Skip to main content
Top
Published in: Diabetology & Metabolic Syndrome 1/2018

Open Access 01-12-2018 | Research

Smoke exposure and cardio-metabolic profile in youth with type 1 diabetes

Authors: Valeria Calcaterra, Jonathan P. Winickoff, Catherine Klersy, Luca Maria Schiano, Rossella Bazzano, Chiara Montalbano, Valeria Musella, Corrado Regalbuto, Daniela Larizza, Hellas Cena

Published in: Diabetology & Metabolic Syndrome | Issue 1/2018

Login to get access

Abstract

Background

To evaluate the relationship between smoking and metabolic parameters in patients affected by type 1 diabetes (T1D).

Patients and methods

We enrolled 104 children and young adults (50 females and 54 males) with T1D (aged 16.4 ± 8.6 years). The subjects were divided into three groups according to their smoking habits: no smoking (NS), passive smoking (PS), active smoking (AS). The physical examination of the participants included nutritional status assessment by anthropometry and pubertal stage according to Marshall and Tanner as well as blood pressure measurement. In all patients, metabolic blood assays including fasting blood glucose, insulin, total cholesterol, high-density lipoprotein cholesterol, and triglycerides were measured. Insulin resistance was determined by glucose disposal rate (eGDR). Physical activity was also recorded.

Results

Significant differences in biochemical and functional parameters among the three groups were demonstrated, in particular for systolic (p = 0.002) and diastolic pressure (p = 0.02) and eGDR (p = 0.039). No differences in daily insulin dose (p = 0.75) and glycated hemoglobin (p = 0.39) were observed. AS group had significantly higher blood pressure (p < 0.05) and lower eGDR (p ≤ 0.001) compared to NS and PS. Significant difference was also detected between PS and NS in systolic and diastolic (p = 0.02) pressure and eGDR (p = 0.01). In a multivariable model adjusted for age, gender, BMI and physical activity, smoking habits did not maintain any independent association with metabolic parameters.

Conclusion

This is the first study in a Mediterranean population, looking at tobacco smoke and cardio-metabolic factors in youth with T1D. The relationship between smoking and unfavorable metabolic profile was demonstrated. On the basis of these findings, smoking tobacco should be considered an important modifiable risk factor for young patients with diabetes mellitus, highlighting the need for intensified smoking prevention and cessation programs.
Literature
2.
go back to reference Paschou SA, Papadopoulou-Marketou N, Chrousos GP, Kanaka-Gantenbein C. On type 1 diabetes mellitus pathogenesis. Endocr Connect. 2018;7(1):R38–46.CrossRefPubMed Paschou SA, Papadopoulou-Marketou N, Chrousos GP, Kanaka-Gantenbein C. On type 1 diabetes mellitus pathogenesis. Endocr Connect. 2018;7(1):R38–46.CrossRefPubMed
5.
go back to reference Subramanian S, Hirsch IB. Intensive diabetes treatment and cardiovascular outcomes in type 1 diabetes mellitus: implications of the diabetes control and complications trial/epidemiology of diabetes interventions and complications study 30-year follow-up. Endocrinol Metab Clin North Am. 2018;47(1):65–79.CrossRefPubMed Subramanian S, Hirsch IB. Intensive diabetes treatment and cardiovascular outcomes in type 1 diabetes mellitus: implications of the diabetes control and complications trial/epidemiology of diabetes interventions and complications study 30-year follow-up. Endocrinol Metab Clin North Am. 2018;47(1):65–79.CrossRefPubMed
6.
go back to reference Zhu P, Pan XF, Sheng L, Chen H, Pan A. Cigarette smoking, diabetes, and diabetes complications: call for urgent action. Curr Diab Rep. 2017;17(9):78.CrossRefPubMed Zhu P, Pan XF, Sheng L, Chen H, Pan A. Cigarette smoking, diabetes, and diabetes complications: call for urgent action. Curr Diab Rep. 2017;17(9):78.CrossRefPubMed
7.
go back to reference Gingras V, Leroux C, Fortin A, Legault L, Rabasa-Lhoret R. Predictors of cardiovascular risk among patients with type 1 diabetes: a critical analysis of the metabolic syndrome and its components. Diab Metab. 2017;43(3):217–22.CrossRef Gingras V, Leroux C, Fortin A, Legault L, Rabasa-Lhoret R. Predictors of cardiovascular risk among patients with type 1 diabetes: a critical analysis of the metabolic syndrome and its components. Diab Metab. 2017;43(3):217–22.CrossRef
8.
go back to reference Donaghue K, Jeanne Wong SL. Traditional cardiovascular risk factors in adolescents with type 1 diabetes mellitus. Curr Diab Rev. 2017;13(6):533–43.CrossRef Donaghue K, Jeanne Wong SL. Traditional cardiovascular risk factors in adolescents with type 1 diabetes mellitus. Curr Diab Rev. 2017;13(6):533–43.CrossRef
9.
go back to reference Canas JA, Gidding SS, Mauras N. Interventions to reduce cardiovascular risk in children with type 1 diabetes. Curr Diab Rev. 2017;13(6):544–54.CrossRef Canas JA, Gidding SS, Mauras N. Interventions to reduce cardiovascular risk in children with type 1 diabetes. Curr Diab Rev. 2017;13(6):544–54.CrossRef
10.
go back to reference López Zubizarreta M, Hernández Mezquita MÁ, Miralles García JM, Barrueco Ferrero M. Tobacco and diabetes: clinical relevance and approach to smoking cessation in diabetic smokers. Endocrinol Diab Nutr. 2017;64(4):221–31. López Zubizarreta M, Hernández Mezquita MÁ, Miralles García JM, Barrueco Ferrero M. Tobacco and diabetes: clinical relevance and approach to smoking cessation in diabetic smokers. Endocrinol Diab Nutr. 2017;64(4):221–31.
11.
go back to reference Kar D, Gillies C, Zaccardi F, Webb D, Seidu S, Tesfaye S, Davies M, Khunti K. Relationship of cardiometabolic parameters in non-smokers, current smokers, and quitters in diabetes: a systematic review and meta-analysis. Cardiovasc Diabetol. 2016;15(1):158.CrossRefPubMedPubMedCentral Kar D, Gillies C, Zaccardi F, Webb D, Seidu S, Tesfaye S, Davies M, Khunti K. Relationship of cardiometabolic parameters in non-smokers, current smokers, and quitters in diabetes: a systematic review and meta-analysis. Cardiovasc Diabetol. 2016;15(1):158.CrossRefPubMedPubMedCentral
12.
go back to reference Śliwińska-Mossoń M, Milnerowicz H. The impact of smoking on the development of diabetes and its complications. Diab Vasc Dis Res. 2017;14(4):265–76.CrossRefPubMed Śliwińska-Mossoń M, Milnerowicz H. The impact of smoking on the development of diabetes and its complications. Diab Vasc Dis Res. 2017;14(4):265–76.CrossRefPubMed
13.
go back to reference Gerber PA, Locher R, Schmid B, Spinas GA, Lehmann R. Smoking is associated with impaired long-term glucose metabolism in patients with type 1 diabetes mellitus. Nutr Metab Cardiovasc Dis. 2013;23(2):102–8.CrossRefPubMed Gerber PA, Locher R, Schmid B, Spinas GA, Lehmann R. Smoking is associated with impaired long-term glucose metabolism in patients with type 1 diabetes mellitus. Nutr Metab Cardiovasc Dis. 2013;23(2):102–8.CrossRefPubMed
14.
go back to reference Schwab KO, Doerfer J, Hallermann K, Krebs A, Schorb E, Krebs K, Winkler K. Marked smoking-associated increase of cardiovascular risk in childhood type 1 diabetes. Int J Adolesc Med Health. 2008;20(3):285–92.CrossRefPubMed Schwab KO, Doerfer J, Hallermann K, Krebs A, Schorb E, Krebs K, Winkler K. Marked smoking-associated increase of cardiovascular risk in childhood type 1 diabetes. Int J Adolesc Med Health. 2008;20(3):285–92.CrossRefPubMed
15.
16.
go back to reference Benowitz NL. Cigarette smoking and cardiovascular disease: pathophysiology and implications for treatment. Prog Cardiovasc Dis. 2003;46(1):91–111.CrossRefPubMed Benowitz NL. Cigarette smoking and cardiovascular disease: pathophysiology and implications for treatment. Prog Cardiovasc Dis. 2003;46(1):91–111.CrossRefPubMed
17.
go back to reference Konishi H, Wu J, Cooke JP. Chronic exposure to nicotine impairs cholinergic angiogenesis. Vasc Med. 2010;15(1):47–54.CrossRefPubMed Konishi H, Wu J, Cooke JP. Chronic exposure to nicotine impairs cholinergic angiogenesis. Vasc Med. 2010;15(1):47–54.CrossRefPubMed
18.
go back to reference Andersson K, Arner P. Systemic nicotine stimulates human adipose tissue lipolysis through local cholinergic and catecholaminergic receptors. Int J Obes Relat Metab Disord. 2001;25(8):1225–32.CrossRefPubMed Andersson K, Arner P. Systemic nicotine stimulates human adipose tissue lipolysis through local cholinergic and catecholaminergic receptors. Int J Obes Relat Metab Disord. 2001;25(8):1225–32.CrossRefPubMed
19.
20.
go back to reference Cena H, Fonte ML, Turconi G. Relationship between smoking and metabolic syndrome. Nutr Rev. 2011;69(12):745–53.CrossRefPubMed Cena H, Fonte ML, Turconi G. Relationship between smoking and metabolic syndrome. Nutr Rev. 2011;69(12):745–53.CrossRefPubMed
21.
go back to reference Gray A. Nutritional recommendations for individuals with diabetes. Endotext. South Dartmouth: MDText.com, Inc.; 2000. Gray A. Nutritional recommendations for individuals with diabetes. Endotext. South Dartmouth: MDText.com, Inc.; 2000.
22.
go back to reference Turconi G, Celsa M, Rezzani C, Biino G, Sartirana MA, Roggi C. Reliability of a dietary questionnaire on food habits, eating behaviour and nutritional knowledge of adolescents. Eur J Clin Nutr. 2003;57(6):753–63.CrossRefPubMed Turconi G, Celsa M, Rezzani C, Biino G, Sartirana MA, Roggi C. Reliability of a dietary questionnaire on food habits, eating behaviour and nutritional knowledge of adolescents. Eur J Clin Nutr. 2003;57(6):753–63.CrossRefPubMed
23.
go back to reference Florescu A, Ferrence R, Einarson T, Selby P, Soldin O, Koren G. Methods for quantification of exposure to cigarette smoking and environmental tobacco smoke: focus on developmental toxicology. Ther Drug Monit. 2009;31(1):14–30.CrossRefPubMedPubMedCentral Florescu A, Ferrence R, Einarson T, Selby P, Soldin O, Koren G. Methods for quantification of exposure to cigarette smoking and environmental tobacco smoke: focus on developmental toxicology. Ther Drug Monit. 2009;31(1):14–30.CrossRefPubMedPubMedCentral
24.
go back to reference Marshall WA, Tanner JM. Variations in patterns of pubertal changes in boys. Arch Dis Child. 1969;45:13–23.CrossRef Marshall WA, Tanner JM. Variations in patterns of pubertal changes in boys. Arch Dis Child. 1969;45:13–23.CrossRef
26.
go back to reference National High Blood Pressure Education Pro- gram Working Group on High Blood Pressure in Children and Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics. 2004;114:555–76.CrossRef National High Blood Pressure Education Pro- gram Working Group on High Blood Pressure in Children and Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics. 2004;114:555–76.CrossRef
27.
go back to reference Epstein EJ, Osman JL, Cohen HW, Rajpathak SN, Lewis O, Crandall JP. Use of the estimated glucose disposal rate as a measure of insulin resistance in an urban multiethnic population with type 1 diabetes. Diab Care. 2013;36(8):2280–5.CrossRef Epstein EJ, Osman JL, Cohen HW, Rajpathak SN, Lewis O, Crandall JP. Use of the estimated glucose disposal rate as a measure of insulin resistance in an urban multiethnic population with type 1 diabetes. Diab Care. 2013;36(8):2280–5.CrossRef
28.
go back to reference Williams KV, Erbey JR, Becker D, Arslanian S, Orchard TJ. Can clinical factors estimate insulin resistance in type 1 diabetes? Diabetes. 2000;49:626–32.CrossRefPubMed Williams KV, Erbey JR, Becker D, Arslanian S, Orchard TJ. Can clinical factors estimate insulin resistance in type 1 diabetes? Diabetes. 2000;49:626–32.CrossRefPubMed
29.
go back to reference Chillarón JJ, Goday A, Flores-Le-Roux JA, et al. Estimated glucose disposal rate in assessment of the metabolic syndrome and microvascular complications in patients with type 1 diabetes. J Clin Endocrinol Metab. 2009;94:3530–4.CrossRefPubMed Chillarón JJ, Goday A, Flores-Le-Roux JA, et al. Estimated glucose disposal rate in assessment of the metabolic syndrome and microvascular complications in patients with type 1 diabetes. J Clin Endocrinol Metab. 2009;94:3530–4.CrossRefPubMed
30.
go back to reference WHO Report on the Global Tobacco Epidemic, 2015. Raising taxes on tobacco. Geneva: World Health Organization; 2015. WHO Report on the Global Tobacco Epidemic, 2015. Raising taxes on tobacco. Geneva: World Health Organization; 2015.
31.
go back to reference Sisti LG, Dajko M, Campanella P, Shkurti E, Ricciardi W, de Waure C. The effect of multifactorial lifestyle interventions on cardiovascular risk factors: a systematic review and meta-analysis of trials conducted in the general population and high risk groups. Prev Med. 2017;109:82–97.CrossRefPubMed Sisti LG, Dajko M, Campanella P, Shkurti E, Ricciardi W, de Waure C. The effect of multifactorial lifestyle interventions on cardiovascular risk factors: a systematic review and meta-analysis of trials conducted in the general population and high risk groups. Prev Med. 2017;109:82–97.CrossRefPubMed
32.
go back to reference Dunga JA, Adamu Y, Kida IM, Alasiya D, Jibrin Y, Sabo U, Ukoli C, Chuhwak CH, Musa JJ. Tobacco abuse and its health effect. Niger J Med. 2015;24(4):354–62.PubMed Dunga JA, Adamu Y, Kida IM, Alasiya D, Jibrin Y, Sabo U, Ukoli C, Chuhwak CH, Musa JJ. Tobacco abuse and its health effect. Niger J Med. 2015;24(4):354–62.PubMed
33.
go back to reference Deleanu OC, Pocora D, Mihălcuţă S, Ulmeanu R, Zaharie AM, Mihălţan FD. Influence of smoking on sleep and obstructive sleep apnea syndrome. Pneumologia. 2016;65(1):28–35.PubMed Deleanu OC, Pocora D, Mihălcuţă S, Ulmeanu R, Zaharie AM, Mihălţan FD. Influence of smoking on sleep and obstructive sleep apnea syndrome. Pneumologia. 2016;65(1):28–35.PubMed
34.
go back to reference Cosselman KE, Navas-Acien A, Kaufman JD. Environmental factors in cardiovascular disease. Nat Rev Cardiol. 2015;12(11):627–42.CrossRefPubMed Cosselman KE, Navas-Acien A, Kaufman JD. Environmental factors in cardiovascular disease. Nat Rev Cardiol. 2015;12(11):627–42.CrossRefPubMed
35.
go back to reference Perkins KA, Epstein LH, Sexton JE, Stiller RL, Jacob RG. Effects of dose, gender, and level of physical activity on acute metabolic response to nicotine. Pharmacol Biochem Behav. 1991;40(2):203–8.CrossRefPubMed Perkins KA, Epstein LH, Sexton JE, Stiller RL, Jacob RG. Effects of dose, gender, and level of physical activity on acute metabolic response to nicotine. Pharmacol Biochem Behav. 1991;40(2):203–8.CrossRefPubMed
36.
go back to reference Benowitz NL. Cotinine as a biomarker of environmental tobacco smoke exposure. Epidemiol Rev. 1996;18:188–204.CrossRefPubMed Benowitz NL. Cotinine as a biomarker of environmental tobacco smoke exposure. Epidemiol Rev. 1996;18:188–204.CrossRefPubMed
37.
go back to reference Tanski SE, Prokhorov AV, Klein JD. Youth and tobacco. Minerva Pediatr. 2004;56(6):553–65.PubMed Tanski SE, Prokhorov AV, Klein JD. Youth and tobacco. Minerva Pediatr. 2004;56(6):553–65.PubMed
38.
go back to reference Davis CL, et al. Passive smoke exposure and its effects on cognition, sleep, and health outcomes in overweight and obese children. Childhood Obesity. 2016;12(2):119–25.CrossRefPubMedPubMedCentral Davis CL, et al. Passive smoke exposure and its effects on cognition, sleep, and health outcomes in overweight and obese children. Childhood Obesity. 2016;12(2):119–25.CrossRefPubMedPubMedCentral
39.
go back to reference Weitzman M, Cook S, Auinger P, Florin TA, Daniels S, Nguyen M, Winickoff JP. Tobacco smoke exposure is associated with the metabolic syndrome in adolescents. Circulation. 2005;112(6):862–9.CrossRefPubMed Weitzman M, Cook S, Auinger P, Florin TA, Daniels S, Nguyen M, Winickoff JP. Tobacco smoke exposure is associated with the metabolic syndrome in adolescents. Circulation. 2005;112(6):862–9.CrossRefPubMed
40.
go back to reference Kelishadi R, Noori A, Qorbani M, Rahimzadeh S, Djalalinia S, Shafiee G, Motlagh ME, Ardalan G, Ansari H, Asayesh H, Ahadi Z, Heshmat R. Are active and passive smoking associated with cardiometabolic risk factors in adolescents? The CASPIAN-III study. Paediatr Int Child Health. 2016;36(3):181–8.CrossRefPubMed Kelishadi R, Noori A, Qorbani M, Rahimzadeh S, Djalalinia S, Shafiee G, Motlagh ME, Ardalan G, Ansari H, Asayesh H, Ahadi Z, Heshmat R. Are active and passive smoking associated with cardiometabolic risk factors in adolescents? The CASPIAN-III study. Paediatr Int Child Health. 2016;36(3):181–8.CrossRefPubMed
41.
go back to reference Schwab KO, Doerfer J, Hallermann K, Krebs A, Schorb E, Krebs K, et al. Marked smokingassociated increase of cardiovascular risk in childhood type 1 diabetes. Int J Adolesc Med Health. 2008;20:285–92.CrossRefPubMed Schwab KO, Doerfer J, Hallermann K, Krebs A, Schorb E, Krebs K, et al. Marked smokingassociated increase of cardiovascular risk in childhood type 1 diabetes. Int J Adolesc Med Health. 2008;20:285–92.CrossRefPubMed
42.
go back to reference Hofer SE, Rosenbauer J, Grulich-Henn J, Naeke A, Frohlich-Reiterer E, Holl RW. Smoking and metabolic control in adolescents with type 1 diabetes. J Pediatr. 2009;154:20–3.CrossRefPubMed Hofer SE, Rosenbauer J, Grulich-Henn J, Naeke A, Frohlich-Reiterer E, Holl RW. Smoking and metabolic control in adolescents with type 1 diabetes. J Pediatr. 2009;154:20–3.CrossRefPubMed
43.
go back to reference Reynolds K, Liese AD, Anderson AM, Dabelea D, Standiford D, Daniels SR, Waitzfelder B, Case D, Loots B, Imperatore G, Lawrence JM. Prevalence of tobacco use and association between cardiometabolic risk factors and cigarette smoking in youth with type 1 or type 2 diabetes mellitus. J Pediatr. 2011;158(4):594–601.CrossRefPubMed Reynolds K, Liese AD, Anderson AM, Dabelea D, Standiford D, Daniels SR, Waitzfelder B, Case D, Loots B, Imperatore G, Lawrence JM. Prevalence of tobacco use and association between cardiometabolic risk factors and cigarette smoking in youth with type 1 or type 2 diabetes mellitus. J Pediatr. 2011;158(4):594–601.CrossRefPubMed
45.
go back to reference Piechowiak K, Zduńczyk B, Szypowska A. Environmental factors affecting management of type 1 diabetes in children below the age of 10. Pediatr Endocrinol Diab Metab. 2017;23(1):23–9.CrossRef Piechowiak K, Zduńczyk B, Szypowska A. Environmental factors affecting management of type 1 diabetes in children below the age of 10. Pediatr Endocrinol Diab Metab. 2017;23(1):23–9.CrossRef
46.
go back to reference Wang Y, Gong C, Cao B, Meng X, Wei L, Wu D, Liang X, Li W, Liu M, Gu Y, Su C. Influence of initial insulin dosage on blood glucose dynamics of children and adolescents with newly diagnosed type 1 diabetes mellitus. Pediatr Diab. 2017;18(3):196–203.CrossRef Wang Y, Gong C, Cao B, Meng X, Wei L, Wu D, Liang X, Li W, Liu M, Gu Y, Su C. Influence of initial insulin dosage on blood glucose dynamics of children and adolescents with newly diagnosed type 1 diabetes mellitus. Pediatr Diab. 2017;18(3):196–203.CrossRef
47.
go back to reference Åkesson K, Hanberger L, Samuelsson U. The influence of age, gender, insulin dose, BMI, and blood pressure on metabolic control in young patients with type 1 diabetes. Pediatr Diab. 2015;16(8):581–6.CrossRef Åkesson K, Hanberger L, Samuelsson U. The influence of age, gender, insulin dose, BMI, and blood pressure on metabolic control in young patients with type 1 diabetes. Pediatr Diab. 2015;16(8):581–6.CrossRef
48.
go back to reference Service FJ, O’Brien PC. Influence of glycemic variables on hemoglobin A1c. Endocr Pract. 2007;13(4):350–4.CrossRefPubMed Service FJ, O’Brien PC. Influence of glycemic variables on hemoglobin A1c. Endocr Pract. 2007;13(4):350–4.CrossRefPubMed
Metadata
Title
Smoke exposure and cardio-metabolic profile in youth with type 1 diabetes
Authors
Valeria Calcaterra
Jonathan P. Winickoff
Catherine Klersy
Luca Maria Schiano
Rossella Bazzano
Chiara Montalbano
Valeria Musella
Corrado Regalbuto
Daniela Larizza
Hellas Cena
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Diabetology & Metabolic Syndrome / Issue 1/2018
Electronic ISSN: 1758-5996
DOI
https://doi.org/10.1186/s13098-018-0355-0

Other articles of this Issue 1/2018

Diabetology & Metabolic Syndrome 1/2018 Go to the issue