Skip to main content
Top
Published in: Breast Cancer Research 1/2017

Open Access 01-12-2017 | Research article

Pubertal development in girls by breast cancer family history: the LEGACY girls cohort

Authors: Mary Beth Terry, Theresa H. M. Keegan, Lauren C. Houghton, Mandy Goldberg, Irene L. Andrulis, Mary B. Daly, Saundra S. Buys, Ying Wei, Alice S. Whittemore, Angeline Protacio, Angela R. Bradbury, Wendy K. Chung, Julia A. Knight, Esther M. John

Published in: Breast Cancer Research | Issue 1/2017

Login to get access

Abstract

Background

Pubertal milestones, such as onset of breast development and menstruation, play an important role in breast cancer etiology. It is unclear if these milestones are different in girls with a first- or second-degree breast cancer family history (BCFH).

Methods

In the LEGACY Girls Study (n = 1040), we examined whether three mother/guardian-reported pubertal milestones (having reached Tanner Stage 2 or higher (T2+) for breast and pubic hair development, and having started menstruation) differed by BCFH. We also examined whether associations between body size and race/ethnicity and pubertal milestones were modified by BCFH. We used mother/guardian reports as the primary measure of pubertal milestones, but also conducted sensitivity analyses using clinical Tanner measurements available for a subcohort (n = 204). We analyzed cross-sectional baseline data with logistic regression models for the entire cohort, and longitudinal data with Weibull survival models for the subcohort of girls that were aged 5–7 years at baseline (n = 258).

Results

BCFH was modestly, but not statistically significantly, associated with Breast T2+ (odds ratio (OR) = 1.36, 95% confidence interval (CI) = 0.88–2.10), with a stronger association seen in the subcohort of girls with clinical breast Tanner staging (OR = 2.20, 95% CI = 0.91–5.32). In a longitudinal analysis of girls who were aged 5–7 years at baseline, BCFH was associated with a 50% increased rate of having early breast development (hazard ratio (HR) = 1.49, 95% CI = 1.0–2.21). This association increased to twofold in girls who were not overweight at baseline (HR = 2.04, 95% CI = 1.29–3.21). BCFH was not associated with pubic hair development and post-menarche status. The median interval between onset of breast development and menarche was longer for BCFH+ than BCFH– girls (2.3 versus 1.7 years), suggesting a slower developmental tempo for BCFH+ girls. Associations between pubertal milestones and body size and race/ethnicity were similar in girls with or without a BCFH. For example, weight was positively associated with Breast T2+ in both girls with (OR = 1.06 per 1 kg, 95% CI = 1.03–1.10) and without (OR = 1.14 per 1 kg, 95% CI = 1.04–1.24) a BCFH.

Conclusions

These results suggest that BCFH may be related to earlier breast development and slower pubertal tempo independent of body size and race/ethnicity.
Appendix
Available only for authorised users
Literature
3.
go back to reference Sturtz LA, Melley J, Mamula K, Shriver CD, Ellsworth RE. Outcome disparities in African American women with triple negative breast cancer: a comparison of epidemiological and molecular factors between African American and Caucasian women with triple negative breast cancer. BMC Cancer. 2014;14:62. doi:10.1186/1471-2407-14-62.CrossRefPubMedPubMedCentral Sturtz LA, Melley J, Mamula K, Shriver CD, Ellsworth RE. Outcome disparities in African American women with triple negative breast cancer: a comparison of epidemiological and molecular factors between African American and Caucasian women with triple negative breast cancer. BMC Cancer. 2014;14:62. doi:10.​1186/​1471-2407-14-62.CrossRefPubMedPubMedCentral
10.
go back to reference Herman-Giddens ME, Kaplowitz PB, Wasserman R. Navigating the recent articles on girls’ puberty in Pediatrics: what do we know and where do we go from here? Pediatrics. 2004;113(4):911–7.CrossRefPubMed Herman-Giddens ME, Kaplowitz PB, Wasserman R. Navigating the recent articles on girls’ puberty in Pediatrics: what do we know and where do we go from here? Pediatrics. 2004;113(4):911–7.CrossRefPubMed
12.
go back to reference Herman-Giddens ME, Slora EJ, Wasserman RC, et al. Secondary sexual characteristics and menses in young girls seen in office practice: a study from the Pediatric Research in Office Settings network. Pediatrics. 1997;99(4):505–12.CrossRefPubMed Herman-Giddens ME, Slora EJ, Wasserman RC, et al. Secondary sexual characteristics and menses in young girls seen in office practice: a study from the Pediatric Research in Office Settings network. Pediatrics. 1997;99(4):505–12.CrossRefPubMed
17.
go back to reference de Muinich Keizer SM, Mul D. Trends in pubertal development in Europe. Hum Reprod Update. 2001;7(3):287–91.CrossRefPubMed de Muinich Keizer SM, Mul D. Trends in pubertal development in Europe. Hum Reprod Update. 2001;7(3):287–91.CrossRefPubMed
19.
go back to reference Epplein M, Novotny R, Daida Y, Vijayadeva V, Onaka AT, Le Marchand L. Association of maternal and intrauterine characteristics with age at menarche in a multiethnic population in Hawaii. Cancer Causes Control. 2010;21(2):259–68. doi:10.1007/s10552-009-9457-1.CrossRefPubMed Epplein M, Novotny R, Daida Y, Vijayadeva V, Onaka AT, Le Marchand L. Association of maternal and intrauterine characteristics with age at menarche in a multiethnic population in Hawaii. Cancer Causes Control. 2010;21(2):259–68. doi:10.​1007/​s10552-009-9457-1.CrossRefPubMed
22.
go back to reference Terry MB, Phillips K-A, Daly MB, et al. Cohort Profile: The Breast Cancer Prospective Family Study Cohort (ProF-SC). Int J Epidemiol. 2016;45(3):683–92. doi:10.1093/ije/dyv118. Terry MB, Phillips K-A, Daly MB, et al. Cohort Profile: The Breast Cancer Prospective Family Study Cohort (ProF-SC). Int J Epidemiol. 2016;45(3):683–92. doi:10.​1093/​ije/​dyv118.
23.
go back to reference John EM, Hopper JL, Beck JC, et al. The Breast Cancer Family Registry: an infrastructure for cooperative multinational, interdisciplinary and translational studies of the genetic epidemiology of breast cancer. Breast Cancer Res. 2004;6(4):R375–89. doi:10.1186/bcr801.CrossRefPubMedPubMedCentral John EM, Hopper JL, Beck JC, et al. The Breast Cancer Family Registry: an infrastructure for cooperative multinational, interdisciplinary and translational studies of the genetic epidemiology of breast cancer. Breast Cancer Res. 2004;6(4):R375–89. doi:10.​1186/​bcr801.CrossRefPubMedPubMedCentral
31.
go back to reference Schoeps A, Rudolph A, Seibold P, et al. Identification of new genetic susceptibility loci for breast cancer through consideration of gene-environment interactions. Genet Epidemiol. 2014;38(1):84–93. doi:10.1002/gepi.21771.CrossRefPubMed Schoeps A, Rudolph A, Seibold P, et al. Identification of new genetic susceptibility loci for breast cancer through consideration of gene-environment interactions. Genet Epidemiol. 2014;38(1):84–93. doi:10.​1002/​gepi.​21771.CrossRefPubMed
32.
33.
go back to reference Zhang B, Shu XO, Delahanty RJ, et al. Height and breast cancer risk: evidence from prospective studies and mendelian randomization. J Natl Cancer Inst. 2015;107(11). doi:10.1093/jnci/djv219. Zhang B, Shu XO, Delahanty RJ, et al. Height and breast cancer risk: evidence from prospective studies and mendelian randomization. J Natl Cancer Inst. 2015;107(11). doi:10.​1093/​jnci/​djv219.
34.
35.
43.
go back to reference Juul A, Bang P, Hertel NT, et al. Serum insulin-like growth factor-I in 1030 healthy children, adolescents, and adults: relation to age, sex, stage of puberty, testicular size, and body mass index. J Clin Endocrinol Metab. 1994;78(3):744–52. doi:10.1210/jcem.78.3.8126152.PubMed Juul A, Bang P, Hertel NT, et al. Serum insulin-like growth factor-I in 1030 healthy children, adolescents, and adults: relation to age, sex, stage of puberty, testicular size, and body mass index. J Clin Endocrinol Metab. 1994;78(3):744–52. doi:10.​1210/​jcem.​78.​3.​8126152.PubMed
47.
go back to reference Colditz GA, Frazier AL. Models of breast cancer show that risk is set by events of early life: prevention efforts must shift focus. Cancer Epidemiol Biomarkers Prev. 1995;4(5):567–71.PubMed Colditz GA, Frazier AL. Models of breast cancer show that risk is set by events of early life: prevention efforts must shift focus. Cancer Epidemiol Biomarkers Prev. 1995;4(5):567–71.PubMed
48.
go back to reference Becher H, Schmidt S, Chang-Claude J. Reproductive factors and familial predisposition for breast cancer by age 50 years. A case-control family study for assessing main effects and possible gene-environment interaction. Int J Epidemiol. 2003;32(1):38–48.CrossRefPubMed Becher H, Schmidt S, Chang-Claude J. Reproductive factors and familial predisposition for breast cancer by age 50 years. A case-control family study for assessing main effects and possible gene-environment interaction. Int J Epidemiol. 2003;32(1):38–48.CrossRefPubMed
49.
go back to reference Delgado-Cruzata L, Wu H-C, Liao Y, Santella RM, Terry MB. Differences in DNA methylation by extent of breast cancer family history in unaffected women. Epigenetics. 2014;9(2):243–8. doi:10.4161/epi.26880.CrossRefPubMed Delgado-Cruzata L, Wu H-C, Liao Y, Santella RM, Terry MB. Differences in DNA methylation by extent of breast cancer family history in unaffected women. Epigenetics. 2014;9(2):243–8. doi:10.​4161/​epi.​26880.CrossRefPubMed
52.
go back to reference Wu H-C, Delgado-Cruzata L, Machella N, Wang Q, Santella RM, Terry MB. DNA double-strand break repair genotype and phenotype and breast cancer risk within sisters from the New York site of the Breast Cancer Family Registry (BCFR). Cancer Causes Control. 2013;24(12):2157–68. doi:10.1007/s10552-013-0292-z.CrossRefPubMedPubMedCentral Wu H-C, Delgado-Cruzata L, Machella N, Wang Q, Santella RM, Terry MB. DNA double-strand break repair genotype and phenotype and breast cancer risk within sisters from the New York site of the Breast Cancer Family Registry (BCFR). Cancer Causes Control. 2013;24(12):2157–68. doi:10.​1007/​s10552-013-0292-z.CrossRefPubMedPubMedCentral
Metadata
Title
Pubertal development in girls by breast cancer family history: the LEGACY girls cohort
Authors
Mary Beth Terry
Theresa H. M. Keegan
Lauren C. Houghton
Mandy Goldberg
Irene L. Andrulis
Mary B. Daly
Saundra S. Buys
Ying Wei
Alice S. Whittemore
Angeline Protacio
Angela R. Bradbury
Wendy K. Chung
Julia A. Knight
Esther M. John
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 1/2017
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/s13058-017-0849-y

Other articles of this Issue 1/2017

Breast Cancer Research 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine