Skip to main content
Top
Published in: Diabetology & Metabolic Syndrome 1/2017

Open Access 01-12-2017 | Research

Type 1 diabetes does not impair the physical capacity of non-sedentary adolescents

Authors: Milena S. Nascimento, Carolina F. Espindola, Cristiane do Prado, Melina Blanco Amarins, Ana Lucia Potenza, Luciana Pacheco, Erica Santos, Teresa Cristina A. Vieira

Published in: Diabetology & Metabolic Syndrome | Issue 1/2017

Login to get access

Abstract

Background

Type 1 diabetes patients have a higher risk of developing hypoglycemia or hyperglycemia during physical activity, which may compromise their safety during exercise but results regarding the exercise capacity of patients with type 1 DM when compared to control subjects have been contradictory.

Aim

To evaluate if type 1 diabetes affects the capacity of adolescents to exercise.

Methods

The study enrolled 37 adolescents in stage 2–4 of the Tanner scale, aged from 10 to 14 years, 21 with type 1 diabetes and 16 without any chronic diseases. All subjects performed an incremental submaximal exercise test in a cycle ergometer. At the end of every test stage, glycemia and blood lactate levels were measured. During the test, heart rate was monitored and the Borg rating of perceived exertion (RPE) was used to assess fatigue.

Results

The two groups displayed no significant differences in anthropometric variables. The response to exercise, as evaluated by Borg RPE (p = 0.829), maximum oxygen uptake (VO2max) (p = 0.977), heart rate (p = 0.998), maximum load (p = 0.977), absolute load at lactate threshold (p = 0.377) and relative load at lactate threshold (p = 0.282), was also similar between the control and the type 1 diabetes group. Finally, there were no significant correlations between HbA1c levels, VO2max, duration of disease and pre-test glycemia levels.

Conclusions

We detected no significant differences in lactate threshold, VO2max and heart rate during exercise between healthy adolescents and non-sedentary adolescents with type I diabetes, indicating that both groups had similar physical fitness and, therefore, that type 1 diabetes is not an obstacle for physical activity. This study was approved by the ethical committee of the Hospital Israelita Albert Einstein (Ethical Committee Number: 53638416.9.0000.0071) and free and informed consent was obtained from all participants and their legal representatives.
Literature
1.
go back to reference American Diabetes Association. Diabetes management at camps for children with diabetes (position statement). Diabetes Care. 2012;35(Suppl. 1):S72–5.CrossRef American Diabetes Association. Diabetes management at camps for children with diabetes (position statement). Diabetes Care. 2012;35(Suppl. 1):S72–5.CrossRef
2.
go back to reference de Angelis K, da Pureza DY, Flores LJ, Rodrigues B, Melo KF, Schaan BD, Irigoyen MC. Physiological effects of exercise training in patients with type 1 diabetes. Arq Bras Endocrinol Metabol. 2006;50:1005–13.CrossRefPubMed de Angelis K, da Pureza DY, Flores LJ, Rodrigues B, Melo KF, Schaan BD, Irigoyen MC. Physiological effects of exercise training in patients with type 1 diabetes. Arq Bras Endocrinol Metabol. 2006;50:1005–13.CrossRefPubMed
3.
go back to reference Hayashi T, Wojtaszewski JFP, Goodyear LJ. Exercise regulation of glucose transport in skeletal muscle. Am J Physiol. 1997;273:E1039–51.PubMed Hayashi T, Wojtaszewski JFP, Goodyear LJ. Exercise regulation of glucose transport in skeletal muscle. Am J Physiol. 1997;273:E1039–51.PubMed
4.
go back to reference Zinman B, Vranic C, Albisser AM, Leibel BS, Marliss ED. The role of insulin in the metabolic response to exercise in diabetic man. Diabetes. 1979;28:76–81.CrossRefPubMed Zinman B, Vranic C, Albisser AM, Leibel BS, Marliss ED. The role of insulin in the metabolic response to exercise in diabetic man. Diabetes. 1979;28:76–81.CrossRefPubMed
5.
go back to reference Gleeson TT. Post-exercise lactate metabolism: a comparative review of sites, pathways, and regulation. Annu Rev Physiol. 1996;58:565–81.CrossRefPubMed Gleeson TT. Post-exercise lactate metabolism: a comparative review of sites, pathways, and regulation. Annu Rev Physiol. 1996;58:565–81.CrossRefPubMed
6.
go back to reference McNiven-Temple MY, Bar-Or O, Riddel MC. The reliability and repeatability of the blood glucose response to prolonged exercise in adolescent boys with IDDM. Diabetes Care. 1995;18:326–32.CrossRef McNiven-Temple MY, Bar-Or O, Riddel MC. The reliability and repeatability of the blood glucose response to prolonged exercise in adolescent boys with IDDM. Diabetes Care. 1995;18:326–32.CrossRef
7.
go back to reference Riddell MC, Perkins BA. Type 1 diabetes and vigorous exercise: applications of exercise physiology to patient management. Can J Diabetes. 2006;30(1):63–71.CrossRef Riddell MC, Perkins BA. Type 1 diabetes and vigorous exercise: applications of exercise physiology to patient management. Can J Diabetes. 2006;30(1):63–71.CrossRef
8.
go back to reference Neder JÁ, Nery LE. Teste de exercício cardiopulmonar. J Pneumol. 2002;28(3):S166–206. Neder JÁ, Nery LE. Teste de exercício cardiopulmonar. J Pneumol. 2002;28(3):S166–206.
9.
go back to reference Okano AH, Altimari LR, Simões HG, Moraes AC, Nakamura FY, Cyrino ES, Burini RC. Comparison between anaerobic threshold determined by ventilatory variables and blood lactate response in cyclists. Rev Bras Med Esporte. 2006;12:39–44.CrossRef Okano AH, Altimari LR, Simões HG, Moraes AC, Nakamura FY, Cyrino ES, Burini RC. Comparison between anaerobic threshold determined by ventilatory variables and blood lactate response in cyclists. Rev Bras Med Esporte. 2006;12:39–44.CrossRef
10.
go back to reference Wasserman K. The anaerobic threshold measurement to evaluate exercise performance. Am Rev Respir Dis. 1984;129(suppl):S35–40.CrossRefPubMed Wasserman K. The anaerobic threshold measurement to evaluate exercise performance. Am Rev Respir Dis. 1984;129(suppl):S35–40.CrossRefPubMed
11.
go back to reference Wasserman K, Stringer WW, Casaburi R, Koike A, Cooper CB. Determination of the anaerobic threshold by gas exchange: biochemical considerations, methodology and physiological effects. Z Kardiol. 1994;83(Suppl 3):1–12.PubMed Wasserman K, Stringer WW, Casaburi R, Koike A, Cooper CB. Determination of the anaerobic threshold by gas exchange: biochemical considerations, methodology and physiological effects. Z Kardiol. 1994;83(Suppl 3):1–12.PubMed
12.
go back to reference Baptista RR, de Oliveira LG, de Figueiredo GB, Contieri JR, Loss JF, de Oliveira AR. Lactate threshold in rowers: comparison between two methods of determination. Rev Bras Med Esporte. 2005;11(4):247–50.CrossRef Baptista RR, de Oliveira LG, de Figueiredo GB, Contieri JR, Loss JF, de Oliveira AR. Lactate threshold in rowers: comparison between two methods of determination. Rev Bras Med Esporte. 2005;11(4):247–50.CrossRef
13.
go back to reference Rachimel M, Buccino J, Daneman D. Exercise and type 1 diabetes mellitus in youth; review and recommendations. Pediatr Endocrinol Rev. 2007;5(2):656–65. Rachimel M, Buccino J, Daneman D. Exercise and type 1 diabetes mellitus in youth; review and recommendations. Pediatr Endocrinol Rev. 2007;5(2):656–65.
14.
go back to reference Matsudo S, Araujo T, Matsudo V, Andrade D, Andrade E, Oliveira LC, Braggion G. International Physical Activity Questionnaire (IPAQ): study of validity and reliability in Brazil. Revista Brasileira de Atividade Física e Saúde. 2001;6(2):6–18. Matsudo S, Araujo T, Matsudo V, Andrade D, Andrade E, Oliveira LC, Braggion G. International Physical Activity Questionnaire (IPAQ): study of validity and reliability in Brazil. Revista Brasileira de Atividade Física e Saúde. 2001;6(2):6–18.
16.
go back to reference Komatsu WR, Gabbay MAL, Castro ML, Saraiva GL, Chacra AR, Neto TLB, Dib SA. Aerobic exercise capacity in normal adolescents and those with type 1 diabetes mellitus. Pediatr Diabetes. 2005;6:145–9.CrossRefPubMed Komatsu WR, Gabbay MAL, Castro ML, Saraiva GL, Chacra AR, Neto TLB, Dib SA. Aerobic exercise capacity in normal adolescents and those with type 1 diabetes mellitus. Pediatr Diabetes. 2005;6:145–9.CrossRefPubMed
17.
go back to reference Baldi JC, Cassuto NA, Foxx-Lupo WT, Wheatley CM, Snyder EM. Glycemic status affects cardiopulmonary exercise response in type 1 diabetic athletes. Med Sci Sport Exerc. 2010;42(8):1454–9.CrossRef Baldi JC, Cassuto NA, Foxx-Lupo WT, Wheatley CM, Snyder EM. Glycemic status affects cardiopulmonary exercise response in type 1 diabetic athletes. Med Sci Sport Exerc. 2010;42(8):1454–9.CrossRef
18.
go back to reference Heyman E, Briard D, Gratas-Delamarche A, Delamarche P, De Kerdanet M. Normal physical working capacity in prepubertal children with type 1 diabetes compared with healthy controls. Acta Paediatr. 2005;94:1389–94.CrossRefPubMed Heyman E, Briard D, Gratas-Delamarche A, Delamarche P, De Kerdanet M. Normal physical working capacity in prepubertal children with type 1 diabetes compared with healthy controls. Acta Paediatr. 2005;94:1389–94.CrossRefPubMed
19.
go back to reference Adolfsson P, Nilsson S, Albertsson-Wikland K, Lindblad B. Hormonal response during physical exercise of different intensities in adolescents with type 1 diabetes and healthy controls. Pediatric Diabetes. 2012;13:587–96.CrossRefPubMed Adolfsson P, Nilsson S, Albertsson-Wikland K, Lindblad B. Hormonal response during physical exercise of different intensities in adolescents with type 1 diabetes and healthy controls. Pediatric Diabetes. 2012;13:587–96.CrossRefPubMed
20.
go back to reference Gulve EA. Exercise and glycemic control in diabetes: benefits, challenges, and adjustments to pharmacotherapy. Phys Ther. 2008;88:1297–321.CrossRefPubMed Gulve EA. Exercise and glycemic control in diabetes: benefits, challenges, and adjustments to pharmacotherapy. Phys Ther. 2008;88:1297–321.CrossRefPubMed
21.
go back to reference Williams BK, Guelfi JK, Jones TW, Davis EA. Lower cardiorespiratory fitness in children with type 1 diabetes. Diabet Med. 2011;28:1005–7.CrossRefPubMed Williams BK, Guelfi JK, Jones TW, Davis EA. Lower cardiorespiratory fitness in children with type 1 diabetes. Diabet Med. 2011;28:1005–7.CrossRefPubMed
22.
go back to reference Maggio AB, Hofer MF, Martin XE, Marchand LM, Beghetti M, Farpour-Lambert NJ. Reduced physical activity level and cardiorespiratory fitness in children with chronic diseases. Eur J Pediatr. 2010;169:1187–93.CrossRefPubMed Maggio AB, Hofer MF, Martin XE, Marchand LM, Beghetti M, Farpour-Lambert NJ. Reduced physical activity level and cardiorespiratory fitness in children with chronic diseases. Eur J Pediatr. 2010;169:1187–93.CrossRefPubMed
23.
go back to reference Austin A, Warty V, Janosky J, Arslanian S. The relationship of physical fitness to lipid and lipoprotein(a) levels in adolescents with IDDM. Diabetes Care. 1993;16:421–5.CrossRefPubMed Austin A, Warty V, Janosky J, Arslanian S. The relationship of physical fitness to lipid and lipoprotein(a) levels in adolescents with IDDM. Diabetes Care. 1993;16:421–5.CrossRefPubMed
24.
go back to reference Michaliszyn SF, Shaibi GQ, Quinn L, Fritschi C, Faulkner MS. Physical fitness, dietary intake, and metabolic control in adolescents with type 1 diabetes. Pediatr Diabetes. 2009;10:389–94.CrossRefPubMedPubMedCentral Michaliszyn SF, Shaibi GQ, Quinn L, Fritschi C, Faulkner MS. Physical fitness, dietary intake, and metabolic control in adolescents with type 1 diabetes. Pediatr Diabetes. 2009;10:389–94.CrossRefPubMedPubMedCentral
25.
go back to reference Cuenca-García M, Jago R, Shield JPH, Burren CP. How does physical activity and fitness influence glycaemic control in young people with type 1 diabetes? Diabet Med. 2012;29:e369–76.CrossRefPubMed Cuenca-García M, Jago R, Shield JPH, Burren CP. How does physical activity and fitness influence glycaemic control in young people with type 1 diabetes? Diabet Med. 2012;29:e369–76.CrossRefPubMed
26.
go back to reference Roberts L, Jones TW, Fournier PA. Exercise training and glycemic control in adolescents with poorly controlled type 1 diabetes mellitus. J Pediatr Endocrinol Metab. 2002;15:621–7.CrossRefPubMed Roberts L, Jones TW, Fournier PA. Exercise training and glycemic control in adolescents with poorly controlled type 1 diabetes mellitus. J Pediatr Endocrinol Metab. 2002;15:621–7.CrossRefPubMed
27.
go back to reference Nguyen T, Obeid J, Walker RG, Krause MP, Hawke TJ, McAssey K, Vandermeulen J, Timmons BW. Fitness and physical activity in youth with type 1 diabetes mellitus in good or poor glycemic control. Pediatr Diabetes. 2015;16:48–57.CrossRefPubMed Nguyen T, Obeid J, Walker RG, Krause MP, Hawke TJ, McAssey K, Vandermeulen J, Timmons BW. Fitness and physical activity in youth with type 1 diabetes mellitus in good or poor glycemic control. Pediatr Diabetes. 2015;16:48–57.CrossRefPubMed
28.
go back to reference Dickhuth HH, Yin L, Niess A, Rocker K, Mayer F, Heitkamp HC, Horstmann T. Ventilatory, lactate-derived and catecholamine thresholds during incremental treadmill running: relationship and reproducibility. Int J Sports Med. 1999;20(2):122–7.PubMed Dickhuth HH, Yin L, Niess A, Rocker K, Mayer F, Heitkamp HC, Horstmann T. Ventilatory, lactate-derived and catecholamine thresholds during incremental treadmill running: relationship and reproducibility. Int J Sports Med. 1999;20(2):122–7.PubMed
29.
go back to reference Ahmaidi S, Hardy JM, Varray A, Collomp K, Mercier J, Prefaut C. Respiratory gas exchange indices used to detect the blood lactate accumulation threshold during an incremental exercise test in young athletes. Eur J Appl Physiol Occup Physiol. 1993;66(1):31–6.CrossRefPubMed Ahmaidi S, Hardy JM, Varray A, Collomp K, Mercier J, Prefaut C. Respiratory gas exchange indices used to detect the blood lactate accumulation threshold during an incremental exercise test in young athletes. Eur J Appl Physiol Occup Physiol. 1993;66(1):31–6.CrossRefPubMed
30.
go back to reference Ribeiro J, Figueiredo P, Sousa M, de Jesus K, Keskinen K, VilasBoas JP, Fernandes RJ. Metabolic and ventilatory thresholds assessment in front crawl swimming. J Sports Med Phys Fitness. 2014;55(7–8):701–7.PubMed Ribeiro J, Figueiredo P, Sousa M, de Jesus K, Keskinen K, VilasBoas JP, Fernandes RJ. Metabolic and ventilatory thresholds assessment in front crawl swimming. J Sports Med Phys Fitness. 2014;55(7–8):701–7.PubMed
Metadata
Title
Type 1 diabetes does not impair the physical capacity of non-sedentary adolescents
Authors
Milena S. Nascimento
Carolina F. Espindola
Cristiane do Prado
Melina Blanco Amarins
Ana Lucia Potenza
Luciana Pacheco
Erica Santos
Teresa Cristina A. Vieira
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Diabetology & Metabolic Syndrome / Issue 1/2017
Electronic ISSN: 1758-5996
DOI
https://doi.org/10.1186/s13098-017-0300-7

Other articles of this Issue 1/2017

Diabetology & Metabolic Syndrome 1/2017 Go to the issue