribeiro AQ, Sant’Ana LF. Metabolic syndrome risk assessment in children: use of a single score. Rev Paul Pediatr. 2015;33:187–93.CrossRef Villa JK, Silva AR, Santos TS, Ribeiro AQ, Sant’Ana LF. Metabolic syndrome risk assessment in children: use of a single score. Rev Paul Pediatr. 2015;33:187–93.CrossRef
26.
go back to reference Guseman EH, Eisenmann JC, Laurson KR, Cook SR, Stratbucker W. Calculating a continuous metabolic syndrome score using nationally representative reference values. Academic pediatrics. 2018;18(5):589–92.CrossRef Guseman EH, Eisenmann JC, Laurson KR, Cook SR, Stratbucker W. Calculating a continuous metabolic syndrome score using nationally representative reference values. Academic pediatrics. 2018;18(5):589–92.CrossRef
28.
go back to reference Sallis JF, Strikmiller PK, Harsha DW, Feldman HA, Ehlinger S, Stone EJ, et al. Validation of interviewer- and self-administered physical activity checklists for fifth grade students. Med Sci Sports Exerc. 1996;28:840–51.CrossRef Sallis JF, Strikmiller PK, Harsha DW, Feldman HA, Ehlinger S, Stone EJ, et al. Validation of interviewer- and self-administered physical activity checklists for fifth grade students. Med Sci Sports Exerc. 1996;28:840–51.CrossRef
29.
go back to reference Farias JCD, Lopes ADS, Mota J, Santos MP, Ribeiro JC, Hallal PC. Validade e reprodutibilidade de um questionário para medida de atividade física em adolescentes: uma adaptação do Self-Administered Physical Activity Checklist. Rev Bras Epidemiol. 2012;15:198–210.CrossRef Farias JCD, Lopes ADS, Mota J, Santos MP, Ribeiro JC, Hallal PC. Validade e reprodutibilidade de um questionário para medida de atividade física em adolescentes: uma adaptação do Self-Administered Physical Activity Checklist. Rev Bras Epidemiol. 2012;15:198–210.CrossRef
30.
go back to reference de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007;85:660–7.CrossRef de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007;85:660–7.CrossRef
31.
go back to reference Valsamakis G, Chetty R, McTernan PG, Al-Daghri NM, Barnett AH, Kumar S. Fasting serum adiponectin concentration is reduced in Indo-Asian subjects and is related to HDL cholesterol. Diabetes Obes Metab. 2003;5:131–5.CrossRef Valsamakis G, Chetty R, McTernan PG, Al-Daghri NM, Barnett AH, Kumar S. Fasting serum adiponectin concentration is reduced in Indo-Asian subjects and is related to HDL cholesterol. Diabetes Obes Metab. 2003;5:131–5.CrossRef
32.
go back to reference Papoutsakis C, Yannakoulia M, Ntalla I, Dedoussis GV. Metabolic syndrome in a Mediterranean pediatric cohort: prevalence using International Diabetes Federation-derived criteria and associations with adiponectin and leptin. Metabolism. 2012;61:140–5.CrossRef Papoutsakis C, Yannakoulia M, Ntalla I, Dedoussis GV. Metabolic syndrome in a Mediterranean pediatric cohort: prevalence using International Diabetes Federation-derived criteria and associations with adiponectin and leptin. Metabolism. 2012;61:140–5.CrossRef
33.
go back to reference Shaibi GQ, Cruz ML, Weigensberg MJ, Toledo-Corral CM, Lane CJ, Kelly LA, et al. Adiponectin independently predicts metabolic syndrome in overweight Latino youth. J Clin Endocrinol Metab. 2007;92:1809–13.CrossRef Shaibi GQ, Cruz ML, Weigensberg MJ, Toledo-Corral CM, Lane CJ, Kelly LA, et al. Adiponectin independently predicts metabolic syndrome in overweight Latino youth. J Clin Endocrinol Metab. 2007;92:1809–13.CrossRef
34.
go back to reference Ntzouvani A, Fragopoulou E, Panagiotakos D, Pitsavos C, Antonopoulou S. Reduced circulating adiponectin levels are associated with the metabolic syndrome independently of obesity, lipid indices and serum insulin levels: a cross-sectional study. Lipids Health Dis. 2016;15:140.CrossRef Ntzouvani A, Fragopoulou E, Panagiotakos D, Pitsavos C, Antonopoulou S. Reduced circulating adiponectin levels are associated with the metabolic syndrome independently of obesity, lipid indices and serum insulin levels: a cross-sectional study. Lipids Health Dis. 2016;15:140.CrossRef
35.
go back to reference Kynde I, Heitmann BL, Bygbjerg IC, Andersen LB, Helge JW. Hypoadiponectinemia in overweight children contributes to a negative metabolic risk profile 6 years later. Metabolism. 2009;58:1817–24.CrossRef Kynde I, Heitmann BL, Bygbjerg IC, Andersen LB, Helge JW. Hypoadiponectinemia in overweight children contributes to a negative metabolic risk profile 6 years later. Metabolism. 2009;58:1817–24.CrossRef
36.
go back to reference Perez CM, Ortiz AP, Fuentes-Mattei E, Velazquez-Torres G, Santiago D, Giovannetti K, et al. High prevalence of cardiometabolic risk factors in Hispanic adolescents: correlations with adipocytokines and markers of inflammation. J Immigrant Minor Health. 2014;16:865–73.CrossRef Perez CM, Ortiz AP, Fuentes-Mattei E, Velazquez-Torres G, Santiago D, Giovannetti K, et al. High prevalence of cardiometabolic risk factors in Hispanic adolescents: correlations with adipocytokines and markers of inflammation. J Immigrant Minor Health. 2014;16:865–73.CrossRef
37.
go back to reference Gilardini L, McTernan PG, Girola A, da Silva NF, Alberti L, Kumar S, et al. Adiponectin is a candidate marker of metabolic syndrome in obese children and adolescents. Atherosclerosis. 2006;189:401–7.CrossRef Gilardini L, McTernan PG, Girola A, da Silva NF, Alberti L, Kumar S, et al. Adiponectin is a candidate marker of metabolic syndrome in obese children and adolescents. Atherosclerosis. 2006;189:401–7.CrossRef
38.
go back to reference Ejtahed HS, Qorbani M, Motlagh ME, Angoorani P, Hasani-Ranjbar S, Ziaodini H, et al. Association of anthropometric indices with continuous metabolic syndrome in children and adolescents: the CASPIAN-V study. Eating Weight Disorders. 2017;23(5):597–604.CrossRef Ejtahed HS, Qorbani M, Motlagh ME, Angoorani P, Hasani-Ranjbar S, Ziaodini H, et al. Association of anthropometric indices with continuous metabolic syndrome in children and adolescents: the CASPIAN-V study. Eating Weight Disorders. 2017;23(5):597–604.CrossRef
39.
go back to reference Andersen LB, Lauersen JB, Brond JC, Anderssen SA, Sardinha LB, Steene-Johannessen J, et al. A new approach to define and diagnose cardiometabolic disorder in children. J Diabetes Res. 2015;2015:539835.CrossRef Andersen LB, Lauersen JB, Brond JC, Anderssen SA, Sardinha LB, Steene-Johannessen J, et al. A new approach to define and diagnose cardiometabolic disorder in children. J Diabetes Res. 2015;2015:539835.CrossRef
40.
go back to reference Lara-Castro C, Luo N, Wallace P, Klein RL, Garvey WT. Adiponectin multimeric complexes and the metabolic syndrome trait cluster. Diabetes. 2006;55:249–59.CrossRef Lara-Castro C, Luo N, Wallace P, Klein RL, Garvey WT. Adiponectin multimeric complexes and the metabolic syndrome trait cluster. Diabetes. 2006;55:249–59.CrossRef
41.
go back to reference Murdolo G, Nowotny B, Celi F, Donati M, Bini V, Papi F, et al. Inflammatory adipokines, high molecular weight adiponectin, and insulin resistance: a population-based survey in prepubertal schoolchildren. PLoS ONE. 2011;6:e17264.CrossRef Murdolo G, Nowotny B, Celi F, Donati M, Bini V, Papi F, et al. Inflammatory adipokines, high molecular weight adiponectin, and insulin resistance: a population-based survey in prepubertal schoolchildren. PLoS ONE. 2011;6:e17264.CrossRef
42.
go back to reference Frederiksen L, Nielsen TL, Wraae K, Hagen C, Frystyk J, Flyvbjerg A, et al. Subcutaneous rather than visceral adipose tissue is associated with adiponectin levels and insulin resistance in young men. J Clin Endocrinol Metab. 2009;94:4010–5.CrossRef Frederiksen L, Nielsen TL, Wraae K, Hagen C, Frystyk J, Flyvbjerg A, et al. Subcutaneous rather than visceral adipose tissue is associated with adiponectin levels and insulin resistance in young men. J Clin Endocrinol Metab. 2009;94:4010–5.CrossRef
43.
go back to reference Reneau J, Goldblatt M, Gould J, Kindel T, Kastenmeier A, Higgins R, et al. Effect of adiposity on tissue-specific adiponectin secretion. PLoS ONE. 2018;13:e0198889.CrossRef Reneau J, Goldblatt M, Gould J, Kindel T, Kastenmeier A, Higgins R, et al. Effect of adiposity on tissue-specific adiponectin secretion. PLoS ONE. 2018;13:e0198889.CrossRef
Metadata
Title
Higher adiponectin concentrations are associated with reduced metabolic syndrome risk independently of weight status in Brazilian adolescents
Authors
Karen Sparrenberger
Mariana Sbaraini
Felipe Vogt Cureau
Gabriela Heiden Teló
Luciana Bahia
Beatriz D. Schaan
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Diabetology & Metabolic Syndrome / Issue 1/2019
Electronic ISSN: 1758-5996
DOI
https://doi.org/10.1186/s13098-019-0435-9

Other articles of this Issue 1/2019

Diabetology & Metabolic Syndrome 1/2019 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.