Skip to main content
Top
Published in: Arthritis Research & Therapy 1/2019

Open Access 01-12-2019 | Hydroxychloroquine | Research article

Hydroxychloroquine inhibits IL-1β production from amyloid-stimulated human neutrophils

Authors: Yuya Fujita, Naoki Matsuoka, Jumpei Temmoku, Makiko Yashiro Furuya, Tomoyuki Asano, Shuzo Sato, Hiroko Kobayashi, Hiroshi Watanabe, Eiji Suzuki, Takeshi Urano, Hideko Kozuru, Hiroshi Yatsuhashi, Tomohiro Koga, Atsushi Kawakami, Kiyoshi Migita

Published in: Arthritis Research & Therapy | Issue 1/2019

Login to get access

Abstract

Background

Hydroxychloroquine (HCQ) is used for the treatment of patients with rheumatic diseases. We tested the hypothesis that HCQ affects the NLRP3 inflammasome, which is involved in autoinflammation.

Methods

Human neutrophils were stimulated with serum amyloid A (SAA) in vitro and measured for IL-1β and caspase-1 (p20) secretion by ELISA. Pro-IL-1β mRNA expression in human neutrophils was quantified by real-time RT-PCR.

Results

SAA stimulation induced significant production of IL-1β in human neutrophils. SAA stimulation also induced NF-κB activation, pro-IL-1β mRNA expression, and NLRP3 protein expression in human neutrophils. HCQ pretreatment significantly inhibited the SAA-induced IL-1β production in human neutrophils, but did not affect the SAA-induced NF-κB activation, pro-IL-1β mRNA expression, and NLRP3 protein expression. Furthermore, SAA stimulation induced cleaved caspase-1 (p20) secretion from human neutrophils, and this release was suppressed by HCQ pretreatment.

Conclusions

Treatment with HCQ was associated with impaired production of IL-1β in SAA-stimulated human neutrophils without affecting the priming process of the NLRP3 inflammasome such as pro-IL-1β or NLRP3 induction. These findings suggest that HCQ affects the NLRP3 activation process, resulting in the impaired IL-1β production in human neutrophils, as representative innate immune cells.
Literature
1.
go back to reference Ben-Zvi I, Kivity S, Langevitz P, Shoenfeld Y. Hydroxychloroquine: from malaria to autoimmunity. Clin Rev Allergy Immunol. 2012;42:145–53.CrossRef Ben-Zvi I, Kivity S, Langevitz P, Shoenfeld Y. Hydroxychloroquine: from malaria to autoimmunity. Clin Rev Allergy Immunol. 2012;42:145–53.CrossRef
2.
go back to reference An J, Minie M, Sasaki T, Woodward JJ, Elkon KB. Antimalarial drugs as immune modulators: new mechanisms for old drugs. Annu Rev Med. 2017;68:317–30.CrossRef An J, Minie M, Sasaki T, Woodward JJ, Elkon KB. Antimalarial drugs as immune modulators: new mechanisms for old drugs. Annu Rev Med. 2017;68:317–30.CrossRef
3.
go back to reference Fox RI. Mechanism of action of hydroxychloroquine as an antirheumatic drug. Semin Arthritis Rheum. 1993;23(2 Suppl 1):82–91.CrossRef Fox RI. Mechanism of action of hydroxychloroquine as an antirheumatic drug. Semin Arthritis Rheum. 1993;23(2 Suppl 1):82–91.CrossRef
4.
go back to reference Rainsford KD, Parke AL, Clifford-Rashotte M, Kean WF. Therapy and pharmacological properties of hydroxychloroquine and chloroquine in treatment of systemic lupus erythematosus, rheumatoid arthritis and related diseases. Inflammopharmacology. 2015;23:231–69.CrossRef Rainsford KD, Parke AL, Clifford-Rashotte M, Kean WF. Therapy and pharmacological properties of hydroxychloroquine and chloroquine in treatment of systemic lupus erythematosus, rheumatoid arthritis and related diseases. Inflammopharmacology. 2015;23:231–69.CrossRef
5.
go back to reference Lamkanfi M, Dixit VM. Inflammasomes: guardians of cytosolic sanctity. Immunol Rev. 2009;227(1):95–105.CrossRef Lamkanfi M, Dixit VM. Inflammasomes: guardians of cytosolic sanctity. Immunol Rev. 2009;227(1):95–105.CrossRef
6.
go back to reference Pedra JH, Cassel SL, Sutterwala FS. Sensing pathogens and danger signals by the inflammasome. Curr Opin Immunol. 2009;21(1):10–6.CrossRef Pedra JH, Cassel SL, Sutterwala FS. Sensing pathogens and danger signals by the inflammasome. Curr Opin Immunol. 2009;21(1):10–6.CrossRef
7.
go back to reference Ye RD, Sun L. Emerging functions of serum amyloid A in inflammation. J Leukoc Biol. 2015;98:923–9.CrossRef Ye RD, Sun L. Emerging functions of serum amyloid A in inflammation. J Leukoc Biol. 2015;98:923–9.CrossRef
8.
go back to reference Niemi K, Teirilä L, Lappalainen J, et al. Serum amyloid A activates the NLRP3 inflammasome via P2X7 receptor and a cathepsin B-sensitive pathway. J Immunol. 2011;186:6119–28.CrossRef Niemi K, Teirilä L, Lappalainen J, et al. Serum amyloid A activates the NLRP3 inflammasome via P2X7 receptor and a cathepsin B-sensitive pathway. J Immunol. 2011;186:6119–28.CrossRef
9.
go back to reference Kahlenberg JM, Kaplan MJ. The inflammasome and lupus: another innate immune mechanism contributing to disease pathogenesis? Curr Opin Rheumatol. 2014;26:475–81.CrossRef Kahlenberg JM, Kaplan MJ. The inflammasome and lupus: another innate immune mechanism contributing to disease pathogenesis? Curr Opin Rheumatol. 2014;26:475–81.CrossRef
10.
go back to reference Fu R, Guo C, Wang S, et al. Podocyte activation of NLRP3 inflammasomes contributes to the development of proteinuria in lupus nephritis. Arthritis Rheumatol. 2017;69:1636–46.CrossRef Fu R, Guo C, Wang S, et al. Podocyte activation of NLRP3 inflammasomes contributes to the development of proteinuria in lupus nephritis. Arthritis Rheumatol. 2017;69:1636–46.CrossRef
11.
go back to reference Kyburz D, Brentano F, Gay S. Mode of action of hydroxychloroquine in RA-evidence of an inhibitory effect on toll-like receptor signaling. Nat Clin Pract Rheumatol. 2006;2(9):458–9.CrossRef Kyburz D, Brentano F, Gay S. Mode of action of hydroxychloroquine in RA-evidence of an inhibitory effect on toll-like receptor signaling. Nat Clin Pract Rheumatol. 2006;2(9):458–9.CrossRef
12.
go back to reference Migita K, Izumi Y, Jiuchi Y, et al. Serum amyloid A induces NLRP-3-mediated IL-1β secretion in neutrophils. PLoS One. 2014;9(5):e96703.CrossRef Migita K, Izumi Y, Jiuchi Y, et al. Serum amyloid A induces NLRP-3-mediated IL-1β secretion in neutrophils. PLoS One. 2014;9(5):e96703.CrossRef
14.
go back to reference Qiao Y, Wang P, Qi J, Zhang L, Gao C. TLR-induced NF-κB activation regulates NLRP3 expression in murine macrophages. FEBS Lett. 2012;586(7):1022–6.CrossRef Qiao Y, Wang P, Qi J, Zhang L, Gao C. TLR-induced NF-κB activation regulates NLRP3 expression in murine macrophages. FEBS Lett. 2012;586(7):1022–6.CrossRef
15.
go back to reference Cogswell JP, Godlevski MM, Wisely GB, et al. NF-kappa B regulates IL-1 beta transcription through a consensus NF-kappa B binding site and a nonconsensus CRE-like site. J Immunol. 1994;153(2):712–23.PubMed Cogswell JP, Godlevski MM, Wisely GB, et al. NF-kappa B regulates IL-1 beta transcription through a consensus NF-kappa B binding site and a nonconsensus CRE-like site. J Immunol. 1994;153(2):712–23.PubMed
16.
go back to reference Shamaa OR, Mitra S, Gavrilin MA, Wewers MD. Monocyte caspase-1 is released in a stable, active high molecular weight complex distinct from the unstable cell lysate-activated Caspase-1. PLoS One. 2015;10(11):e0142203.CrossRef Shamaa OR, Mitra S, Gavrilin MA, Wewers MD. Monocyte caspase-1 is released in a stable, active high molecular weight complex distinct from the unstable cell lysate-activated Caspase-1. PLoS One. 2015;10(11):e0142203.CrossRef
17.
go back to reference Jeong JY, Jue DM. Chloroquine inhibits processing of tumor necrosis factor in lipopolysaccharide-stimulated RAW 264.7 macrophages. J Immunol. 1997;158(10):4901–7.PubMed Jeong JY, Jue DM. Chloroquine inhibits processing of tumor necrosis factor in lipopolysaccharide-stimulated RAW 264.7 macrophages. J Immunol. 1997;158(10):4901–7.PubMed
18.
go back to reference Tang TT, Lv LL, Pan MM, et al. Hydroxychloroquine attenuates renal ischemia/reperfusion injury by inhibiting cathepsin mediated NLRP3 inflammasome activation. Cell Death Dis. 2018;9(3):351.CrossRef Tang TT, Lv LL, Pan MM, et al. Hydroxychloroquine attenuates renal ischemia/reperfusion injury by inhibiting cathepsin mediated NLRP3 inflammasome activation. Cell Death Dis. 2018;9(3):351.CrossRef
19.
go back to reference Kuriakose T, Kanneganti TD. Is inflammasome a potential target of prophylaxis in rheumatic heart disease? Circulation. 2018;138(23):2662–5.CrossRef Kuriakose T, Kanneganti TD. Is inflammasome a potential target of prophylaxis in rheumatic heart disease? Circulation. 2018;138(23):2662–5.CrossRef
20.
go back to reference So A, Ives A, Joosten LA, Busso N. Targeting inflammasomes in rheumatic diseases. Nat Rev Rheumatol. 2018;9(7):391–9.CrossRef So A, Ives A, Joosten LA, Busso N. Targeting inflammasomes in rheumatic diseases. Nat Rev Rheumatol. 2018;9(7):391–9.CrossRef
21.
go back to reference Amaral FA, Costa VV, Tavares LD, et al. NLRP3 inflammasome-mediated neutrophil recruitment and hypernociception depend on leukotriene B (4) in a murine model of gout. Arthritis Rheum. 2012;64(2):474–84.CrossRef Amaral FA, Costa VV, Tavares LD, et al. NLRP3 inflammasome-mediated neutrophil recruitment and hypernociception depend on leukotriene B (4) in a murine model of gout. Arthritis Rheum. 2012;64(2):474–84.CrossRef
22.
go back to reference Elliott EI, Sutterwala FS. Initiation and perpetuation of NLRP3 inflammasome activation and assembly. Immunol Rev. 2015;265(1):35–52.CrossRef Elliott EI, Sutterwala FS. Initiation and perpetuation of NLRP3 inflammasome activation and assembly. Immunol Rev. 2015;265(1):35–52.CrossRef
23.
go back to reference Afonina IS, Zhong Z, Karin M, Beyaert R. Limiting inflammation-the negative regulation of NF-κB and the NLRP3 inflammasome. Nat Immunol. 2017;18(8):861–9.CrossRef Afonina IS, Zhong Z, Karin M, Beyaert R. Limiting inflammation-the negative regulation of NF-κB and the NLRP3 inflammasome. Nat Immunol. 2017;18(8):861–9.CrossRef
24.
go back to reference Toma C, Higa N, Koizumi Y, et al. Pathogenic Vibrio activate NLRP3 inflammasome via cytotoxins and TLR/nucleotide-binding oligomerization domain-mediated NF-kappa B signaling. J Immunol. 2010;184(9):5287–97.CrossRef Toma C, Higa N, Koizumi Y, et al. Pathogenic Vibrio activate NLRP3 inflammasome via cytotoxins and TLR/nucleotide-binding oligomerization domain-mediated NF-kappa B signaling. J Immunol. 2010;184(9):5287–97.CrossRef
25.
go back to reference Kim S, Joe Y, Jeong SO, et al. Endoplasmic reticulum stress is sufficient for the induction of IL-1β production via activation of the NF-κB and inflammasome pathways. Innate Immun. 2014;20:799–815.CrossRef Kim S, Joe Y, Jeong SO, et al. Endoplasmic reticulum stress is sufficient for the induction of IL-1β production via activation of the NF-κB and inflammasome pathways. Innate Immun. 2014;20:799–815.CrossRef
26.
go back to reference Wang LF, Lin YS, Huang NC, et al. Hydroxychloroquine-inhibited dengue virus is associated with host defense machinery. J Interf Cytokine Res. 2015;35(3):143–56.CrossRef Wang LF, Lin YS, Huang NC, et al. Hydroxychloroquine-inhibited dengue virus is associated with host defense machinery. J Interf Cytokine Res. 2015;35(3):143–56.CrossRef
27.
go back to reference Martinon F. Signaling by ROS drives inflammasome activation. Eur J Immunol. 2010;40:616–9.CrossRef Martinon F. Signaling by ROS drives inflammasome activation. Eur J Immunol. 2010;40:616–9.CrossRef
28.
go back to reference Chhonker YS, Sleightholm RL, Li J, Oupický D, Murry DJ. Simultaneous quantitation of hydroxychloroquine and its metabolites in mouse blood and tissues using LC-ESI-MS/MS: an application for pharmacokinetic studies. J Chromatogr B Analyt Technol Biomed Life Sci. 2018;1072:320–7.CrossRef Chhonker YS, Sleightholm RL, Li J, Oupický D, Murry DJ. Simultaneous quantitation of hydroxychloroquine and its metabolites in mouse blood and tissues using LC-ESI-MS/MS: an application for pharmacokinetic studies. J Chromatogr B Analyt Technol Biomed Life Sci. 2018;1072:320–7.CrossRef
Metadata
Title
Hydroxychloroquine inhibits IL-1β production from amyloid-stimulated human neutrophils
Authors
Yuya Fujita
Naoki Matsuoka
Jumpei Temmoku
Makiko Yashiro Furuya
Tomoyuki Asano
Shuzo Sato
Hiroko Kobayashi
Hiroshi Watanabe
Eiji Suzuki
Takeshi Urano
Hideko Kozuru
Hiroshi Yatsuhashi
Tomohiro Koga
Atsushi Kawakami
Kiyoshi Migita
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Arthritis Research & Therapy / Issue 1/2019
Electronic ISSN: 1478-6362
DOI
https://doi.org/10.1186/s13075-019-2040-6

Other articles of this Issue 1/2019

Arthritis Research & Therapy 1/2019 Go to the issue