Skip to main content
Top
Published in: Diabetology & Metabolic Syndrome 1/2019

Open Access 01-12-2019 | Insulins | Research

Stem cells from human exfoliated deciduous teeth ameliorate type II diabetic mellitus in Goto-Kakizaki rats

Authors: Nanquan Rao, Xiaotong Wang, Yue Zhai, Jingzhi Li, Jing Xie, Yuming Zhao, Lihong Ge

Published in: Diabetology & Metabolic Syndrome | Issue 1/2019

Login to get access

Abstract

Background

By 2030, diabetes mellitus (DM) will be the 7th leading cause of death worldwide. Type 2 DM (T2DM) is the most common type of DM and is characterized by insulin resistance and defective β-cell secretory function. Stem cells from human exfoliated deciduous teeth (SHED) are favorable seed cells for mesenchymal stem cells (MSCs)-based therapy due to their higher proliferation rates and easier access to retrieval. Currently, no study has revealed the therapeutic efficiency of MSCs for T2DM in Goto-Kakizaki (GK) rats. Hence, we aimed to explore the effect of SHED on T2DM in GK rats.

Materials and methods

We investigated the effects of SHED on the progression of T2DM in GK rats. SHED and bone marrow mesenchymal stem cells (BMSCs) were injected via the tail vein. Body weight, fasting blood glucose and non-fasting blood glucose were measured before and after administration. At 8 weeks after injection, intraperitoneal insulin tolerance tests (IPITTs) and insulin release tests (IRTs) were performed. Additionally, hematoxylin–eosin (HE) staining, periodic acid-Schiff (PAS) staining and double-label immunofluorescence staining were used to explore the pathological changes in pancreatic islets and the liver. Immunohistochemistry (IHC) was employed to detect SHED engraftment in the liver. Additionally, real-time PCR and western blotting were used to explore glycogen synthesis, glycolysis and gluconeogenesis in the liver.

Results

At 8 weeks after SHED injection, T2DM was dramatically attenuated, including hyperglycemia, IPGTT and IRT. Additionally, histological analysis showed that SHED injection improved pancreatic islet and liver damage. Real-time PCR analysis showed that SHED significantly reversed the diabetic-induced increase of G-6-Pase, Pck1 and PK; and significantly reversed the diabetic-induced decrease of GSK3β, GLUT2, and PFKL. In addition, western blotting demonstrated that SHED significantly reversed the diabetic-induced increase of G-6-Pase and reversed the diabetic-induced decrease of GLUT2, GSK3β and PFKM.

Conclusion

Stem cells from human exfoliated deciduous teeth offers a potentially effective therapeutic modality for ameliorating T2DM, including hyperglycemia, insulin resistance, pancreatic islets and liver damage, and decreased glycogen synthesis, inhibited glycolysis and increased gluconeogenesis in the liver.
Literature
2.
go back to reference Association AD. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2012;31(Suppl. 1):S55–60. Association AD. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2012;31(Suppl. 1):S55–60.
3.
go back to reference Inzucchi SE. Oral antihyperglycemic therapy for type 2 diabetes: scientific review. JAMA. 2002;287(3):373.CrossRef Inzucchi SE. Oral antihyperglycemic therapy for type 2 diabetes: scientific review. JAMA. 2002;287(3):373.CrossRef
4.
go back to reference Rangel EB. The metabolic and toxicological considerations for immunosuppressive drugs used during pancreas transplantation. Expert Opin Drug Metab Toxicol. 2012;8(12):1531–48.CrossRef Rangel EB. The metabolic and toxicological considerations for immunosuppressive drugs used during pancreas transplantation. Expert Opin Drug Metab Toxicol. 2012;8(12):1531–48.CrossRef
5.
go back to reference Kandaswamy R, Skeans MA, Gustafson SK, et al. OPTN/SRTR 2013 annual data report: pancreas. Am J Transplant. 2015;15(S2):1–20.CrossRef Kandaswamy R, Skeans MA, Gustafson SK, et al. OPTN/SRTR 2013 annual data report: pancreas. Am J Transplant. 2015;15(S2):1–20.CrossRef
6.
go back to reference Sharpe PT. Dental mesenchymal stem cells. Development. 2016;143(13):2273–80.CrossRef Sharpe PT. Dental mesenchymal stem cells. Development. 2016;143(13):2273–80.CrossRef
7.
go back to reference Shin TH, Kim HS, Choi SW, Kang KS. Mesenchymal stem cell therapy for inflammatory skin diseases: clinical potential and mode of action. Int J Mol Sci. 2017;18(2):E244.CrossRef Shin TH, Kim HS, Choi SW, Kang KS. Mesenchymal stem cell therapy for inflammatory skin diseases: clinical potential and mode of action. Int J Mol Sci. 2017;18(2):E244.CrossRef
8.
go back to reference Horwitz EM, Prockop DJ, Fitzpatrick LA, Koo WW, Gordon PL, Neel M, Sussman M, Orchard P, Marx JC, Pyeritz RE, Brenner MK. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med. 1999;5:309–13.CrossRef Horwitz EM, Prockop DJ, Fitzpatrick LA, Koo WW, Gordon PL, Neel M, Sussman M, Orchard P, Marx JC, Pyeritz RE, Brenner MK. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med. 1999;5:309–13.CrossRef
9.
go back to reference Haber Tom, Baruch Limor, Machlufa Marcelle. Ultrasound-mediated mesenchymal stem cells transfection as a targeted cancer therapy platform. Sci Rep. 2017;7:42046.CrossRef Haber Tom, Baruch Limor, Machlufa Marcelle. Ultrasound-mediated mesenchymal stem cells transfection as a targeted cancer therapy platform. Sci Rep. 2017;7:42046.CrossRef
10.
go back to reference Boumaza I, Srinivasan S, Witt WT, et al. Autologous bone marrow derived rat mesenchymal stem cells promote PDX-1 and insulin expression in the islets, alter T cell cytokine pattern and preserve regulatory T cells in the periphery and induce sustained normoglycemia. J Autoimmun. 2009;32:33–42.CrossRef Boumaza I, Srinivasan S, Witt WT, et al. Autologous bone marrow derived rat mesenchymal stem cells promote PDX-1 and insulin expression in the islets, alter T cell cytokine pattern and preserve regulatory T cells in the periphery and induce sustained normoglycemia. J Autoimmun. 2009;32:33–42.CrossRef
11.
go back to reference Jurewicz M, Yang S, Augello A, Godwin JG, Moore RF, Azzi J, Fiorina P, Atkinson M, Sayegh MH, Abdi R. Congenic mesenchymal stem cell therapy reverses hyperglycemia in experimental type 1 diabetes. Diabetes. 2010;59:3139–47.CrossRef Jurewicz M, Yang S, Augello A, Godwin JG, Moore RF, Azzi J, Fiorina P, Atkinson M, Sayegh MH, Abdi R. Congenic mesenchymal stem cell therapy reverses hyperglycemia in experimental type 1 diabetes. Diabetes. 2010;59:3139–47.CrossRef
12.
go back to reference Ezquer F, Ezquer M, Simon V, Conget P. The antidiabetic effect of MSCs is not impaired by insulin prophylaxis and is not improved by a second dose of cells. PLoS ONE. 2011;6:e16566.CrossRef Ezquer F, Ezquer M, Simon V, Conget P. The antidiabetic effect of MSCs is not impaired by insulin prophylaxis and is not improved by a second dose of cells. PLoS ONE. 2011;6:e16566.CrossRef
13.
go back to reference Si Y, Zhao Y, Hao H, Liu J, Guo Y, Mu Y, Shen J, Cheng Y, Fu X, Han W. Infusion of mesenchymal stem cells ameliorates hyperglycemia in type 2 diabetic rats identification of a novel role in improving insulin sensitivity. Diabetes. 2012;61(6):1616–25.CrossRef Si Y, Zhao Y, Hao H, Liu J, Guo Y, Mu Y, Shen J, Cheng Y, Fu X, Han W. Infusion of mesenchymal stem cells ameliorates hyperglycemia in type 2 diabetic rats identification of a novel role in improving insulin sensitivity. Diabetes. 2012;61(6):1616–25.CrossRef
14.
go back to reference Bhansali A, Upreti V, Khandelwal N, Marwaha N, Gupta V, Sachdeva N, Sharma RR, Saluja K, Dutta P, Walia R, Minz R, Bhadada S, Das S, Ramakrishnan S. Efficacy of autologous bone marrow-derived stem cell transplantation in patients with type 2 diabetes mellitus. Stem Cells Dev. 2009;18(10):1407–16.CrossRef Bhansali A, Upreti V, Khandelwal N, Marwaha N, Gupta V, Sachdeva N, Sharma RR, Saluja K, Dutta P, Walia R, Minz R, Bhadada S, Das S, Ramakrishnan S. Efficacy of autologous bone marrow-derived stem cell transplantation in patients with type 2 diabetes mellitus. Stem Cells Dev. 2009;18(10):1407–16.CrossRef
15.
go back to reference Fiorina P, Jurewicz M, Augello A, Vergani A, Dada S, La Rosa S, Selig M, Godwin J, Law K, Placidi C, Smith RN, Capella C, Rodig S, Adra CN, Atkinson M, Sayegh MH, Abdi R. Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes. J Immunol. 2009;183:993–1004.CrossRef Fiorina P, Jurewicz M, Augello A, Vergani A, Dada S, La Rosa S, Selig M, Godwin J, Law K, Placidi C, Smith RN, Capella C, Rodig S, Adra CN, Atkinson M, Sayegh MH, Abdi R. Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes. J Immunol. 2009;183:993–1004.CrossRef
16.
go back to reference Ben-Ami E, Berrih-Aknin S, Miller A. Mesenchymal stem cells as an immunomodulatory therapeutic strategy for autoimmune diseases. Autoimmun Rev. 2011;10:410–5.CrossRef Ben-Ami E, Berrih-Aknin S, Miller A. Mesenchymal stem cells as an immunomodulatory therapeutic strategy for autoimmune diseases. Autoimmun Rev. 2011;10:410–5.CrossRef
17.
go back to reference Lechner A, Yang YG, Blacken RA, Wang L, Nolan AL, Habener JF. No evidence for significant transdifferentiation of bone marrow into pancreatic beta-cells in vivo. Diabetes. 2004;53(3):616–23.CrossRef Lechner A, Yang YG, Blacken RA, Wang L, Nolan AL, Habener JF. No evidence for significant transdifferentiation of bone marrow into pancreatic beta-cells in vivo. Diabetes. 2004;53(3):616–23.CrossRef
18.
go back to reference Maccario R, Podestà M, Moretta A, Cometa A, Comoli P, Montagna D, Daudt L, Ibatici A, Piaggio G, Pozzi S, Frassoni F, Locatelli F. Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4þ T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica. 2005;90:516–25.PubMed Maccario R, Podestà M, Moretta A, Cometa A, Comoli P, Montagna D, Daudt L, Ibatici A, Piaggio G, Pozzi S, Frassoni F, Locatelli F. Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4þ T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica. 2005;90:516–25.PubMed
19.
go back to reference Li N, Hua J. Interactions between mesenchymal stem cells and the immune system. Cell Mol Life Sci. 2017;74(13):2345–60.CrossRef Li N, Hua J. Interactions between mesenchymal stem cells and the immune system. Cell Mol Life Sci. 2017;74(13):2345–60.CrossRef
20.
go back to reference Rasmusson I, Ringden O, Sundberg B, et al. Mesenchymal stem cells inhibit lymphocyte proliferation by mitogens and alloantigens by different mechanisms. Exp Cell Res. 2005;305:33–41.CrossRef Rasmusson I, Ringden O, Sundberg B, et al. Mesenchymal stem cells inhibit lymphocyte proliferation by mitogens and alloantigens by different mechanisms. Exp Cell Res. 2005;305:33–41.CrossRef
21.
go back to reference Phinney DG, Prockop DJ. Mesenchymal stromal cells and immunomodulation: a gathering of regulatory immune cells. Cytotherapy. 2016;18(2):160–71.CrossRef Phinney DG, Prockop DJ. Mesenchymal stromal cells and immunomodulation: a gathering of regulatory immune cells. Cytotherapy. 2016;18(2):160–71.CrossRef
22.
go back to reference Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98:1076–84.CrossRef Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98:1076–84.CrossRef
23.
go back to reference Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA. 2003;100(10):5807–12.CrossRef Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA. 2003;100(10):5807–12.CrossRef
24.
go back to reference Shimojima C, Takeuchi H, Jin S, Parajuli B, Hattori H, Suzumura A, Hibi H, Ueda M, Yamamoto A. Conditioned medium from the stem cells of human exfoliated deciduous teeth ameliorates experimental autoimmune encephalomyelitis. J Immunol. 2016;196(10):4164–71.CrossRef Shimojima C, Takeuchi H, Jin S, Parajuli B, Hattori H, Suzumura A, Hibi H, Ueda M, Yamamoto A. Conditioned medium from the stem cells of human exfoliated deciduous teeth ameliorates experimental autoimmune encephalomyelitis. J Immunol. 2016;196(10):4164–71.CrossRef
25.
go back to reference Kanafi MM, Rajeshwari YB, Gupta S, Dadheech N, Nair PD, Gupta PK, Bhonde RR. Transplantation of islet-like cell clusters derived from human dental pulp stem cells restores normoglycemia in diabetic mice. Cytotherapy. 2013;15(10):1228–36.CrossRef Kanafi MM, Rajeshwari YB, Gupta S, Dadheech N, Nair PD, Gupta PK, Bhonde RR. Transplantation of islet-like cell clusters derived from human dental pulp stem cells restores normoglycemia in diabetic mice. Cytotherapy. 2013;15(10):1228–36.CrossRef
26.
go back to reference Yamaza T, Alatas FS, Yuniartha R, Yamaza H, Fujiyoshi JK, Yanagi Y, Yoshimaru K, Hayashida M, Matsuura T, Aijima R, Ihara K, Ohga S, Shi S, Nonaka K, Taguchi T. In vivo hepatogenic capacity and therapeutic potential of stem cells from human exfoliated deciduous teeth in liver fibrosis in mice. Stem Cell Res Ther. 2015;6:171.CrossRef Yamaza T, Alatas FS, Yuniartha R, Yamaza H, Fujiyoshi JK, Yanagi Y, Yoshimaru K, Hayashida M, Matsuura T, Aijima R, Ihara K, Ohga S, Shi S, Nonaka K, Taguchi T. In vivo hepatogenic capacity and therapeutic potential of stem cells from human exfoliated deciduous teeth in liver fibrosis in mice. Stem Cell Res Ther. 2015;6:171.CrossRef
27.
go back to reference Yamaza T, Kentaro A, Chen C, Liu Y, Shi Y, Gronthos S, Wang S, Shi S. Immunomodulatory properties of stem cells from human exfoliated deciduous teeth. Stem Cell Res Ther. 2010;1(1):5.CrossRef Yamaza T, Kentaro A, Chen C, Liu Y, Shi Y, Gronthos S, Wang S, Shi S. Immunomodulatory properties of stem cells from human exfoliated deciduous teeth. Stem Cell Res Ther. 2010;1(1):5.CrossRef
28.
go back to reference Taghipour Z, Karbalaie K, Kiani A, Niapour A, Bahramian H, Nasr-Esfahani MH, Baharvand H. Transplantation of undifferentiated and induced human exfoliated deciduous teeth-derived stem cells promote functional recovery of rat spinal cord contusion injury model. Stem Cells Dev. 2012;21(10):1794–802.CrossRef Taghipour Z, Karbalaie K, Kiani A, Niapour A, Bahramian H, Nasr-Esfahani MH, Baharvand H. Transplantation of undifferentiated and induced human exfoliated deciduous teeth-derived stem cells promote functional recovery of rat spinal cord contusion injury model. Stem Cells Dev. 2012;21(10):1794–802.CrossRef
29.
go back to reference Kuwabara WMT, Panveloski-Costa AC, Yokota CNF, Pereira JNB, Filho JM, Torres RP, Hirabara SM, Curi R, Alba-Loureiro TC. Comparison of Goto-Kakizaki rats and high fat diet-induced obese rats: are they reliable models to study type 2 diabetes mellitus? PLoS ONE. 2017;12(12):e0189622.CrossRef Kuwabara WMT, Panveloski-Costa AC, Yokota CNF, Pereira JNB, Filho JM, Torres RP, Hirabara SM, Curi R, Alba-Loureiro TC. Comparison of Goto-Kakizaki rats and high fat diet-induced obese rats: are they reliable models to study type 2 diabetes mellitus? PLoS ONE. 2017;12(12):e0189622.CrossRef
30.
go back to reference Portha B, Lacraz G, Dolz M, Giroix MH, Homo-Delarche F, Movassat J. Issues surrounding beta-cells and their roles in type 2 diabetes. What tell us the GK rat model. Expert Rev Endocrinol Metab. 2007;2:785–95.CrossRef Portha B, Lacraz G, Dolz M, Giroix MH, Homo-Delarche F, Movassat J. Issues surrounding beta-cells and their roles in type 2 diabetes. What tell us the GK rat model. Expert Rev Endocrinol Metab. 2007;2:785–95.CrossRef
Metadata
Title
Stem cells from human exfoliated deciduous teeth ameliorate type II diabetic mellitus in Goto-Kakizaki rats
Authors
Nanquan Rao
Xiaotong Wang
Yue Zhai
Jingzhi Li
Jing Xie
Yuming Zhao
Lihong Ge
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Diabetology & Metabolic Syndrome / Issue 1/2019
Electronic ISSN: 1758-5996
DOI
https://doi.org/10.1186/s13098-019-0417-y

Other articles of this Issue 1/2019

Diabetology & Metabolic Syndrome 1/2019 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.