Skip to main content
Top
Published in: Diabetology & Metabolic Syndrome 1/2018

Open Access 01-12-2018 | Research

Antidiabetic efficacy of lactoferrin in type 2 diabetic pediatrics; controlling impact on PPAR-γ, SIRT-1, and TLR4 downstream signaling pathway

Authors: Waleed A. Mohamed, Mona F. Schaalan

Published in: Diabetology & Metabolic Syndrome | Issue 1/2018

Login to get access

Abstract

The current study aims to investigate the antidiabetic efficacy of camel milk-derived lactoferrin and potential involvement of PPAR-γ and SIRT-1 via TLR-4/NFκB signaling pathway in obese diabetic pediatric population. Sixty young obese patients with type 2 diabetes were selected from the Pediatric Endocrine Metabolic Unit, Cairo University and were randomly divided among two age and sex-matched groups so as to receive either standard therapy without lactoferrin in one arm or to be treated with oral lactoferrin capsules (250 mg/day, p.o) for 3 months in the other arm. Both groups were compared to 50 control healthy volunteers. Measurements of HbA1c, lipid profile, antioxidant capacity (SOD, Nrf2), proinflammatory interleukins; (IL-1β, IL-6, IL-18), Cyclin D-1, lipocalin-2, and PPAR-γ expression levels were done at the beginning and 3 months after daily consumption of lactoferrin. The mechanistic involvement of TLR4-SIRT-1-NFκB signaling cascade was also investigated. The antidiabetic efficacy of lactoferrin was confirmed by significant improvement of the baseline levels of HbA1c, BMI and lipid profile of the obese pediatric cohort, which is evidenced by increased PPAR-γ and SIRT-1 expression. Moreover, the anti-inflammatory effect was evident by the significant decrease in serum levels of IL-1β, IL-6, IL-18, TNF-α, lipocalin 2 in type 2 diabetic post-treatment group, which corresponded by decreased NFκB downstream signaling indicators. The antioxidant efficacy was evident by stimulated SOD levels and NrF2 expression; compared with the pre-treatment group (all at P ≤ 0.001). The consumption of high concentrations of lactoferrin explains its hypoglycemic efficacy and counts for its insulin-sensitizing, anti-inflammatory and immunomodulatory effects via TLR4-NFκB-SIRT-1 signaling cascade. Recommendations on regular intake of lactoferrin could ensure better glycemic control, compared to conventional antidiabetics alone.
Literature
1.
go back to reference Golden SH, Sapir T. Methods for insulin delivery and glucose monitoring in diabetes: summary of a comparative effectiveness review. J Manag Care Pharm. 2012;18:1–17. Golden SH, Sapir T. Methods for insulin delivery and glucose monitoring in diabetes: summary of a comparative effectiveness review. J Manag Care Pharm. 2012;18:1–17.
2.
go back to reference Schreiver C, Jacoby U, Watzer B, Thomas A, Haffner D, Fischer D. Glycaemic variability in pediatric patients with type 1 diabetes on continuous subcutaneous insulin infusion (CSII) or multiple daily injections (MDI): a cross-sectional cohort study. Clin Endocrinol. 2013;79:641–7. Schreiver C, Jacoby U, Watzer B, Thomas A, Haffner D, Fischer D. Glycaemic variability in pediatric patients with type 1 diabetes on continuous subcutaneous insulin infusion (CSII) or multiple daily injections (MDI): a cross-sectional cohort study. Clin Endocrinol. 2013;79:641–7.
3.
go back to reference Ryba-Stanisławowska M, Rybarczyk-Kapturska K, Myśliwiec M, Myśliwska J. Elevated levels of serum IL-12 and IL-18 are associated with lower frequencies of CD4+ CD25highFOXP3+ regulatory T cells in young patients with type 1 diabetes. Inflammation. 2014;37:1513–20.CrossRefPubMedPubMedCentral Ryba-Stanisławowska M, Rybarczyk-Kapturska K, Myśliwiec M, Myśliwska J. Elevated levels of serum IL-12 and IL-18 are associated with lower frequencies of CD4+ CD25highFOXP3+ regulatory T cells in young patients with type 1 diabetes. Inflammation. 2014;37:1513–20.CrossRefPubMedPubMedCentral
4.
go back to reference Van Belle TL, Coppieters KT, von Herrath MG. Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol Rev. 2011;91:79–118.CrossRefPubMed Van Belle TL, Coppieters KT, von Herrath MG. Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol Rev. 2011;91:79–118.CrossRefPubMed
5.
go back to reference Eizirik DL, Colli ML, Ortis F. The role of inflammation in insulitis and beta-cell loss in type 1 diabetes. Nat Rev Endocrinol. 2009;5:219–26.CrossRefPubMed Eizirik DL, Colli ML, Ortis F. The role of inflammation in insulitis and beta-cell loss in type 1 diabetes. Nat Rev Endocrinol. 2009;5:219–26.CrossRefPubMed
6.
go back to reference Wolter TR, Wong R, Sarkar SA, Zipris D. DNA microarray analysis for the identification of innate immune pathways implicated in virus-induced autoimmune diabetes. Clin Immunol. 2009;132:103–15.CrossRefPubMed Wolter TR, Wong R, Sarkar SA, Zipris D. DNA microarray analysis for the identification of innate immune pathways implicated in virus-induced autoimmune diabetes. Clin Immunol. 2009;132:103–15.CrossRefPubMed
7.
go back to reference Londono P, Komura A, Hara N, Zipris D. Brief dexamethasone treatment during acute infection prevents virus-induced autoimmune diabetes. Clin Immunol. 2010;135:401–11.CrossRefPubMed Londono P, Komura A, Hara N, Zipris D. Brief dexamethasone treatment during acute infection prevents virus-induced autoimmune diabetes. Clin Immunol. 2010;135:401–11.CrossRefPubMed
8.
go back to reference Eizirik DL, Mandrup-Poulsen T. A choice of death—the signal-transduction of immune-mediated beta-cell apoptosis. Diabetologia. 2001;44:2115–33.CrossRefPubMed Eizirik DL, Mandrup-Poulsen T. A choice of death—the signal-transduction of immune-mediated beta-cell apoptosis. Diabetologia. 2001;44:2115–33.CrossRefPubMed
9.
go back to reference Mandrup-Poulsen T. The role of interleukin-1 in the pathogenesis of IDDM. Diabetologia. 1996;39:1005–29.CrossRefPubMed Mandrup-Poulsen T. The role of interleukin-1 in the pathogenesis of IDDM. Diabetologia. 1996;39:1005–29.CrossRefPubMed
10.
go back to reference Pickersgill LMS, Mandrup-Poulsen TR. The anti-interleukin-1 in type 1 diabetes action trial—background and rationale. Diabetes Metab Res Rev. 2009;25:321–4.CrossRefPubMed Pickersgill LMS, Mandrup-Poulsen TR. The anti-interleukin-1 in type 1 diabetes action trial—background and rationale. Diabetes Metab Res Rev. 2009;25:321–4.CrossRefPubMed
11.
go back to reference Van Belle TL, Pagni PP, Liao J, Sachithanantham S, Dave A, Bel Hani A, et al. Beta-cell-specific production of IL6 in conjunction with a mainly intracellular but not mainly surface viral protein causes diabetes. J Autoimmun. 2014;55:24–32.CrossRefPubMed Van Belle TL, Pagni PP, Liao J, Sachithanantham S, Dave A, Bel Hani A, et al. Beta-cell-specific production of IL6 in conjunction with a mainly intracellular but not mainly surface viral protein causes diabetes. J Autoimmun. 2014;55:24–32.CrossRefPubMed
12.
go back to reference Agrawal RP, Jain S, Shah S, Chopra A, Agarwal V. Effect of camel milk on glycemic control and insulin requirement in patients with type 1 diabetes: 2-years randomized controlled trial. Eur J Clin Nutr. 2011;65:1048–52.CrossRefPubMed Agrawal RP, Jain S, Shah S, Chopra A, Agarwal V. Effect of camel milk on glycemic control and insulin requirement in patients with type 1 diabetes: 2-years randomized controlled trial. Eur J Clin Nutr. 2011;65:1048–52.CrossRefPubMed
13.
go back to reference Khaskheli M, Arian MA, Chaudhry S, Soomro AH, Qureshi TA. Physico-chemical quality of camel milk. J Agric Soc Sci. 2005;2:164–6. Khaskheli M, Arian MA, Chaudhry S, Soomro AH, Qureshi TA. Physico-chemical quality of camel milk. J Agric Soc Sci. 2005;2:164–6.
14.
go back to reference Korish AA. The antidiabetic action of camel milk in experimental type 2 diabetes mellitus: an overview of the changes in incretin hormones, insulin resistance, and inflammatory cytokines. Horm Metab Res. 2014;46(6):404–11.CrossRefPubMed Korish AA. The antidiabetic action of camel milk in experimental type 2 diabetes mellitus: an overview of the changes in incretin hormones, insulin resistance, and inflammatory cytokines. Horm Metab Res. 2014;46(6):404–11.CrossRefPubMed
15.
go back to reference Staels B, Fruchart JC. Therapeutic roles of peroxisome proliferator-activated receptor agonists. Diabetes. 2005;54(8):2460–70.CrossRef Staels B, Fruchart JC. Therapeutic roles of peroxisome proliferator-activated receptor agonists. Diabetes. 2005;54(8):2460–70.CrossRef
16.
go back to reference Malik A, Al-Senaidy A, Skrzypczak-Jankun E, Jankun J. A study of the anti-diabetic agents of camel milk. Int J Mol Med. 2012;30:585–92.CrossRefPubMed Malik A, Al-Senaidy A, Skrzypczak-Jankun E, Jankun J. A study of the anti-diabetic agents of camel milk. Int J Mol Med. 2012;30:585–92.CrossRefPubMed
17.
go back to reference Metz-Boutique MH, Jolles J, Mazurier J, Schoentgen F, Legrand D, Spik G, Montreuil J, Jolles P. Human lactotransferrin: amino acid sequence and structural comparisons with other transferrins. Eur J Biochem. 1984;145:659–76.CrossRef Metz-Boutique MH, Jolles J, Mazurier J, Schoentgen F, Legrand D, Spik G, Montreuil J, Jolles P. Human lactotransferrin: amino acid sequence and structural comparisons with other transferrins. Eur J Biochem. 1984;145:659–76.CrossRef
18.
go back to reference Konuspayeva G, Faye B, Loiseau G, Levieux D. Lactoferrin and immunoglobulin content in camel’s milk (Camelus bactrianus, Camelus dromedarius, and hybrids) from Kazakhstan. J Dairy Sci. 2007;90:38–46.CrossRefPubMed Konuspayeva G, Faye B, Loiseau G, Levieux D. Lactoferrin and immunoglobulin content in camel’s milk (Camelus bactrianus, Camelus dromedarius, and hybrids) from Kazakhstan. J Dairy Sci. 2007;90:38–46.CrossRefPubMed
19.
20.
go back to reference Agrawal RP, Dogra R, Mohta N, Tiwari R, Singhal S, Sultania S. Beneficial effect of camel milk in diabetic nephropathy. Acta Biomed. 2009;80(2):131–4.PubMed Agrawal RP, Dogra R, Mohta N, Tiwari R, Singhal S, Sultania S. Beneficial effect of camel milk in diabetic nephropathy. Acta Biomed. 2009;80(2):131–4.PubMed
21.
go back to reference Yamaguchi M, Matsuura M, Kobayashi K, Sasaki H, Yajima T, Kuwata T. Lactoferrin protects against the development of hepatitis caused by sensitization of kupffer cells by lipopolysaccharide. Clin Diagn Lab Immunol. 2001;8:1234–9.PubMedPubMedCentral Yamaguchi M, Matsuura M, Kobayashi K, Sasaki H, Yajima T, Kuwata T. Lactoferrin protects against the development of hepatitis caused by sensitization of kupffer cells by lipopolysaccharide. Clin Diagn Lab Immunol. 2001;8:1234–9.PubMedPubMedCentral
22.
go back to reference Haversen L, Ohlsson BG, Hahn-Zoric M, Hanson LA, Mattsby-Baltzer I. Lactoferrin down-regulates the LPS-induced cytokine production in monocytic cells via NF-kappa b. Cell Immunol. 2002;220:83–95.CrossRefPubMed Haversen L, Ohlsson BG, Hahn-Zoric M, Hanson LA, Mattsby-Baltzer I. Lactoferrin down-regulates the LPS-induced cytokine production in monocytic cells via NF-kappa b. Cell Immunol. 2002;220:83–95.CrossRefPubMed
23.
go back to reference Kawakami H, Lönnerdal B. Isolation and function of a receptor for human lactoferrin in human fetal intestinal brush border membranes. Am J Physiol. 1991;261:G841–6.PubMed Kawakami H, Lönnerdal B. Isolation and function of a receptor for human lactoferrin in human fetal intestinal brush border membranes. Am J Physiol. 1991;261:G841–6.PubMed
24.
go back to reference Kitagawa H, Yoshizawa Y, Yokoyama T, Takeuchi T, Talukder MJ, Shimizu H, Ando K, Harada E. Persorption of bovine lactoferrin from the intestinal lumen into the systemic circulation via the portal vein and the mesenteric lymphatics in growing pigs. J Vet Med Sci. 2003;65(5):567–72.CrossRefPubMed Kitagawa H, Yoshizawa Y, Yokoyama T, Takeuchi T, Talukder MJ, Shimizu H, Ando K, Harada E. Persorption of bovine lactoferrin from the intestinal lumen into the systemic circulation via the portal vein and the mesenteric lymphatics in growing pigs. J Vet Med Sci. 2003;65(5):567–72.CrossRefPubMed
25.
go back to reference Roy A, Srivastava M, Saqib U, et al. Potential therapeutic targets for inflammation in toll-like receptor 4 (TLR4)-mediated signaling pathways. Int Immunopharmacol. 2016;40:79–89.CrossRefPubMed Roy A, Srivastava M, Saqib U, et al. Potential therapeutic targets for inflammation in toll-like receptor 4 (TLR4)-mediated signaling pathways. Int Immunopharmacol. 2016;40:79–89.CrossRefPubMed
26.
27.
go back to reference Ahmad R, Al-Mass A, Atizado V, et al. Elevated expression of the toll like receptors 2 and 4 in obese individuals: its significance for obesity-induced inflammation. J Inflamm. 2012;9:48.CrossRef Ahmad R, Al-Mass A, Atizado V, et al. Elevated expression of the toll like receptors 2 and 4 in obese individuals: its significance for obesity-induced inflammation. J Inflamm. 2012;9:48.CrossRef
28.
go back to reference Rodgers JT, Puigserver P. Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc Natl Acad Sci USA. 2007;104:12861–6.CrossRefPubMed Rodgers JT, Puigserver P. Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc Natl Acad Sci USA. 2007;104:12861–6.CrossRefPubMed
29.
go back to reference Purushotham A, Schug TT, Xu Q, Surapureddi S, Guo X, Li X. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab. 2009;9:327–38.CrossRefPubMedPubMedCentral Purushotham A, Schug TT, Xu Q, Surapureddi S, Guo X, Li X. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab. 2009;9:327–38.CrossRefPubMedPubMedCentral
30.
go back to reference Staels B, Fruchart JC. Therapeutic roles of peroxisome proliferator-activated receptor agonists. Diabetes. 2005;54(8):2460–70.CrossRef Staels B, Fruchart JC. Therapeutic roles of peroxisome proliferator-activated receptor agonists. Diabetes. 2005;54(8):2460–70.CrossRef
31.
go back to reference Gupta D, Kono T, Evans-Molina C. The role of peroxisome proliferator-activated receptor γ in pancreatic β cell function and survival: therapeutic implications for the treatment of type 2 diabetes mellitus. Diabetes Obes Metab. 2010;12(12):1036–47.CrossRefPubMedPubMedCentral Gupta D, Kono T, Evans-Molina C. The role of peroxisome proliferator-activated receptor γ in pancreatic β cell function and survival: therapeutic implications for the treatment of type 2 diabetes mellitus. Diabetes Obes Metab. 2010;12(12):1036–47.CrossRefPubMedPubMedCentral
32.
go back to reference Bonner-Weir S. Life and death of the pancreatic beta cells. Trends Endocrinol Metab. 2000;11:375–8.CrossRefPubMed Bonner-Weir S. Life and death of the pancreatic beta cells. Trends Endocrinol Metab. 2000;11:375–8.CrossRefPubMed
33.
go back to reference Kushner JA, Ciemerych MA, Sicinska E, Wartschow LM, Teta M, Long SY, Sicinski P, White MF. Cyclins D2 and D1 are essential for postnatal pancreatic beta-cell growth. Mol Cell Biol. 2005;25:3752–62.CrossRefPubMedPubMedCentral Kushner JA, Ciemerych MA, Sicinska E, Wartschow LM, Teta M, Long SY, Sicinski P, White MF. Cyclins D2 and D1 are essential for postnatal pancreatic beta-cell growth. Mol Cell Biol. 2005;25:3752–62.CrossRefPubMedPubMedCentral
34.
go back to reference Boraschi D, Dinarello CA. IL-18 in autoimmunity: review. Eur Cytokine Netw. 2006;17:224–52.PubMed Boraschi D, Dinarello CA. IL-18 in autoimmunity: review. Eur Cytokine Netw. 2006;17:224–52.PubMed
35.
go back to reference Jessen BA, Stevens GJ. Expression profiling during adipocyte differentiation of 3T3-L1 fibroblasts. Gene. 2002;299:95–100.CrossRefPubMed Jessen BA, Stevens GJ. Expression profiling during adipocyte differentiation of 3T3-L1 fibroblasts. Gene. 2002;299:95–100.CrossRefPubMed
36.
go back to reference Cowland JB, Muta T, Borregaard N. IL-1beta-specific up-regulation of neutrophil gelatinase-associated lipocalin is controlled by IkappaB-zeta. J Immunol. 2006;176:5559–66.CrossRefPubMed Cowland JB, Muta T, Borregaard N. IL-1beta-specific up-regulation of neutrophil gelatinase-associated lipocalin is controlled by IkappaB-zeta. J Immunol. 2006;176:5559–66.CrossRefPubMed
37.
go back to reference Zannolli R, Rebeggiani A, Chiarelli F, Morgese G. Hyperinsulinism as a marker in obese children. Am J Dis Child. 1993;147:837–41.PubMed Zannolli R, Rebeggiani A, Chiarelli F, Morgese G. Hyperinsulinism as a marker in obese children. Am J Dis Child. 1993;147:837–41.PubMed
38.
go back to reference Maruhama Y, Abe R. A familial form of obesity without hyperinsulinism at the outset. Diabetes. 1981;30:14–8.CrossRefPubMed Maruhama Y, Abe R. A familial form of obesity without hyperinsulinism at the outset. Diabetes. 1981;30:14–8.CrossRefPubMed
39.
go back to reference Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.CrossRefPubMed Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.CrossRefPubMed
40.
go back to reference Agrawal RP, Tantia P, Jain S, Agrawal R, Agrawal V. Camel milk: a possible boon for type 1 diabetic patients. Cell Mol Biol. 2013;59(1):99–107.PubMed Agrawal RP, Tantia P, Jain S, Agrawal R, Agrawal V. Camel milk: a possible boon for type 1 diabetic patients. Cell Mol Biol. 2013;59(1):99–107.PubMed
41.
go back to reference Agrawal RP, Dogra R, Mohta N, Tiwari R, Singhal S, Sultania S. Beneficial effect of camel milk in diabetic nephropathy. Acta Biomed. 2009;80(2):131–4.PubMed Agrawal RP, Dogra R, Mohta N, Tiwari R, Singhal S, Sultania S. Beneficial effect of camel milk in diabetic nephropathy. Acta Biomed. 2009;80(2):131–4.PubMed
42.
go back to reference Fuentes-Antrás J, Ioan AM, Tuñón J, Egido J, Lorenzo O. Activation of toll-like receptors and inflammasome complexes in the diabetic cardiomyopathy-associated inflammation. Int J Endocrinol. 2014;2014:847827.CrossRefPubMedPubMedCentral Fuentes-Antrás J, Ioan AM, Tuñón J, Egido J, Lorenzo O. Activation of toll-like receptors and inflammasome complexes in the diabetic cardiomyopathy-associated inflammation. Int J Endocrinol. 2014;2014:847827.CrossRefPubMedPubMedCentral
43.
go back to reference Gahr M, Speer C, Damerau B, Sawatzki G. Influence of lactoferrin on the function of human polymorphonuclear leukocytes and monocytes. J Leukoc Biol. 1991;49:427–33.CrossRefPubMed Gahr M, Speer C, Damerau B, Sawatzki G. Influence of lactoferrin on the function of human polymorphonuclear leukocytes and monocytes. J Leukoc Biol. 1991;49:427–33.CrossRefPubMed
44.
go back to reference Farnaud S, Evans RW. Lactoferrin—a multifunctional protein with antimicrobial properties. Mol Immunol. 2003;40:395–405.CrossRefPubMed Farnaud S, Evans RW. Lactoferrin—a multifunctional protein with antimicrobial properties. Mol Immunol. 2003;40:395–405.CrossRefPubMed
45.
go back to reference Pajkrt D, Doran JE, Koster F, Lerch PG, Arnet B, van der Poll T, ten Cate JW, van Deventer SJ. Antiinflammatory effects of reconstituted high-density lipoprotein during human endotoxemia. J Exp Med. 1996;184:1601–8.CrossRefPubMed Pajkrt D, Doran JE, Koster F, Lerch PG, Arnet B, van der Poll T, ten Cate JW, van Deventer SJ. Antiinflammatory effects of reconstituted high-density lipoprotein during human endotoxemia. J Exp Med. 1996;184:1601–8.CrossRefPubMed
46.
go back to reference Arab HH, Salama SA, Abdelghany TM, et al. Camel milk attenuates rheumatoid arthritis via inhibition of mitogen activated protein kinase pathway. Cell Physiol Biochem. 2017;43:540–52.CrossRefPubMed Arab HH, Salama SA, Abdelghany TM, et al. Camel milk attenuates rheumatoid arthritis via inhibition of mitogen activated protein kinase pathway. Cell Physiol Biochem. 2017;43:540–52.CrossRefPubMed
47.
go back to reference El-Desouky MA, Osman S, Shams Eldin NS, Emaraa I. Arginase enzyme activity and lactoferrin protein concentration in Egyptian diabetic patients. Int J Adv Res. 2017;5(1):1518–23.CrossRef El-Desouky MA, Osman S, Shams Eldin NS, Emaraa I. Arginase enzyme activity and lactoferrin protein concentration in Egyptian diabetic patients. Int J Adv Res. 2017;5(1):1518–23.CrossRef
48.
go back to reference Wang C, Li C, Peng H, Ye Z, Zhang J, Liu X, Lou T. Activation of the Nrf2-ARE pathway attenuates hyperglycemia-mediated injuries in mouse podocytes. Cell Physiol Biochem. 2014;34:891–902.CrossRefPubMed Wang C, Li C, Peng H, Ye Z, Zhang J, Liu X, Lou T. Activation of the Nrf2-ARE pathway attenuates hyperglycemia-mediated injuries in mouse podocytes. Cell Physiol Biochem. 2014;34:891–902.CrossRefPubMed
49.
go back to reference Kim HJ, Vaziri ND. Contribution of impaired Nrf2-Keap1 pathway to oxidative stress and inflammation in chronic renal failure. Am J Physiol Renal Physiol. 2010;298:F662–71.CrossRefPubMed Kim HJ, Vaziri ND. Contribution of impaired Nrf2-Keap1 pathway to oxidative stress and inflammation in chronic renal failure. Am J Physiol Renal Physiol. 2010;298:F662–71.CrossRefPubMed
50.
go back to reference Matsebatlela TM, Anderson AL, Gallicchio VS, Elford H, Rice CD. 3,4-Dihydroxy-benzohydroxamic acid (Didox) suppresses pro-inflammatory profiles and oxidative stress in TLR4-activated RAW264.7 murine macrophages. Chem Biol Interact. 2015;233:95-105.CrossRefPubMedPubMedCentral Matsebatlela TM, Anderson AL, Gallicchio VS, Elford H, Rice CD. 3,4-Dihydroxy-benzohydroxamic acid (Didox) suppresses pro-inflammatory profiles and oxidative stress in TLR4-activated RAW264.7 murine macrophages. Chem Biol Interact. 2015;233:95-105.CrossRefPubMedPubMedCentral
51.
go back to reference Baveye S, Elass E, Mazurier J, Spik G, Legrand D. Lactoferrin: a multifunctional glycoprotein involved in the modulation of the inflammatory process. Clin Chem Lab Med. 1999;37:281–6.CrossRefPubMed Baveye S, Elass E, Mazurier J, Spik G, Legrand D. Lactoferrin: a multifunctional glycoprotein involved in the modulation of the inflammatory process. Clin Chem Lab Med. 1999;37:281–6.CrossRefPubMed
52.
go back to reference Gu J, Su S, Guo J, Zhu Y, Zhao M, Duan JA. Anti-inflammatory and anti-apoptotic effects of the combination of Ligusticum chuanxiong and Radix Paeoniae against focal cerebral ischemia via TLR4/MyD88/MAPK/NF-κB signaling pathway in MCAO rats. J Pharm Pharmacol. 2017;70(2):268–77.CrossRefPubMed Gu J, Su S, Guo J, Zhu Y, Zhao M, Duan JA. Anti-inflammatory and anti-apoptotic effects of the combination of Ligusticum chuanxiong and Radix Paeoniae against focal cerebral ischemia via TLR4/MyD88/MAPK/NF-κB signaling pathway in MCAO rats. J Pharm Pharmacol. 2017;70(2):268–77.CrossRefPubMed
53.
go back to reference Rasheed N, Alghasham A, Rasheed Z. Lactoferrin from Camelus dromedarius inhibits nuclear transcription factor-kappa B activation, cyclooxygenase-2 expression and prostaglandin E2 production in stimulated human chondrocytes. Pharmacogn Res. 2016;8:135–41.CrossRef Rasheed N, Alghasham A, Rasheed Z. Lactoferrin from Camelus dromedarius inhibits nuclear transcription factor-kappa B activation, cyclooxygenase-2 expression and prostaglandin E2 production in stimulated human chondrocytes. Pharmacogn Res. 2016;8:135–41.CrossRef
54.
go back to reference Pickersgill LMS, Mandrup-Poulsen TR. The anti-interleukin-1 in type 1 diabetes action trial-background and rationale. Diabetes Metab Res Rev. 2009;25:321–4.CrossRefPubMed Pickersgill LMS, Mandrup-Poulsen TR. The anti-interleukin-1 in type 1 diabetes action trial-background and rationale. Diabetes Metab Res Rev. 2009;25:321–4.CrossRefPubMed
55.
go back to reference Stentz FB, Umpierrez GE, Cuervo R, Kitabchi AE. Proinflammatory cytokines, markers of cardiovascular risks, oxidative stress and lipid peroxidation in patients with hyperglycaemic crisis. Diabetes. 2004;53:2079–86.CrossRef Stentz FB, Umpierrez GE, Cuervo R, Kitabchi AE. Proinflammatory cytokines, markers of cardiovascular risks, oxidative stress and lipid peroxidation in patients with hyperglycaemic crisis. Diabetes. 2004;53:2079–86.CrossRef
56.
go back to reference Kishimoto T. Interleukin-6: discovery of a pleiotropic cytokine. Arthritis Res Ther. 2006;8:2.CrossRef Kishimoto T. Interleukin-6: discovery of a pleiotropic cytokine. Arthritis Res Ther. 2006;8:2.CrossRef
57.
go back to reference Kimura A, Naka T, Kishimoto T. IL-6-dependent and -independent pathways in the development of interleukin 17-producing T helper cells. Proc Natl Acad Sci USA. 2007;104:12099–104.CrossRefPubMed Kimura A, Naka T, Kishimoto T. IL-6-dependent and -independent pathways in the development of interleukin 17-producing T helper cells. Proc Natl Acad Sci USA. 2007;104:12099–104.CrossRefPubMed
58.
go back to reference Wasmuth HE, Kunz D, Graf J, Stanzel S, Purucker EA, Koch A, et al. Hyperglycaemia at admission to the intensive care unit is associated with elevated serum concentrations of interleukin-6 and reduced ex vivo secretion of tumor necrosis factor-a. Crit Care Med. 2004;32:1109–14.CrossRefPubMed Wasmuth HE, Kunz D, Graf J, Stanzel S, Purucker EA, Koch A, et al. Hyperglycaemia at admission to the intensive care unit is associated with elevated serum concentrations of interleukin-6 and reduced ex vivo secretion of tumor necrosis factor-a. Crit Care Med. 2004;32:1109–14.CrossRefPubMed
59.
go back to reference Alkanani AK, Rewers M, Dong F, Waugh K, Gottlieb PA, Zipris D. Dysregulated Toll-Like receptor-induced interleukin-1β and interleukin-6 responses in subjects at risk for the development of type 1 diabetes. Diabetes. 2012;61:2525–33.CrossRefPubMedPubMedCentral Alkanani AK, Rewers M, Dong F, Waugh K, Gottlieb PA, Zipris D. Dysregulated Toll-Like receptor-induced interleukin-1β and interleukin-6 responses in subjects at risk for the development of type 1 diabetes. Diabetes. 2012;61:2525–33.CrossRefPubMedPubMedCentral
60.
go back to reference Jun-Ichi T, Hajime N, Katsuaki T, Masahiko I, Tadashi U, Atsushi N, Makoto N, Shinobu S, Toshifumi S, Hisahiko S. Lactoferrin reduces colitis in rats via modulation of the immune system and correction of cytokine imbalance. Am J Physiol Gastrointest Liver Physiol. 2002;283:G187–95.CrossRef Jun-Ichi T, Hajime N, Katsuaki T, Masahiko I, Tadashi U, Atsushi N, Makoto N, Shinobu S, Toshifumi S, Hisahiko S. Lactoferrin reduces colitis in rats via modulation of the immune system and correction of cytokine imbalance. Am J Physiol Gastrointest Liver Physiol. 2002;283:G187–95.CrossRef
61.
go back to reference Beata N, Marcin F, Tomasz K, Maja K, Micha Z. Lactoferrin inhibits the growth of nasal polypfibroblasts. Pharmacol Rep. 2010;62:1139–47.CrossRef Beata N, Marcin F, Tomasz K, Maja K, Micha Z. Lactoferrin inhibits the growth of nasal polypfibroblasts. Pharmacol Rep. 2010;62:1139–47.CrossRef
62.
go back to reference Yagi M, Suzuki N, Takayama T, Arisue M, Kodama T, Yoda Y, et al. Lactoferrin suppress the adipogenic differentiation of MC3T3-G2/PA6 cells. J Oral Sci. 2008;50(4):419–25.CrossRefPubMed Yagi M, Suzuki N, Takayama T, Arisue M, Kodama T, Yoda Y, et al. Lactoferrin suppress the adipogenic differentiation of MC3T3-G2/PA6 cells. J Oral Sci. 2008;50(4):419–25.CrossRefPubMed
63.
go back to reference Moreno-Navarrete JM, Ortega FJ, Ricart W, Fernandez-Real JM. Lactoferrin increases (172Thr)AMPK phosphorylation and insulin-induced (p473Ser)AKT while impairing adipocyte differentiation. Int J obes. 2009;33(9):991–1000.CrossRef Moreno-Navarrete JM, Ortega FJ, Ricart W, Fernandez-Real JM. Lactoferrin increases (172Thr)AMPK phosphorylation and insulin-induced (p473Ser)AKT while impairing adipocyte differentiation. Int J obes. 2009;33(9):991–1000.CrossRef
64.
go back to reference Zhang J, Wu Y, Zhang Y, LeRoith D, Bernlohr DA, Chen X. The role of lipocalin 2 in the regulation of inflammation in adipocytes and macrophages. Mol Endocrinol. 2008;22:1416–26.CrossRefPubMedPubMedCentral Zhang J, Wu Y, Zhang Y, LeRoith D, Bernlohr DA, Chen X. The role of lipocalin 2 in the regulation of inflammation in adipocytes and macrophages. Mol Endocrinol. 2008;22:1416–26.CrossRefPubMedPubMedCentral
65.
go back to reference Yan QW, Yang Q, Mody N, Graham TE, Hsu CH, Xu Z, et al. The adipokine lipocalin 2 is regulated by obesity and promotes insulin resistance. Diabetes. 2007;56:2533–40.CrossRefPubMed Yan QW, Yang Q, Mody N, Graham TE, Hsu CH, Xu Z, et al. The adipokine lipocalin 2 is regulated by obesity and promotes insulin resistance. Diabetes. 2007;56:2533–40.CrossRefPubMed
66.
go back to reference Meena S, Rajput YS, Pandey AK, Sharma R, Singh R. Camel milk ameliorates hyperglycemia and oxidative damage in type-1 diabetic experimental rats. J Dairy Res. 2016;83:412–9.CrossRefPubMed Meena S, Rajput YS, Pandey AK, Sharma R, Singh R. Camel milk ameliorates hyperglycemia and oxidative damage in type-1 diabetic experimental rats. J Dairy Res. 2016;83:412–9.CrossRefPubMed
67.
go back to reference Hosooka T, Ogawa W. A novel role for the cell cycle regulatory complex cyclin D1–CDK4 in gluconeogenesis. J Diabetes Investig. 2016;7(1):27–8.CrossRefPubMed Hosooka T, Ogawa W. A novel role for the cell cycle regulatory complex cyclin D1–CDK4 in gluconeogenesis. J Diabetes Investig. 2016;7(1):27–8.CrossRefPubMed
68.
go back to reference Bhalla K, Liu WJ, Thompson K, et al. Cyclin D1 represses gluconeogenesis via inhibition of the transcriptional coactivator PGC1α. Diabetes. 2014;63:3266–78.CrossRefPubMedPubMedCentral Bhalla K, Liu WJ, Thompson K, et al. Cyclin D1 represses gluconeogenesis via inhibition of the transcriptional coactivator PGC1α. Diabetes. 2014;63:3266–78.CrossRefPubMedPubMedCentral
69.
go back to reference Staels B, Fruchart JC. Therapeutic roles of peroxisome proliferator-activated receptor agonists. Diabetes. 2005;54(8):2460–70.CrossRef Staels B, Fruchart JC. Therapeutic roles of peroxisome proliferator-activated receptor agonists. Diabetes. 2005;54(8):2460–70.CrossRef
70.
go back to reference Gupta D, Kono T, Evans-Molina C. The role of peroxisome proliferator-activated receptor γ in pancreatic β cell function and survival: therapeutic implications for the treatment of type 2 diabetes mellitus. Diabetes Obes Metab. 2010;12(12):1036–47.CrossRefPubMedPubMedCentral Gupta D, Kono T, Evans-Molina C. The role of peroxisome proliferator-activated receptor γ in pancreatic β cell function and survival: therapeutic implications for the treatment of type 2 diabetes mellitus. Diabetes Obes Metab. 2010;12(12):1036–47.CrossRefPubMedPubMedCentral
71.
go back to reference Kushner JA, Ciemerych MA, Sicinska E, Wartschow LM, Teta M, Long SY, Sicinski P, White MF. Cyclins D2 and D1 are essential for postnatal pancreatic beta-cell growth. Mol Cell Biol. 2005;25:3752–62.CrossRefPubMedPubMedCentral Kushner JA, Ciemerych MA, Sicinska E, Wartschow LM, Teta M, Long SY, Sicinski P, White MF. Cyclins D2 and D1 are essential for postnatal pancreatic beta-cell growth. Mol Cell Biol. 2005;25:3752–62.CrossRefPubMedPubMedCentral
72.
go back to reference Moreno-Navarrete JM, Ortega FJ, Bassols J, Castro A, Ricart W, Fernández-Real JM. Association of circulating lactoferrin concentration and 2 nonsynonymous LTF gene polymorphisms with dyslipidemia in men depends on glucose-tolerance status. Clin Chem. 2008;54(2):301–9.CrossRefPubMed Moreno-Navarrete JM, Ortega FJ, Bassols J, Castro A, Ricart W, Fernández-Real JM. Association of circulating lactoferrin concentration and 2 nonsynonymous LTF gene polymorphisms with dyslipidemia in men depends on glucose-tolerance status. Clin Chem. 2008;54(2):301–9.CrossRefPubMed
73.
go back to reference Artym J. A remedy against obesity? The role of lactoferrin in the metabolism of glucose and lipids. Postepy Hig Med Dosw. 2012;66:937–53.CrossRef Artym J. A remedy against obesity? The role of lactoferrin in the metabolism of glucose and lipids. Postepy Hig Med Dosw. 2012;66:937–53.CrossRef
74.
go back to reference Moastafa TM, El-Sissy AE, El-Saeed GK, Koura MS. Study on the therapeutic benefit on lactoferrin in patients with colorectal cancer receiving chemotherapy. Int Sch Res Not. 2014;28(2014):184278. Moastafa TM, El-Sissy AE, El-Saeed GK, Koura MS. Study on the therapeutic benefit on lactoferrin in patients with colorectal cancer receiving chemotherapy. Int Sch Res Not. 2014;28(2014):184278.
Metadata
Title
Antidiabetic efficacy of lactoferrin in type 2 diabetic pediatrics; controlling impact on PPAR-γ, SIRT-1, and TLR4 downstream signaling pathway
Authors
Waleed A. Mohamed
Mona F. Schaalan
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Diabetology & Metabolic Syndrome / Issue 1/2018
Electronic ISSN: 1758-5996
DOI
https://doi.org/10.1186/s13098-018-0390-x

Other articles of this Issue 1/2018

Diabetology & Metabolic Syndrome 1/2018 Go to the issue