Skip to main content
Top
Published in: Diabetology & Metabolic Syndrome 1/2017

Open Access 01-12-2017 | Short report

Autologous bone marrow-derived mononuclear cells transplantation in type 2 diabetes mellitus: effect on β-cell function and insulin sensitivity

Authors: Shobhit Bhansali, Pinaki Dutta, Mukesh Kumar Yadav, Ashish Jain, Sunder Mudaliar, Meredith Hawkins, Anura V. Kurpad, Deepak Pahwa, Ashok Kumar Yadav, Ratti Ram Sharma, Vivekanand Jha, Neelam Marwaha, Shipra Bhansali, Anil Bhansali

Published in: Diabetology & Metabolic Syndrome | Issue 1/2017

Login to get access

Abstract

Background

Insulin resistance and insulin deficiency are the cardinal defects in the pathogenesis of type 2 diabetes mellitus (T2DM). Despite the plethora of anti-diabetic medications, drugs specifically targeting the β-cells are still desired. Stem cell therapy has emerged as a novel therapeutics strategy to target β-cells; however, their mechanism of action has not been well defined. This study aims to examine the efficacy and safety of autologous bone marrow-derived mononuclear cells (ABM-MNCs) transplantation in T2DM, and explores the mechanistic insights into stem cells action through metabolic studies.

Methods

Seven T2DM patients with the duration of disease ≥5 years, receiving triple oral anti-diabetic drugs along with insulin (≥0.4 IU per kg per day) and HbA1c ≤ 7.5% (≤58.0 mmol/mol) were enrolled for ABM-MNCs administration through a targeted approach. The primary end-point was a reduction in insulin requirement by ≥50% from baseline, while maintaining HbA1c < 7.0% (<53.0 mmol/mol) with improvement in insulin secretion, and/or insulin sensitivity after ABM-MNCs transplantation.

Results

Six out of 7 (90%) patients achieved the primary end-point. At 6 months, there was a significant reduction in insulin requirement by 51% as compared to baseline (p < 0.003). This was accompanied by a significant increase in the 2nd phase C-peptide response during hyperglycemic clamp (p = 0.018), whereas there were no significant alterations in insulin sensitivity and glucose disposal rate during hyperinsulinemic–euglycemic clamp relative to the baseline. Other measures of β-cell indices like HOMA-β, and stimulated C-peptide response to glucagon and mixed meal tolerance test were non-contributory.

Conclusion

ABM-MNCs transplantation results in significant reduction in insulin doses and improvement in C-peptide response in patients with T2DM. Metabolic studies may be more useful than conventional indices to predict β-cell function in patients with advanced duration of T2DM.
Trial registration -Clinicaltrials.gov NCT01759823
Appendix
Available only for authorised users
Literature
1.
go back to reference DeFronzo RA, Eldor R, Abdul-Ghani M. Pathophysiologic approach to therapy in patients with newly diagnosed type 2 diabetes. Diabetes Care. 2013;36(Suppl 2):S127–38.CrossRefPubMedPubMedCentral DeFronzo RA, Eldor R, Abdul-Ghani M. Pathophysiologic approach to therapy in patients with newly diagnosed type 2 diabetes. Diabetes Care. 2013;36(Suppl 2):S127–38.CrossRefPubMedPubMedCentral
2.
go back to reference Banerjee M, Kumar A, Bhonde RR. Reversal of experimental diabetes by multiple bone marrow transplantation. Biochem Biophys Res Commun. 2005;328:318–25.CrossRefPubMed Banerjee M, Kumar A, Bhonde RR. Reversal of experimental diabetes by multiple bone marrow transplantation. Biochem Biophys Res Commun. 2005;328:318–25.CrossRefPubMed
3.
go back to reference Bhansali S, Kumar V, Saikia UN, Medhi B, Jha V, Bhansali A, et al. Effect of mesenchymal stem cells transplantation on glycaemic profile & their localization in streptozotocin induced diabetic Wistar rats. Indian J Med Res. 2015;142:63–71.CrossRefPubMedPubMedCentral Bhansali S, Kumar V, Saikia UN, Medhi B, Jha V, Bhansali A, et al. Effect of mesenchymal stem cells transplantation on glycaemic profile & their localization in streptozotocin induced diabetic Wistar rats. Indian J Med Res. 2015;142:63–71.CrossRefPubMedPubMedCentral
4.
go back to reference Si Y, Zhao Y, Hao H, Liu J, Guo Y, Mu Y, et al. Infusion of mesenchymal stem cells ameliorates hyperglycemia in type 2 diabetic rats: identification of a novel role in improving insulin sensitivity. Diabetes. 2012;61:1616–25.CrossRefPubMedPubMedCentral Si Y, Zhao Y, Hao H, Liu J, Guo Y, Mu Y, et al. Infusion of mesenchymal stem cells ameliorates hyperglycemia in type 2 diabetic rats: identification of a novel role in improving insulin sensitivity. Diabetes. 2012;61:1616–25.CrossRefPubMedPubMedCentral
5.
go back to reference Bhansali A, Asokumar P, Walia R, Bhansali S, Gupta V, Jain A, et al. Efficacy and safety of autologous bone marrow-derived stem cell transplantation in patients with type 2 diabetes mellitus: a randomized placebo-controlled study. Cell Transplant. 2014;23:1075–85.CrossRefPubMed Bhansali A, Asokumar P, Walia R, Bhansali S, Gupta V, Jain A, et al. Efficacy and safety of autologous bone marrow-derived stem cell transplantation in patients with type 2 diabetes mellitus: a randomized placebo-controlled study. Cell Transplant. 2014;23:1075–85.CrossRefPubMed
6.
go back to reference Bhansali A, Upreti V, Khandelwal N, Marwaha N, Gupta V, Sachdeva N, et al. Efficacy of autologous bone marrow-derived stem cell transplantation in patients with type 2 diabetes mellitus. Stem Cells Dev. 2009;18:1407–16.CrossRefPubMed Bhansali A, Upreti V, Khandelwal N, Marwaha N, Gupta V, Sachdeva N, et al. Efficacy of autologous bone marrow-derived stem cell transplantation in patients with type 2 diabetes mellitus. Stem Cells Dev. 2009;18:1407–16.CrossRefPubMed
7.
go back to reference Bhansali A, Upreti V, Walia R, Gupta V, Bhansali S, Sharma RR, et al. Efficacy and safety of autologous bone marrow derived hematopoietic stem cell transplantation in patients with type 2 DM: a 15 months follow-up study. Indian J Endocrinol Metab. 2014;18:838–45.CrossRefPubMedPubMedCentral Bhansali A, Upreti V, Walia R, Gupta V, Bhansali S, Sharma RR, et al. Efficacy and safety of autologous bone marrow derived hematopoietic stem cell transplantation in patients with type 2 DM: a 15 months follow-up study. Indian J Endocrinol Metab. 2014;18:838–45.CrossRefPubMedPubMedCentral
8.
go back to reference Estrada EJ, Valacchi F, Nicora E, Brieva S, Esteve C, Echevarria L, et al. Combined treatment of intrapancreatic autologous bone marrow stem cells and hyperbaric oxygen in type 2 diabetes mellitus. Cell Transplant. 2008;17:1295–304.CrossRefPubMed Estrada EJ, Valacchi F, Nicora E, Brieva S, Esteve C, Echevarria L, et al. Combined treatment of intrapancreatic autologous bone marrow stem cells and hyperbaric oxygen in type 2 diabetes mellitus. Cell Transplant. 2008;17:1295–304.CrossRefPubMed
9.
go back to reference Wang L, Zhao S, Mao H, Zhou L, Wang ZJ, Wang HX. Autologous bone marrow stem cell transplantation for the treatment of type 2 diabetes mellitus. Chin Med J (Engl). 2011;124:3622–8.PubMed Wang L, Zhao S, Mao H, Zhou L, Wang ZJ, Wang HX. Autologous bone marrow stem cell transplantation for the treatment of type 2 diabetes mellitus. Chin Med J (Engl). 2011;124:3622–8.PubMed
10.
go back to reference Bhansali S, Dutta P, Kumar V, Yadav MK, Jain A, Mudaliar S, et al. Efficacy of autologous bone marrow-derived mesenchymal stem cell and mononuclear cell transplantation in type 2 diabetes mellitus: a randomized, placebo-controlled comparative study. Stem Cells Dev. 2017;26:471–81.CrossRefPubMed Bhansali S, Dutta P, Kumar V, Yadav MK, Jain A, Mudaliar S, et al. Efficacy of autologous bone marrow-derived mesenchymal stem cell and mononuclear cell transplantation in type 2 diabetes mellitus: a randomized, placebo-controlled comparative study. Stem Cells Dev. 2017;26:471–81.CrossRefPubMed
11.
go back to reference Levy JC, Matthews DR, Hermans MP. Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care. 1998;21:2191–2.CrossRefPubMed Levy JC, Matthews DR, Hermans MP. Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care. 1998;21:2191–2.CrossRefPubMed
12.
go back to reference Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.CrossRefPubMed Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.CrossRefPubMed
13.
go back to reference Hawkins M, Gabriely I, Wozniak R, Reddy K, Rossetti L, Shamoon H. Glycemic control determines hepatic and peripheral glucose effectiveness in type 2 diabetic subjects. Diabetes. 2002;51:2179–89.CrossRefPubMed Hawkins M, Gabriely I, Wozniak R, Reddy K, Rossetti L, Shamoon H. Glycemic control determines hepatic and peripheral glucose effectiveness in type 2 diabetic subjects. Diabetes. 2002;51:2179–89.CrossRefPubMed
14.
go back to reference DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol. 1979;237:E214–23.PubMed DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol. 1979;237:E214–23.PubMed
15.
go back to reference Mitrakou A, Vuorinen-Markkola H, Raptis G, Toft I, Mokan M, Strumph P, et al. Simultaneous assessment of insulin secretion and insulin sensitivity using a hyperglycemia clamp. J Clin Endocrinol Metab. 1992;75:379–82.PubMed Mitrakou A, Vuorinen-Markkola H, Raptis G, Toft I, Mokan M, Strumph P, et al. Simultaneous assessment of insulin secretion and insulin sensitivity using a hyperglycemia clamp. J Clin Endocrinol Metab. 1992;75:379–82.PubMed
16.
go back to reference Choi CS, Kim MY, Han K, Lee MS. Assessment of beta-cell function in human patients. Islets. 2012;4:79–83.CrossRefPubMed Choi CS, Kim MY, Han K, Lee MS. Assessment of beta-cell function in human patients. Islets. 2012;4:79–83.CrossRefPubMed
17.
go back to reference Xiang AH, Watanabe RM, Buchanan TA. HOMA and Matsuda indices of insulin sensitivity: poor correlation with minimal model-based estimates of insulin sensitivity in longitudinal settings. Diabetologia. 2014;57:334–8.CrossRefPubMed Xiang AH, Watanabe RM, Buchanan TA. HOMA and Matsuda indices of insulin sensitivity: poor correlation with minimal model-based estimates of insulin sensitivity in longitudinal settings. Diabetologia. 2014;57:334–8.CrossRefPubMed
Metadata
Title
Autologous bone marrow-derived mononuclear cells transplantation in type 2 diabetes mellitus: effect on β-cell function and insulin sensitivity
Authors
Shobhit Bhansali
Pinaki Dutta
Mukesh Kumar Yadav
Ashish Jain
Sunder Mudaliar
Meredith Hawkins
Anura V. Kurpad
Deepak Pahwa
Ashok Kumar Yadav
Ratti Ram Sharma
Vivekanand Jha
Neelam Marwaha
Shipra Bhansali
Anil Bhansali
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Diabetology & Metabolic Syndrome / Issue 1/2017
Electronic ISSN: 1758-5996
DOI
https://doi.org/10.1186/s13098-017-0248-7

Other articles of this Issue 1/2017

Diabetology & Metabolic Syndrome 1/2017 Go to the issue