Skip to main content
Top
Published in: Arthritis Research & Therapy 1/2015

Open Access 01-12-2015 | Research article

Gene expression changes reflect clinical response in a placebo-controlled randomized trial of abatacept in patients with diffuse cutaneous systemic sclerosis

Authors: Eliza F. Chakravarty, Viktor Martyanov, David Fiorentino, Tammara A. Wood, David James Haddon, Justin Ansel Jarrell, Paul J. Utz, Mark C. Genovese, Michael L. Whitfield, Lorinda Chung

Published in: Arthritis Research & Therapy | Issue 1/2015

Login to get access

Abstract

Introduction

Systemic sclerosis is an autoimmune disease characterized by inflammation and fibrosis of the skin and internal organs. We sought to assess the clinical and molecular effects associated with response to intravenous abatacept in patients with diffuse cutaneous systemic.

Methods

Adult diffuse cutaneous systemic sclerosis patients were randomized in a 2:1 double-blinded fashion to receive abatacept or placebo over 24 weeks. Primary outcomes were safety and the change in modified Rodnan Skin Score (mRSS) at week 24 compared with baseline. Improvers were defined as patients with a decrease in mRSS of ≥30 % post-treatment compared to baseline. Skin biopsies were obtained for differential gene expression and pathway enrichment analyses and intrinsic gene expression subset assignment.

Results

Ten subjects were randomized to abatacept (n = 7) or placebo (n = 3). Disease duration from first non-Raynaud’s symptom was significantly longer (8.8 ± 3.8 years vs. 2.4 ± 1.6 years, p = 0.004) and median mRSS was higher (30 vs. 22, p = 0.05) in the placebo compared to abatacept group. Adverse events were similar in the two groups. Five out of seven patients (71 %) randomized to abatacept and one out of three patients (33 %) randomized to placebo experienced ≥30 % improvement in skin score. Subjects receiving abatacept showed a trend toward improvement in mRSS at week 24 (−8.6 ± 7.5, p = 0.0625) while those in the placebo group did not (−2.3 ± 15, p = 0.75). After adjusting for disease duration, mRSS significantly improved in the abatacept compared with the placebo group (abatacept vs. placebo mRSS decrease estimate −9.8, 95 % confidence interval −16.7 to −3.0, p = 0.0114). In the abatacept group, the patients in the inflammatory intrinsic subset showed a trend toward greater improvement in skin score at 24 weeks compared with the patients in the normal-like intrinsic subset (−13.5 ± 3.1 vs. −4.5 ± 6.4, p = 0.067). Abatacept resulted in decreased CD28 co-stimulatory gene expression in improvers consistent with its mechanism of action. Improvers mapped to the inflammatory intrinsic subset and showed decreased gene expression in inflammatory pathways, while non-improver and placebos showed stable or reverse gene expression over 24 weeks.

Conclusions

Clinical improvement following abatacept therapy was associated with modulation of inflammatory pathways in skin.

Trial registration

ClinicalTrials.gov NCT00442611. Registered 1 March 2007.
Appendix
Available only for authorised users
Literature
1.
go back to reference Medsger Jr TA. Natural history of systemic sclerosis and the assessment of disease activity, severity, functional status, and psychologic well-being. Rheum Dis Clin North Am. 2003;29:255–73.PubMedCrossRef Medsger Jr TA. Natural history of systemic sclerosis and the assessment of disease activity, severity, functional status, and psychologic well-being. Rheum Dis Clin North Am. 2003;29:255–73.PubMedCrossRef
2.
go back to reference Roumm AD, Whiteside TL, Medsger Jr TA, Rodnan GP. Lymphocytes in the skin of patients with progressive systemic sclerosis. Quantification, subtyping, and clinical correlations. Arthritis Rheum. 1984;27:645–53.PubMedCrossRef Roumm AD, Whiteside TL, Medsger Jr TA, Rodnan GP. Lymphocytes in the skin of patients with progressive systemic sclerosis. Quantification, subtyping, and clinical correlations. Arthritis Rheum. 1984;27:645–53.PubMedCrossRef
3.
go back to reference Prescott RJ, Freemont AJ, Jones CJ, Hoyland J, Fielding P. Sequential dermal microvascular and perivascular changes in the development of scleroderma. J Pathol. 1992;166:255–63.PubMedCrossRef Prescott RJ, Freemont AJ, Jones CJ, Hoyland J, Fielding P. Sequential dermal microvascular and perivascular changes in the development of scleroderma. J Pathol. 1992;166:255–63.PubMedCrossRef
4.
go back to reference Freundlich B, Jimenez SA. Phenotype of peripheral blood lymphocytes in patients with progressive systemic sclerosis: activated T lymphocytes and the effect of D-penicillamine therapy. Clin Exp Immunol. 1987;69:375–84.PubMedCentralPubMed Freundlich B, Jimenez SA. Phenotype of peripheral blood lymphocytes in patients with progressive systemic sclerosis: activated T lymphocytes and the effect of D-penicillamine therapy. Clin Exp Immunol. 1987;69:375–84.PubMedCentralPubMed
5.
go back to reference Needleman BW, Wigley FM, Stair RW. Interleukin-1, interleukin-2, interleukin-4, interleukin-6, tumor necrosis factor-α, and interferon-γ levels in sera from patients with scleroderma. Arthritis Rheum. 1992;35:67–72.PubMedCrossRef Needleman BW, Wigley FM, Stair RW. Interleukin-1, interleukin-2, interleukin-4, interleukin-6, tumor necrosis factor-α, and interferon-γ levels in sera from patients with scleroderma. Arthritis Rheum. 1992;35:67–72.PubMedCrossRef
6.
go back to reference Hasegawa M, Fujimoto M, Kikuchi K, Takehara K. Elevated serum levels of interleukin 4 (IL-4), IL-10, IL-13 in patients with systemic sclerosis. J Rheumatol. 1997;24:328–32.PubMed Hasegawa M, Fujimoto M, Kikuchi K, Takehara K. Elevated serum levels of interleukin 4 (IL-4), IL-10, IL-13 in patients with systemic sclerosis. J Rheumatol. 1997;24:328–32.PubMed
7.
go back to reference Sakkas LI, Tourtellotte C, Berney S, Myers AR, Platsoucas CD. Increased levels of alternatively spliced interleukin 4 (IL-4d2) transcripts in peripheral blood mononuclear cells from patients with systemic sclerosis. Clin Diagn Lab Immunol. 1999;6:660–4.PubMedCentralPubMed Sakkas LI, Tourtellotte C, Berney S, Myers AR, Platsoucas CD. Increased levels of alternatively spliced interleukin 4 (IL-4d2) transcripts in peripheral blood mononuclear cells from patients with systemic sclerosis. Clin Diagn Lab Immunol. 1999;6:660–4.PubMedCentralPubMed
8.
go back to reference Kurasawa K, Hirose K, Sano H, Endo H, Shinkai H, Nawata Y, et al. Increased interleukin-17 production in patients with systemic sclerosis. Arthritis Rheum. 2000;43:2455–63.PubMedCrossRef Kurasawa K, Hirose K, Sano H, Endo H, Shinkai H, Nawata Y, et al. Increased interleukin-17 production in patients with systemic sclerosis. Arthritis Rheum. 2000;43:2455–63.PubMedCrossRef
9.
go back to reference Clements P, Lachenbruch P, Siebold J, White B, Weiner S, Martin R, et al. Inter and intraobserver variability of total skin thickness score (modified Rodnan TSS) in systemic sclerosis. J Rheumatol. 1995;22:1281–5.PubMed Clements P, Lachenbruch P, Siebold J, White B, Weiner S, Martin R, et al. Inter and intraobserver variability of total skin thickness score (modified Rodnan TSS) in systemic sclerosis. J Rheumatol. 1995;22:1281–5.PubMed
10.
go back to reference Hinchcliff M, Huang CC, Wood TA, Matthew Mahoney J, Martyanov V, Bhattacharyya S, et al. Molecular signatures in skin associated with clinical improvement during mycophenolate treatment in systemic sclerosis. J Invest Dermatol. 2013;133:1979–89.PubMedCentralPubMedCrossRef Hinchcliff M, Huang CC, Wood TA, Matthew Mahoney J, Martyanov V, Bhattacharyya S, et al. Molecular signatures in skin associated with clinical improvement during mycophenolate treatment in systemic sclerosis. J Invest Dermatol. 2013;133:1979–89.PubMedCentralPubMedCrossRef
11.
go back to reference Milano A, Pendergrass SA, Sargent JL, George LK, McCalmont TH, Connolly MK, et al. Molecular subsets in the gene expression signatures of scleroderma skin. PLoS One. 2008;3:e2696.PubMedCentralPubMedCrossRef Milano A, Pendergrass SA, Sargent JL, George LK, McCalmont TH, Connolly MK, et al. Molecular subsets in the gene expression signatures of scleroderma skin. PLoS One. 2008;3:e2696.PubMedCentralPubMedCrossRef
12.
go back to reference Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP. GenePattern 2.0. Nat Genet. 2006;38:500–1.PubMedCrossRef Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP. GenePattern 2.0. Nat Genet. 2006;38:500–1.PubMedCrossRef
13.
go back to reference Gould J, Getz G, Monti S, Reich M, Mesirov JP. Comparative gene marker selection suite. Bioinformatics. 2006;22:1924–5.PubMedCrossRef Gould J, Getz G, Monti S, Reich M, Mesirov JP. Comparative gene marker selection suite. Bioinformatics. 2006;22:1924–5.PubMedCrossRef
14.
go back to reference de Hoon MJ, Imoto S, Nolan J, Miyano S. Open source clustering software. Bioinformatics. 2004;20:1453–4.PubMedCrossRef de Hoon MJ, Imoto S, Nolan J, Miyano S. Open source clustering software. Bioinformatics. 2004;20:1453–4.PubMedCrossRef
15.
go back to reference Saldanha AJ. Java Treeview—extensible visualization of microarray data. Bioinformatics. 2004;20:3246–8.PubMedCrossRef Saldanha AJ. Java Treeview—extensible visualization of microarray data. Bioinformatics. 2004;20:3246–8.PubMedCrossRef
16.
go back to reference Reimand J, Kull M, Peterson H, Hansen J, Vilo J. g:Profiler – a web-based toolset for functional profiling of gene lists from large-scale experiments. Nucleic Acids Res. 2007;35:W193–200.PubMedCentralPubMedCrossRef Reimand J, Kull M, Peterson H, Hansen J, Vilo J. g:Profiler – a web-based toolset for functional profiling of gene lists from large-scale experiments. Nucleic Acids Res. 2007;35:W193–200.PubMedCentralPubMedCrossRef
17.
go back to reference Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545–50.PubMedCentralPubMedCrossRef Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545–50.PubMedCentralPubMedCrossRef
18.
go back to reference Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34:267–73.PubMedCrossRef Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34:267–73.PubMedCrossRef
19.
20.
go back to reference Croft D, O’Kelly G, Wu G, Haw R, Gillespie M, Matthews L, et al. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res. 2011;39:D691–7.PubMedCentralPubMedCrossRef Croft D, O’Kelly G, Wu G, Haw R, Gillespie M, Matthews L, et al. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res. 2011;39:D691–7.PubMedCentralPubMedCrossRef
21.
go back to reference Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature. 2009;462:108–12.PubMedCentralPubMedCrossRef Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature. 2009;462:108–12.PubMedCentralPubMedCrossRef
22.
go back to reference Pendergrass SA, Lemaire R, Francis IP, Mahoney JM, Lafyatis R, Whitfield ML. Intrinsic gene expression subsets of diffuse cutaneous systemic sclerosis are stable in serial skin biopsies. J Invest Dermatol. 2012;132:1363–73.PubMedCentralPubMedCrossRef Pendergrass SA, Lemaire R, Francis IP, Mahoney JM, Lafyatis R, Whitfield ML. Intrinsic gene expression subsets of diffuse cutaneous systemic sclerosis are stable in serial skin biopsies. J Invest Dermatol. 2012;132:1363–73.PubMedCentralPubMedCrossRef
23.
go back to reference Khanna D, Furst DE, Hays RD, Park GS, Wong WK, Seibold JR, et al. Minimally important difference in diffuse systemic sclerosis: results from the D-penicillamine study. Ann Rheum Dis. 2006;65:1325–9.PubMedCentralPubMedCrossRef Khanna D, Furst DE, Hays RD, Park GS, Wong WK, Seibold JR, et al. Minimally important difference in diffuse systemic sclerosis: results from the D-penicillamine study. Ann Rheum Dis. 2006;65:1325–9.PubMedCentralPubMedCrossRef
24.
go back to reference Elhai M, Meunier M, Matucci-Cerinic M, Maurer B, Riemekasten G, Leturcq T, et al. Outcomes of patients with systemic sclerosis-associated polyarthritis and myopathy treated with tocilizumab or abatacept: a EUSTAR observational study. Ann Rheum Dis. 2013;72:1217–20.PubMedCrossRef Elhai M, Meunier M, Matucci-Cerinic M, Maurer B, Riemekasten G, Leturcq T, et al. Outcomes of patients with systemic sclerosis-associated polyarthritis and myopathy treated with tocilizumab or abatacept: a EUSTAR observational study. Ann Rheum Dis. 2013;72:1217–20.PubMedCrossRef
25.
go back to reference Chung L, Denton CP, Distler O, Furst DE, Khanna D, Merkel PA, et al. Clinical trial design in scleroderma: where are we and where do we go next? Clin Exp Rheumatol. 2012;30:S97–102.PubMed Chung L, Denton CP, Distler O, Furst DE, Khanna D, Merkel PA, et al. Clinical trial design in scleroderma: where are we and where do we go next? Clin Exp Rheumatol. 2012;30:S97–102.PubMed
26.
go back to reference Merkel PA, Silliman NP, Clements PJ, Denton CP, Furst DE, Mayes MD, et al. Patterns and predictors of change in outcome measures in clinical trials in scleroderma: an individual patient meta-analysis of 629 subjects with diffuse cutaneous systemic sclerosis. Arthritis Rheum. 2012;64:3420–9.PubMedCentralPubMedCrossRef Merkel PA, Silliman NP, Clements PJ, Denton CP, Furst DE, Mayes MD, et al. Patterns and predictors of change in outcome measures in clinical trials in scleroderma: an individual patient meta-analysis of 629 subjects with diffuse cutaneous systemic sclerosis. Arthritis Rheum. 2012;64:3420–9.PubMedCentralPubMedCrossRef
Metadata
Title
Gene expression changes reflect clinical response in a placebo-controlled randomized trial of abatacept in patients with diffuse cutaneous systemic sclerosis
Authors
Eliza F. Chakravarty
Viktor Martyanov
David Fiorentino
Tammara A. Wood
David James Haddon
Justin Ansel Jarrell
Paul J. Utz
Mark C. Genovese
Michael L. Whitfield
Lorinda Chung
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Arthritis Research & Therapy / Issue 1/2015
Electronic ISSN: 1478-6362
DOI
https://doi.org/10.1186/s13075-015-0669-3

Other articles of this Issue 1/2015

Arthritis Research & Therapy 1/2015 Go to the issue