Skip to main content
Top
Published in: Arthritis Research & Therapy 1/2016

Open Access 01-12-2016 | Research article

PD-L1-expressing neutrophils as a novel indicator to assess disease activity and severity of systemic lupus erythematosus

Authors: Qing Luo, Zikun Huang, Jianqing Ye, Yating Deng, Le Fang, Xue Li, Yang Guo, Hong Jiang, Beihua Ju, Qingshui Huang, Junming Li

Published in: Arthritis Research & Therapy | Issue 1/2016

Login to get access

Abstract

Background

It is well-known that increased frequency of neutrophils was found in patients with systemic lupus erythematosus (SLE). However, the immunomodulatory roles and mechanisms of neutrophils in SLE are poorly understood.

Methods

Patients with SLE were recruited from the First Affiliated Hospital of Nanchang University. The medical history, clinical manifestations, physical examination, laboratory measurements, therapeutic regimen and treatment response were recorded. The expression of costimulatory molecules including programmed death 1 (PD-1), programmed death ligand 1 (PD-L1), T-cell immunoglobulin and mucin domain–containing protein 3 (Tim-3), CD40, T cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory domains (TIGIT), CD80 and CD86 on neutrophils were determined by flow cytometry. The frequencies of PD-L1-expressing neutrophils in patients with SLE were further analyzed for their correlation with markers of autoimmune response, inflammation, disease activity and severity of SLE.

Results

The frequency of PD-L1-expressing neutrophils was significantly elevated in SLE patients compared to the healthy controls (P < 0.0001). The frequency of PD-L1-expressing neutrophils in patients with SLE was increased significantly in subjects with high ANA titre, high anti-nRNP/Sm, high levels of inflammatory markers and high SLE Disease Activity Index (SLEDAI) score. Furthermore, the percentages of PD-L1-expressing neutrophils were significantly decreased in SLE patients that received a 15-day regular treatment with corticosteroids and immunosuppressive drugs (P = 0.0075).

Conclusion

The frequency of PD-L1-expressing neutrophils is elevates in patients with SLE, correlates with the disease activity and severity of SLE, and may serves as a negative feedback mechanism preventing potential tissue damage caused by excessive autoimmune responses in patients with SLE.
Literature
2.
go back to reference Dorner T, Jacobi AM, Lee J, Lipsky PE. Abnormalities of B cell subsets in patients with systemic lupus erythematosus. J Immunol Methods. 2011;363:187–97.CrossRefPubMed Dorner T, Jacobi AM, Lee J, Lipsky PE. Abnormalities of B cell subsets in patients with systemic lupus erythematosus. J Immunol Methods. 2011;363:187–97.CrossRefPubMed
3.
go back to reference Denny MF, Chandaroy P, Killen PD, Caricchio R, Lewis EE, Richardson BC, et al. Accelerated macrophage apoptosis induces autoantibody formation and organ damage in systemic lupus erythematosus. J Immunol. 2006;176:2095–104.CrossRefPubMed Denny MF, Chandaroy P, Killen PD, Caricchio R, Lewis EE, Richardson BC, et al. Accelerated macrophage apoptosis induces autoantibody formation and organ damage in systemic lupus erythematosus. J Immunol. 2006;176:2095–104.CrossRefPubMed
4.
go back to reference Denny MF, Yalavarthi S, Zhao W, Thacker SG, Anderson M, Sandy AR, et al. A distinct subset of proinflammatory neutrophils isolated from patients with systemic lupus erythematosus induces vascular damage and synthesizes type I IFNs. J Immunol. 2010;184:3284–97.PubMedCentralCrossRefPubMed Denny MF, Yalavarthi S, Zhao W, Thacker SG, Anderson M, Sandy AR, et al. A distinct subset of proinflammatory neutrophils isolated from patients with systemic lupus erythematosus induces vascular damage and synthesizes type I IFNs. J Immunol. 2010;184:3284–97.PubMedCentralCrossRefPubMed
5.
go back to reference Bennett L, Palucka AK, Arce E, Cantrell V, Borvak J, Banchereau J, et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med. 2003;197:711–23.PubMedCentralCrossRefPubMed Bennett L, Palucka AK, Arce E, Cantrell V, Borvak J, Banchereau J, et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med. 2003;197:711–23.PubMedCentralCrossRefPubMed
6.
go back to reference Banchereau J, Pascual V. Type I interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity. 2006;25:383–92.CrossRefPubMed Banchereau J, Pascual V. Type I interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity. 2006;25:383–92.CrossRefPubMed
7.
8.
go back to reference Hakkim A, Furnrohr BG, Amann K, Laube B, Abed UA, Brinkmann V, et al. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci USA. 2010;107:9813–8.PubMedCentralCrossRefPubMed Hakkim A, Furnrohr BG, Amann K, Laube B, Abed UA, Brinkmann V, et al. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci USA. 2010;107:9813–8.PubMedCentralCrossRefPubMed
10.
go back to reference Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677–704.CrossRefPubMed Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677–704.CrossRefPubMed
12.
go back to reference Wang JF, Li JB, Zhao YJ, Yi WJ, Bian JJ, Wan XJ, et al. Up-regulation of programmed cell death 1 ligand 1 on neutrophils may be involved in sepsis-induced immunosuppression: an animal study and a prospective case-control study. Anesthesiology. 2015;122:852–63.CrossRefPubMed Wang JF, Li JB, Zhao YJ, Yi WJ, Bian JJ, Wan XJ, et al. Up-regulation of programmed cell death 1 ligand 1 on neutrophils may be involved in sepsis-induced immunosuppression: an animal study and a prospective case-control study. Anesthesiology. 2015;122:852–63.CrossRefPubMed
13.
go back to reference Buddhisa S, Rinchai D, Ato M, Bancroft GJ, Lertmemongkolchai G. Programmed death ligand 1 on Burkholderia pseudomallei–infected human polymorphonuclear neutrophils impairs T cell functions. J Immunol. 2015;194:4413–21.CrossRefPubMed Buddhisa S, Rinchai D, Ato M, Bancroft GJ, Lertmemongkolchai G. Programmed death ligand 1 on Burkholderia pseudomallei–infected human polymorphonuclear neutrophils impairs T cell functions. J Immunol. 2015;194:4413–21.CrossRefPubMed
14.
go back to reference McNab FW, Berry MP, Graham CM, Bloch SA, Oni T, Wilkinson KA, et al. Programmed death ligand 1 is over-expressed by neutrophils in the blood of patients with active tuberculosis. Eur J Immunol. 2011;41:1941–7.PubMedCentralCrossRefPubMed McNab FW, Berry MP, Graham CM, Bloch SA, Oni T, Wilkinson KA, et al. Programmed death ligand 1 is over-expressed by neutrophils in the blood of patients with active tuberculosis. Eur J Immunol. 2011;41:1941–7.PubMedCentralCrossRefPubMed
15.
go back to reference Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997;40:1725.CrossRefPubMed Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997;40:1725.CrossRefPubMed
16.
go back to reference Bombardier C, Gladman DD, Urowitz MB, Caron D, Chang CH. Derivation of the SLEDAI. A disease activity index for lupus patients. The Committee on Prognosis Studies in SLE. Arthritis Rheum. 1992;35:630–40.CrossRefPubMed Bombardier C, Gladman DD, Urowitz MB, Caron D, Chang CH. Derivation of the SLEDAI. A disease activity index for lupus patients. The Committee on Prognosis Studies in SLE. Arthritis Rheum. 1992;35:630–40.CrossRefPubMed
17.
go back to reference Tan EM, Feltkamp TE, Smolen JS, Butcher B, Dawkins R, Fritzler MJ, et al. Range of antinuclear antibodies in "healthy" individuals. Arthritis Rheum. 1997;40:1601–11.CrossRefPubMed Tan EM, Feltkamp TE, Smolen JS, Butcher B, Dawkins R, Fritzler MJ, et al. Range of antinuclear antibodies in "healthy" individuals. Arthritis Rheum. 1997;40:1601–11.CrossRefPubMed
18.
go back to reference Valentijn RM, van Overhagen H, Hazevoet HM, Hermans J, Cats A, Daha MR, et al. The value of complement and immune complex determinations in monitoring disease activity in patients with systemic lupus erythematosus. Arthritis Rheum. 1985;28:904–13.CrossRefPubMed Valentijn RM, van Overhagen H, Hazevoet HM, Hermans J, Cats A, Daha MR, et al. The value of complement and immune complex determinations in monitoring disease activity in patients with systemic lupus erythematosus. Arthritis Rheum. 1985;28:904–13.CrossRefPubMed
19.
go back to reference Aggarwal R, Sequeira W, Kokebie R, Mikolaitis RA, Fogg L, Finnegan A, et al. Serum free light chains as biomarkers for systemic lupus erythematosus disease activity. Arthritis Care Res (Hoboken). 2011;63:891–8.CrossRef Aggarwal R, Sequeira W, Kokebie R, Mikolaitis RA, Fogg L, Finnegan A, et al. Serum free light chains as biomarkers for systemic lupus erythematosus disease activity. Arthritis Care Res (Hoboken). 2011;63:891–8.CrossRef
20.
go back to reference Park YB, Lee SK, Kim DS, Lee J, Lee CH, Song CH. Elevated interleukin-10 levels correlated with disease activity in systemic lupus erythematosus. Clin Exp Rheumatol. 1998;16:283–8.PubMed Park YB, Lee SK, Kim DS, Lee J, Lee CH, Song CH. Elevated interleukin-10 levels correlated with disease activity in systemic lupus erythematosus. Clin Exp Rheumatol. 1998;16:283–8.PubMed
21.
go back to reference Petri M, Kasitanon N, Lee SS, Link K, Magder L, Bae SC, et al. Systemic Lupus International Collaborating Clinics renal activity/response exercise: development of a renal activity score and renal response index. Arthritis Rheum. 2008;58:1784–8.CrossRefPubMed Petri M, Kasitanon N, Lee SS, Link K, Magder L, Bae SC, et al. Systemic Lupus International Collaborating Clinics renal activity/response exercise: development of a renal activity score and renal response index. Arthritis Rheum. 2008;58:1784–8.CrossRefPubMed
22.
go back to reference Ouyang H, Shi Y, Liu Z, Feng S, Li L, Su N, et al. Increased interleukin-9 and CD4 + IL-9+ T cells in patients with systemic lupus erythematosus. Mol Med Rep. 2013;7:1031–7.PubMed Ouyang H, Shi Y, Liu Z, Feng S, Li L, Su N, et al. Increased interleukin-9 and CD4 + IL-9+ T cells in patients with systemic lupus erythematosus. Mol Med Rep. 2013;7:1031–7.PubMed
23.
go back to reference Akhter E, Burlingame RW, Seaman AL, Magder L, Petri M. Anti-C1q antibodies have higher correlation with flares of lupus nephritis than other serum markers. Lupus. 2011;20:1267–74.CrossRefPubMed Akhter E, Burlingame RW, Seaman AL, Magder L, Petri M. Anti-C1q antibodies have higher correlation with flares of lupus nephritis than other serum markers. Lupus. 2011;20:1267–74.CrossRefPubMed
24.
go back to reference Hock BD, Taylor KG, Cross NB, Kettle AJ, Hampton MB, McKenzie JL. Effect of activated human polymorphonuclear leucocytes on T lymphocyte proliferation and viability. Immunology. 2012;137:249–58.PubMedCentralCrossRefPubMed Hock BD, Taylor KG, Cross NB, Kettle AJ, Hampton MB, McKenzie JL. Effect of activated human polymorphonuclear leucocytes on T lymphocyte proliferation and viability. Immunology. 2012;137:249–58.PubMedCentralCrossRefPubMed
25.
go back to reference Pillay J, Kamp VM, van Hoffen E, Visser T, Tak T, Lammers JW, et al. A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1. J Clin Invest. 2012;122:327–36.PubMedCentralCrossRefPubMed Pillay J, Kamp VM, van Hoffen E, Visser T, Tak T, Lammers JW, et al. A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1. J Clin Invest. 2012;122:327–36.PubMedCentralCrossRefPubMed
26.
go back to reference Bertsias GK, Nakou M, Choulaki C, Raptopoulou A, Papadimitraki E, Goulielmos G, et al. Genetic, immunologic, and immunohistochemical analysis of the programmed death 1/programmed death ligand 1 pathway in human systemic lupus erythematosus. Arthritis Rheum. 2009;60:207–18.CrossRefPubMed Bertsias GK, Nakou M, Choulaki C, Raptopoulou A, Papadimitraki E, Goulielmos G, et al. Genetic, immunologic, and immunohistochemical analysis of the programmed death 1/programmed death ligand 1 pathway in human systemic lupus erythematosus. Arthritis Rheum. 2009;60:207–18.CrossRefPubMed
27.
go back to reference Liu MF, Weng CT, Weng MY. Variable increased expression of program death-1 and program death-1 ligands on peripheral mononuclear cells is not impaired in patients with systemic lupus erythematosus. J Biomed Biotechnol. 2009;2009:406136.PubMedCentralPubMed Liu MF, Weng CT, Weng MY. Variable increased expression of program death-1 and program death-1 ligands on peripheral mononuclear cells is not impaired in patients with systemic lupus erythematosus. J Biomed Biotechnol. 2009;2009:406136.PubMedCentralPubMed
28.
go back to reference Xie CH, Wang YY, Li ZJ, Tang J, Li BQ. Expression and clinical significance of PD-L1 on CD14+monocyte in the peripheral blood of patients with systemic lupus erythematosus. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2012;28:429–32.PubMed Xie CH, Wang YY, Li ZJ, Tang J, Li BQ. Expression and clinical significance of PD-L1 on CD14+monocyte in the peripheral blood of patients with systemic lupus erythematosus. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2012;28:429–32.PubMed
29.
go back to reference Song LJ, Wang X, Wang XP, Li D, Ding F, Liu HX, et al. Increased Tim-3 expression on peripheral T lymphocyte subsets and association with higher disease activity in systemic lupus erythematosus. Diagn Pathol. 2015;10:71.PubMedCentralCrossRefPubMed Song LJ, Wang X, Wang XP, Li D, Ding F, Liu HX, et al. Increased Tim-3 expression on peripheral T lymphocyte subsets and association with higher disease activity in systemic lupus erythematosus. Diagn Pathol. 2015;10:71.PubMedCentralCrossRefPubMed
30.
go back to reference Wang F, Hou H, Wu S, Tang Q, Liu W, Huang M, et al. TIGIT expression levels on human NK cells correlate with functional heterogeneity among healthy individuals. Eur J Immunol. 2015;45:2886–97.CrossRefPubMed Wang F, Hou H, Wu S, Tang Q, Liu W, Huang M, et al. TIGIT expression levels on human NK cells correlate with functional heterogeneity among healthy individuals. Eur J Immunol. 2015;45:2886–97.CrossRefPubMed
31.
go back to reference Verma J, Arora V, Marwaha V, Kumar A, Das N. Association of leukocyte CR1 gene transcription with the disease severity and renal involvement in systemic lupus erythematosus. Lupus. 2005;14:273–9.CrossRefPubMed Verma J, Arora V, Marwaha V, Kumar A, Das N. Association of leukocyte CR1 gene transcription with the disease severity and renal involvement in systemic lupus erythematosus. Lupus. 2005;14:273–9.CrossRefPubMed
33.
34.
go back to reference Salinas-Carmona MC, Perez LI, Galan K, Vazquez AV. Immunosuppressive drugs have different effect on B lymphocyte subsets and IgM antibody production in immunized BALB/c mice. Autoimmunity. 2009;42:537–44.CrossRefPubMed Salinas-Carmona MC, Perez LI, Galan K, Vazquez AV. Immunosuppressive drugs have different effect on B lymphocyte subsets and IgM antibody production in immunized BALB/c mice. Autoimmunity. 2009;42:537–44.CrossRefPubMed
35.
go back to reference Terrazas LI, Montero D, Terrazas CA, Reyes JL, Rodríguez-Sosa M. Role of the programmed Death-1 pathway in the suppressive activity of alternatively activated macrophages in experimental cysticercosis. Int J Parasitol. 2005;35:1349–58.CrossRefPubMed Terrazas LI, Montero D, Terrazas CA, Reyes JL, Rodríguez-Sosa M. Role of the programmed Death-1 pathway in the suppressive activity of alternatively activated macrophages in experimental cysticercosis. Int J Parasitol. 2005;35:1349–58.CrossRefPubMed
36.
go back to reference Kuang DM, Zhao Q, Peng C, Xu J, Zhang JP, Wu C, et al. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J Exp Med. 2009;206:1327–37.PubMedCentralCrossRefPubMed Kuang DM, Zhao Q, Peng C, Xu J, Zhang JP, Wu C, et al. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J Exp Med. 2009;206:1327–37.PubMedCentralCrossRefPubMed
37.
go back to reference Munder M, Mollinedo F, Calafat J, Canchado J, Gil-Lamaignere C, Fuentes JM, et al. Arginase I is constitutively expressed in human granulocytes and participates in fungicidal activity. Blood. 2005;105:2549–56.CrossRefPubMed Munder M, Mollinedo F, Calafat J, Canchado J, Gil-Lamaignere C, Fuentes JM, et al. Arginase I is constitutively expressed in human granulocytes and participates in fungicidal activity. Blood. 2005;105:2549–56.CrossRefPubMed
Metadata
Title
PD-L1-expressing neutrophils as a novel indicator to assess disease activity and severity of systemic lupus erythematosus
Authors
Qing Luo
Zikun Huang
Jianqing Ye
Yating Deng
Le Fang
Xue Li
Yang Guo
Hong Jiang
Beihua Ju
Qingshui Huang
Junming Li
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Arthritis Research & Therapy / Issue 1/2016
Electronic ISSN: 1478-6362
DOI
https://doi.org/10.1186/s13075-016-0942-0

Other articles of this Issue 1/2016

Arthritis Research & Therapy 1/2016 Go to the issue