Skip to main content
Top
Published in: Arthritis Research & Therapy 1/2018

Open Access 01-12-2018 | Research article

Effects of CTLA4-Ig treatment on circulating fibrocytes and skin fibroblasts from the same systemic sclerosis patients: an in vitro assay

Authors: Maurizio Cutolo, Stefano Soldano, Paola Montagna, Amelia Chiara Trombetta, Paola Contini, Barbara Ruaro, Alberto Sulli, Stefano Scabini, Emanuela Stratta, Sabrina Paolino, Carmen Pizzorni, Vanessa Smith, Renata Brizzolara

Published in: Arthritis Research & Therapy | Issue 1/2018

Login to get access

Abstract

Background

Systemic sclerosis (SSc) is characterized by vasculopathy and progressive fibrosis. CTLA4-Ig (abatacept) is able to interact with the cell surface costimulatory molecule CD86 and downregulate the target cell. The aim of this study was to evaluate the in-vitro effects of CTLA4-Ig treatment on circulating fibrocytes and skin fibroblasts isolated from the same SSc patient.

Methods

Circulating fibrocytes and skin fibroblasts were obtained from eight SSc patients with “limited” cutaneous involvement and from four healthy subjects (HSs). Samples were analyzed by fluorescence-activated cell sorter analysis (FACS) at baseline (T0) and after 8 days of culture (T8) for CD45, collagen type I (COL I), CXCR4, CD14, CD86, and HLA-DRII expression. Circulating fibrocytes were treated for 3 h and skin fibroblasts for 24/48 h with CTLA4-Ig (10, 50, 100, 500 μg/ml). Quantitative real-time polymerase chain reaction (qRT-PCR) was performed for CD86, COL I, FN, TGFβ, αSMA, S100A4, CXCR2, CXCR4, CD11a, and Western blotting was performed for COL I and FN.

Results

Using qRT-PCR, the T8-cultured SSc circulating fibrocytes which had not been treated with CTLA4-Ig showed higher gene expression for CD86, αSMA, S100A4, TGFβ, and COL I compared with HS circulating fibrocytes. Interestingly, αSMA/COL I gene expression was significantly lower only in the SSc circulating fibrocytes treated with CTLA4-Ig for 3 h (p < 0.01, p < 0.05). On the contrary, no effects were observed for either SSc or HS skin fibroblasts after CTLA4-Ig treatment. COL I and FN protein expression was unchanged in both SSc and HS skin fibroblasts by Western blot.

Conclusions

Circulating fibrocytes seem to be more responsive to CTLA4-Ig treatment than skin fibroblasts from the same SSc patient, likely due to their higher expression of CD86. CTLA4-Ig treatment might downregulate the fibrotic process in SSc patients by downregulating the fibrocytes, circulating progenitor cells.
Appendix
Available only for authorised users
Literature
1.
go back to reference Allanore Y, Distler O. Systemic sclerosis in 2014: advances in cohort enrichment shape future of trial design. Nat Rev Rheumatol. 2015;11:72–4.CrossRefPubMed Allanore Y, Distler O. Systemic sclerosis in 2014: advances in cohort enrichment shape future of trial design. Nat Rev Rheumatol. 2015;11:72–4.CrossRefPubMed
2.
go back to reference Balbir-Gurman A, Braun-Moscovici Y. Scleroderma: new aspects in pathogenesis and treatment. Best Pract Res Clin Rheumatol. 2012;26:13–24.CrossRefPubMed Balbir-Gurman A, Braun-Moscovici Y. Scleroderma: new aspects in pathogenesis and treatment. Best Pract Res Clin Rheumatol. 2012;26:13–24.CrossRefPubMed
3.
go back to reference Bhattacharyya S, Wei J, Varga J. Understanding fibrosis in systemic sclerosis: shifting paradigms, emerging opportunities. Nat Rev Rheumatol. 2012;8:42–54.CrossRef Bhattacharyya S, Wei J, Varga J. Understanding fibrosis in systemic sclerosis: shifting paradigms, emerging opportunities. Nat Rev Rheumatol. 2012;8:42–54.CrossRef
4.
go back to reference Cutolo M, Montagna P, Brizzolara R, Smith V, Alessandri E, Villaggio B, et al. Effects of macitentan and its active metabolite on cultured human systemic sclerosis and control skin fibroblasts. J Rheumatol. 2015;42:456–63.CrossRefPubMed Cutolo M, Montagna P, Brizzolara R, Smith V, Alessandri E, Villaggio B, et al. Effects of macitentan and its active metabolite on cultured human systemic sclerosis and control skin fibroblasts. J Rheumatol. 2015;42:456–63.CrossRefPubMed
5.
go back to reference Tomcik M, Palumbo-Zerr K, Zerr P, Avouac J, Dees C, Sumova B, et al. S100A4 amplifies TGF-β-induced fibroblast activation in systemic sclerosis. Ann Rheum Dis. 2015;74:1748–55.CrossRefPubMed Tomcik M, Palumbo-Zerr K, Zerr P, Avouac J, Dees C, Sumova B, et al. S100A4 amplifies TGF-β-induced fibroblast activation in systemic sclerosis. Ann Rheum Dis. 2015;74:1748–55.CrossRefPubMed
6.
go back to reference Eyden B. The myofibroblasts: phenotypic characterization as a prerequisite to understanding its functions in translational medicine. J Cell Mol Med. 2008;12:22–37.CrossRefPubMed Eyden B. The myofibroblasts: phenotypic characterization as a prerequisite to understanding its functions in translational medicine. J Cell Mol Med. 2008;12:22–37.CrossRefPubMed
7.
go back to reference Hinz B, Phan SH, Thannickal VJ, Galli A, Bothaton-Piallat ML, Gabbiani G. The myofibroblasts: one function, multiple origin. Am J Pathol. 2007;170:1807–16.CrossRefPubMedPubMedCentral Hinz B, Phan SH, Thannickal VJ, Galli A, Bothaton-Piallat ML, Gabbiani G. The myofibroblasts: one function, multiple origin. Am J Pathol. 2007;170:1807–16.CrossRefPubMedPubMedCentral
10.
go back to reference Grieb G, Bucala R. Fibrocytes in fibrotic diseases and wound healing. Adv Wound Care (New Rochelle). 2012;1:36–40.CrossRef Grieb G, Bucala R. Fibrocytes in fibrotic diseases and wound healing. Adv Wound Care (New Rochelle). 2012;1:36–40.CrossRef
11.
go back to reference Herzoga EL, Bucala R. Fibrocytes in health and disease. Exp Hematol. 2010;38:548–56.CrossRef Herzoga EL, Bucala R. Fibrocytes in health and disease. Exp Hematol. 2010;38:548–56.CrossRef
12.
go back to reference Just SA, Lindegaard H, Hejbøl EK, Davidsen JR, Bjerring N, Hansen SWK, et al. Fibrocyte measurement in peripheral blood correlates with number of cultured mature fibrocytes in vitro and is a potential biomarker for interstitial lung disease in rheumatoid arthritis. Respir Res. 2017;18:141.CrossRefPubMedPubMedCentral Just SA, Lindegaard H, Hejbøl EK, Davidsen JR, Bjerring N, Hansen SWK, et al. Fibrocyte measurement in peripheral blood correlates with number of cultured mature fibrocytes in vitro and is a potential biomarker for interstitial lung disease in rheumatoid arthritis. Respir Res. 2017;18:141.CrossRefPubMedPubMedCentral
13.
go back to reference Strieter RM, Keeley EC, Hughes MA, Burdick MD, Mehrad B. The role of circulating mesenchymal progenitor cells (fibrocytes) in the pathogenesis of pulmonary fibrosis. J Leukoc Biol. 2009;86:1111–8.CrossRefPubMedPubMedCentral Strieter RM, Keeley EC, Hughes MA, Burdick MD, Mehrad B. The role of circulating mesenchymal progenitor cells (fibrocytes) in the pathogenesis of pulmonary fibrosis. J Leukoc Biol. 2009;86:1111–8.CrossRefPubMedPubMedCentral
15.
go back to reference Dupin I, Allard B, Ozier A, Maurat E, Ousova O, Delbrel E, et al. Blood fibrocytes are recruited during acute exacerbations of chronic obstructive pulmonary disease through a CXCR4-dependent pathway. J Allergy Clin Immunol. 2016;137:1036–42.CrossRefPubMed Dupin I, Allard B, Ozier A, Maurat E, Ousova O, Delbrel E, et al. Blood fibrocytes are recruited during acute exacerbations of chronic obstructive pulmonary disease through a CXCR4-dependent pathway. J Allergy Clin Immunol. 2016;137:1036–42.CrossRefPubMed
16.
go back to reference Russo R, Medbury H, Guiffre A, Englert H, Manolios N. Lack of increased expression of cell surface markers for circulating fibrocyte progenitors in limited scleroderma. Clin Rheumatol. 2007;26:1136–41.CrossRefPubMed Russo R, Medbury H, Guiffre A, Englert H, Manolios N. Lack of increased expression of cell surface markers for circulating fibrocyte progenitors in limited scleroderma. Clin Rheumatol. 2007;26:1136–41.CrossRefPubMed
17.
go back to reference Keeleya EC, Mehradb B, Strieter RM. Fibrocytes: bringing new insights into mechanisms of inflammation and fibrosis. Int J Biochem Cell Biol. 2010;42:535–42.CrossRef Keeleya EC, Mehradb B, Strieter RM. Fibrocytes: bringing new insights into mechanisms of inflammation and fibrosis. Int J Biochem Cell Biol. 2010;42:535–42.CrossRef
20.
go back to reference Chesney J, Bacher M, Bender A, Bucala R. The peripheral blood fibrocyte is a potent antigen presenting cell capable of priming naive T cells in situ. Proc Natl Acad Sci. 1997;94:6307–12.CrossRefPubMed Chesney J, Bacher M, Bender A, Bucala R. The peripheral blood fibrocyte is a potent antigen presenting cell capable of priming naive T cells in situ. Proc Natl Acad Sci. 1997;94:6307–12.CrossRefPubMed
21.
go back to reference Cutolo M, Soldano S, Montagna P, Sulli A, Seriolo B, Villaggio B, et al. CTLA4-Ig interacts with cultured synovial macrophages from rheumatoid arthritis patients and downregulates cytokine production. Arthritis Res Ther. 2009;11:176–85.CrossRef Cutolo M, Soldano S, Montagna P, Sulli A, Seriolo B, Villaggio B, et al. CTLA4-Ig interacts with cultured synovial macrophages from rheumatoid arthritis patients and downregulates cytokine production. Arthritis Res Ther. 2009;11:176–85.CrossRef
22.
go back to reference Brizzolara R, Montagna P, Soldano S, Cutolo M. Rapid interaction between CTLA4-Ig (abatacept) and synovial macrophages from patients with rheumatoid arthritis. J Rheumatol. 2013;40:738–40.CrossRefPubMed Brizzolara R, Montagna P, Soldano S, Cutolo M. Rapid interaction between CTLA4-Ig (abatacept) and synovial macrophages from patients with rheumatoid arthritis. J Rheumatol. 2013;40:738–40.CrossRefPubMed
23.
go back to reference Bonelli M, Ferner E, Göschl L, Blüml S, Hladik A, Karonitsch T, et al. Abatacept (CTLA-4IG) treatment reduces the migratory capacity of monocytes in patients with rheumatoid arthritis. Arthritis Rheum. 2013;65:599–607.CrossRefPubMed Bonelli M, Ferner E, Göschl L, Blüml S, Hladik A, Karonitsch T, et al. Abatacept (CTLA-4IG) treatment reduces the migratory capacity of monocytes in patients with rheumatoid arthritis. Arthritis Rheum. 2013;65:599–607.CrossRefPubMed
24.
go back to reference Cutolo M, Montagna P, Soldano S, Contini P, Paolino S, Pizzorni S, et al. CTLA4-IG/CD86 interaction in cultured human endothelial cells: effects on VEGFR-2 and ICAM1 expression. Clin Exp Rheumatol. 2015;33:250–4.PubMed Cutolo M, Montagna P, Soldano S, Contini P, Paolino S, Pizzorni S, et al. CTLA4-IG/CD86 interaction in cultured human endothelial cells: effects on VEGFR-2 and ICAM1 expression. Clin Exp Rheumatol. 2015;33:250–4.PubMed
25.
go back to reference Ponsoye M, Frantz C, Ruzehaji N, Nicco C, Elhai M, Ruiz B, et al. Treatment with abatacept prevents experimental dermal fibrosis and induces regression of established inflammation-driven fibrosis. Ann Rheum Dis. 2016;75:2142–9.CrossRefPubMed Ponsoye M, Frantz C, Ruzehaji N, Nicco C, Elhai M, Ruiz B, et al. Treatment with abatacept prevents experimental dermal fibrosis and induces regression of established inflammation-driven fibrosis. Ann Rheum Dis. 2016;75:2142–9.CrossRefPubMed
26.
go back to reference Cutolo M. Disease modification in systemic sclerosis. Do integrated approaches offer new challenges? Z Rheumatol. 2013;72:326–8.CrossRefPubMed Cutolo M. Disease modification in systemic sclerosis. Do integrated approaches offer new challenges? Z Rheumatol. 2013;72:326–8.CrossRefPubMed
28.
go back to reference van den Hoogen F, Khanna D, Fransen J, Johnson SR, Baron M, Tyndall A, et al. 2013 classification criteria for systemic sclerosis: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2013;65:2737–47.CrossRefPubMedPubMedCentral van den Hoogen F, Khanna D, Fransen J, Johnson SR, Baron M, Tyndall A, et al. 2013 classification criteria for systemic sclerosis: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2013;65:2737–47.CrossRefPubMedPubMedCentral
29.
go back to reference Czirják L, Nagy Z, Aringer M, Riemekasten G, Matucci-Cerinic M, Furst DE, EUSTAR. The EUSTAR model for teaching and implementing the modified Rodnan skin score in systemic sclerosis. Ann Rheum Dis. 2007;66:966–9.CrossRefPubMedPubMedCentral Czirják L, Nagy Z, Aringer M, Riemekasten G, Matucci-Cerinic M, Furst DE, EUSTAR. The EUSTAR model for teaching and implementing the modified Rodnan skin score in systemic sclerosis. Ann Rheum Dis. 2007;66:966–9.CrossRefPubMedPubMedCentral
30.
go back to reference Pilling D, Vakil V, Gomer RH. Improved serum-free culture conditions for the differentiation of human and murine fibrocytes. J Immunol Methods. 2009;351:62–70.CrossRefPubMedPubMedCentral Pilling D, Vakil V, Gomer RH. Improved serum-free culture conditions for the differentiation of human and murine fibrocytes. J Immunol Methods. 2009;351:62–70.CrossRefPubMedPubMedCentral
31.
go back to reference Beyer C, Distler JH, Allanore Y, Aringer M, Avouac J, Czirijak L, EUSTAR Biobanking Group, et al. EUSTAR biobanking: recommendations for the collection, storage and distribution of biospecimens in scleroderma research. Ann Rheum Dis. 2011;70:1178–82.CrossRefPubMed Beyer C, Distler JH, Allanore Y, Aringer M, Avouac J, Czirijak L, EUSTAR Biobanking Group, et al. EUSTAR biobanking: recommendations for the collection, storage and distribution of biospecimens in scleroderma research. Ann Rheum Dis. 2011;70:1178–82.CrossRefPubMed
32.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C (T)) method. Methods. 2001;25:402–8.CrossRefPubMed Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C (T)) method. Methods. 2001;25:402–8.CrossRefPubMed
33.
go back to reference Phillips RJ, Burdick MD, Hong K, Lutz MA, Murray LA, Xue YY, et al. Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis. J Clin Invest. 2004;114:438–46.CrossRefPubMedPubMedCentral Phillips RJ, Burdick MD, Hong K, Lutz MA, Murray LA, Xue YY, et al. Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis. J Clin Invest. 2004;114:438–46.CrossRefPubMedPubMedCentral
35.
go back to reference Axnamm R, Herman S, Zaiss M, Franz S, Polzer K, Zwerina J, et al. CTLA-4 directly inhibit OC. Ann Rheum Dis. 2008;67:1603–9.CrossRef Axnamm R, Herman S, Zaiss M, Franz S, Polzer K, Zwerina J, et al. CTLA-4 directly inhibit OC. Ann Rheum Dis. 2008;67:1603–9.CrossRef
36.
go back to reference Vogt B, Warncke M, Micheel B, Sheriff A. Lentiviral gene transfer of CTLA4 generates B cells with reduced costimulatory properties. Autoimmunity. 2009;42:380–9.CrossRefPubMed Vogt B, Warncke M, Micheel B, Sheriff A. Lentiviral gene transfer of CTLA4 generates B cells with reduced costimulatory properties. Autoimmunity. 2009;42:380–9.CrossRefPubMed
37.
go back to reference Li H, Hong S, Qian J, Zheng Y, Yang J, Yi Q. Cross talk between the bone and immune systems: osteoclasts function as antigen-presenting cells and activate CD4+ and CD8+ T cells. Blood. 2010;116:210–7.CrossRefPubMedPubMedCentral Li H, Hong S, Qian J, Zheng Y, Yang J, Yi Q. Cross talk between the bone and immune systems: osteoclasts function as antigen-presenting cells and activate CD4+ and CD8+ T cells. Blood. 2010;116:210–7.CrossRefPubMedPubMedCentral
38.
go back to reference Pechhold K, Patterson NB, Craighead N, Lee KP, June CH, Harlan DM. Inflammatory cytokines IFN-gamma plus TNF-alpha induce regulated expression of CD80 (B7-1) but not CD86 (B7-2) on murine fibroblasts. J Immunol. 1997;158:4921–9.PubMed Pechhold K, Patterson NB, Craighead N, Lee KP, June CH, Harlan DM. Inflammatory cytokines IFN-gamma plus TNF-alpha induce regulated expression of CD80 (B7-1) but not CD86 (B7-2) on murine fibroblasts. J Immunol. 1997;158:4921–9.PubMed
39.
go back to reference Van Praet JT, Smith V, Haspeslagh M, Degryse N, Elewaut D, De Keyser F. Histopathological cutaneous alterations in systemic sclerosis: a clinicopathological study. Arthritis Res Ther. 2011;13(1):R35.CrossRefPubMedPubMedCentral Van Praet JT, Smith V, Haspeslagh M, Degryse N, Elewaut D, De Keyser F. Histopathological cutaneous alterations in systemic sclerosis: a clinicopathological study. Arthritis Res Ther. 2011;13(1):R35.CrossRefPubMedPubMedCentral
Metadata
Title
Effects of CTLA4-Ig treatment on circulating fibrocytes and skin fibroblasts from the same systemic sclerosis patients: an in vitro assay
Authors
Maurizio Cutolo
Stefano Soldano
Paola Montagna
Amelia Chiara Trombetta
Paola Contini
Barbara Ruaro
Alberto Sulli
Stefano Scabini
Emanuela Stratta
Sabrina Paolino
Carmen Pizzorni
Vanessa Smith
Renata Brizzolara
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Arthritis Research & Therapy / Issue 1/2018
Electronic ISSN: 1478-6362
DOI
https://doi.org/10.1186/s13075-018-1652-6

Other articles of this Issue 1/2018

Arthritis Research & Therapy 1/2018 Go to the issue