Skip to main content
Top
Published in: Breast Cancer Research 1/2017

Open Access 01-12-2017 | Research article

Cooperation of neurotrophin receptor TrkB and Her2 in breast cancer cells facilitates brain metastases

Authors: Cecilia Choy, Khairul I. Ansari, Josh Neman, Sarah Hsu, Matthew J. Duenas, Hubert Li, Nagarajan Vaidehi, Rahul Jandial

Published in: Breast Cancer Research | Issue 1/2017

Login to get access

Abstract

Background

Patients with primary breast cancer that is positive for human epidermal growth factor receptor 2 (Her2+) have a high risk of developing metastases in the brain. Despite gains with systemic control of Her2+ disease using molecular therapies, brain metastases remain recalcitrant to therapeutic discovery. The clinical predilection of Her2+ breast cancer cells to colonize the brain likely relies on paracrine mechanisms. The neural niche poses unique selection pressures, and neoplastic cells that utilize the brain microenvironment may have a survival advantage.

Methods

Tropomyosin-related kinase B (TrkB), Her2, and downstream targets were analyzed in primary breast cancer, breast-to-brain metastasis (BBM) tissues, and tumor-derived cell lines using quantitative real-time PCR, western blot, and immunohistochemical assessment. TrkB function on BBM was confirmed with intracranial, intracardiac, or mammary fat pad xenografts in non-obese diabetic/severe combined immunodeficiency mice. The function of brain-derived neurotrophic factor (BDNF) on cell proliferation and TrkB/Her2 signaling and interactions were confirmed using selective shRNA knockdown and selective inhibitors. The physical interaction of Her2-TrkB was analyzed using electron microscopy, co-immunoprecipitation, and in silico analysis. Dual targeting of Her2 and TrkB was analyzed using clinically utilized treatments.

Results

We observed that patient tissues and cell lines derived from Her2+ human BBM displayed increased activation of TrkB, a neurotrophin receptor. BDNF, an extracellular neurotrophin, with roles in neuronal maturation and homeostasis, specifically binds to TrkB. TrkB knockdown in breast cancer cells led to decreased frequency and growth of brain metastasis in animal models, suggesting that circulating breast cancer cells entering the brain may take advantage of paracrine BDNF-TrkB signaling for colonization. In addition, we investigated a possible interaction between TrkB and Her2 receptors on brain metastatic breast cancer cells, and found that BDNF phosphorylated both its cognate TrkB receptor and the Her2 receptor in brain metastatic breast cancer cells.

Conclusion

Collectively, our findings suggest that heterodimerization of Her2 and TrkB receptors gives breast cancer cells a survival advantage in the brain and that dual inhibition of these receptors may hold therapeutic potential.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jemal A, Bray F, Center MM, Ferlay J, Ward E, et al. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMed Jemal A, Bray F, Center MM, Ferlay J, Ward E, et al. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMed
2.
go back to reference Lu X, Kang Y. Organotropism of breast cancer metastasis. J Mammary Gland Biol Neoplasia. 2007;12:153–62.CrossRefPubMed Lu X, Kang Y. Organotropism of breast cancer metastasis. J Mammary Gland Biol Neoplasia. 2007;12:153–62.CrossRefPubMed
3.
go back to reference Palmieri D. An introduction to brain metastasis. In: Palmieri D, editor. Central nervous system metastasis, the biological basis, and clinical considerations. Dordrecht, The Netherlands: Springer; 2012. p. 1–13.CrossRef Palmieri D. An introduction to brain metastasis. In: Palmieri D, editor. Central nervous system metastasis, the biological basis, and clinical considerations. Dordrecht, The Netherlands: Springer; 2012. p. 1–13.CrossRef
4.
go back to reference Lorger M, Felding-Habermann B. Capturing changes in the brain microenvironment during initial steps of breast cancer brain metastasis. Am J Pathol. 2010;176:2958–71.CrossRefPubMedPubMedCentral Lorger M, Felding-Habermann B. Capturing changes in the brain microenvironment during initial steps of breast cancer brain metastasis. Am J Pathol. 2010;176:2958–71.CrossRefPubMedPubMedCentral
5.
go back to reference Dougherty KD, Dreyfus CF, Black IB. Brain-derived neurotrophic factor in astrocytes, oligodendrocytes, and microglia/macrophages after spinal cord injury. Neurobiol Dis. 2000;7:574–85.CrossRefPubMed Dougherty KD, Dreyfus CF, Black IB. Brain-derived neurotrophic factor in astrocytes, oligodendrocytes, and microglia/macrophages after spinal cord injury. Neurobiol Dis. 2000;7:574–85.CrossRefPubMed
6.
go back to reference Ho R, Eggert A, Hishiki T, Minturn JE, Ikegaki N, et al. Resistance to chemotherapy mediated by TrkB in neuroblastomas. Cancer Res. 2002;62:6462–6.PubMed Ho R, Eggert A, Hishiki T, Minturn JE, Ikegaki N, et al. Resistance to chemotherapy mediated by TrkB in neuroblastomas. Cancer Res. 2002;62:6462–6.PubMed
7.
go back to reference Squinto SP, Stitt TN, Aldrich TH, Davis S, Bianco SM, et al. trkB encodes a functional receptor for brain-derived neurotrophic factor and neurotrophin-3 but not nerve growth factor. Cell. 1991;65:885–93.CrossRefPubMed Squinto SP, Stitt TN, Aldrich TH, Davis S, Bianco SM, et al. trkB encodes a functional receptor for brain-derived neurotrophic factor and neurotrophin-3 but not nerve growth factor. Cell. 1991;65:885–93.CrossRefPubMed
8.
go back to reference Thiele CJ, Li Z, McKee AE. On Trk--the TrkB signal transduction pathway is an increasingly important target in cancer biology. Clin Cancer Res. 2009;15:5962–7.CrossRefPubMedPubMedCentral Thiele CJ, Li Z, McKee AE. On Trk--the TrkB signal transduction pathway is an increasingly important target in cancer biology. Clin Cancer Res. 2009;15:5962–7.CrossRefPubMedPubMedCentral
9.
go back to reference Vanhecke E, Adriaenssens E, Verbeke S, Meignan S, Germain E, et al. Brain-derived neurotrophic factor and neurotrophin-4/5 are expressed in breast cancer and can be targeted to inhibit tumor cell survival. Clin Cancer Res. 2011;17:1741–52.CrossRefPubMed Vanhecke E, Adriaenssens E, Verbeke S, Meignan S, Germain E, et al. Brain-derived neurotrophic factor and neurotrophin-4/5 are expressed in breast cancer and can be targeted to inhibit tumor cell survival. Clin Cancer Res. 2011;17:1741–52.CrossRefPubMed
10.
go back to reference Abcejo AJ, Sathish V, Smelter DF, Aravamudan B, Thompson MA, et al. Brain-derived neurotrophic factor enhances calcium regulatory mechanisms in human airway smooth muscle. PLoS One. 2012;7:e44343.CrossRefPubMedPubMedCentral Abcejo AJ, Sathish V, Smelter DF, Aravamudan B, Thompson MA, et al. Brain-derived neurotrophic factor enhances calcium regulatory mechanisms in human airway smooth muscle. PLoS One. 2012;7:e44343.CrossRefPubMedPubMedCentral
11.
go back to reference Matsumoto K, Wada RK, Yamashiro JM, Kaplan DR, Thiele CJ. Expression of brain-derived neurotrophic factor and p145TrkB affects survival, differentiation, and invasiveness of human neuroblastoma cells. Cancer Res. 1995;55:1798–806.PubMed Matsumoto K, Wada RK, Yamashiro JM, Kaplan DR, Thiele CJ. Expression of brain-derived neurotrophic factor and p145TrkB affects survival, differentiation, and invasiveness of human neuroblastoma cells. Cancer Res. 1995;55:1798–806.PubMed
13.
go back to reference Lai R, Dang CT, Malkin MG, Abrey LE. The risk of central nervous system metastases after trastuzumab therapy in patients with breast carcinoma. Cancer. 2004;101:810–6.CrossRefPubMed Lai R, Dang CT, Malkin MG, Abrey LE. The risk of central nervous system metastases after trastuzumab therapy in patients with breast carcinoma. Cancer. 2004;101:810–6.CrossRefPubMed
14.
15.
go back to reference Kennecke H, Yerushalmi R, Woods R, Cheang MC, Voduc D, et al. Metastatic behavior of breast cancer subtypes. J Clin Oncol. 2010;28:3271–7.CrossRefPubMed Kennecke H, Yerushalmi R, Woods R, Cheang MC, Voduc D, et al. Metastatic behavior of breast cancer subtypes. J Clin Oncol. 2010;28:3271–7.CrossRefPubMed
16.
17.
go back to reference Fokas E, Steinbach JP, Rodel C. Biology of brain metastases and novel targeted therapies: time to translate the research. Biochim Biophys Acta. 1835;2013:61–75. Fokas E, Steinbach JP, Rodel C. Biology of brain metastases and novel targeted therapies: time to translate the research. Biochim Biophys Acta. 1835;2013:61–75.
18.
go back to reference Mehta AI, Brufsky AM, Sampson JH. Therapeutic approaches for HER2-positive brain metastases: circumventing the blood–brain barrier. Cancer Treat Rev. 2013;39:261–9.CrossRefPubMed Mehta AI, Brufsky AM, Sampson JH. Therapeutic approaches for HER2-positive brain metastases: circumventing the blood–brain barrier. Cancer Treat Rev. 2013;39:261–9.CrossRefPubMed
19.
go back to reference Neman J, Termini J, Wilczynski S, Vaidehi N, Choy C, et al. Human breast cancer metastases to the brain display GABAergic properties in the neural niche. Proc Natl Acad Sci U S A. 2014;111:984–9.CrossRefPubMedPubMedCentral Neman J, Termini J, Wilczynski S, Vaidehi N, Choy C, et al. Human breast cancer metastases to the brain display GABAergic properties in the neural niche. Proc Natl Acad Sci U S A. 2014;111:984–9.CrossRefPubMedPubMedCentral
20.
go back to reference Ansari KI, Ogawa D, Rooj AK, Lawler SE, Krichevsky AM, et al. Glucose-based regulation of miR-451/AMPK signaling depends on the OCT1 transcription factor. Cell Rep. 2015;11:902–9.CrossRefPubMedPubMedCentral Ansari KI, Ogawa D, Rooj AK, Lawler SE, Krichevsky AM, et al. Glucose-based regulation of miR-451/AMPK signaling depends on the OCT1 transcription factor. Cell Rep. 2015;11:902–9.CrossRefPubMedPubMedCentral
21.
go back to reference Neman J, Choy C, Kowolik CM, Anderson A, Duenas VJ, et al. Co-evolution of breast-to-brain metastasis and neural progenitor cells. Clin Exp Metastasis. 2013;30:753–68.CrossRefPubMed Neman J, Choy C, Kowolik CM, Anderson A, Duenas VJ, et al. Co-evolution of breast-to-brain metastasis and neural progenitor cells. Clin Exp Metastasis. 2013;30:753–68.CrossRefPubMed
22.
go back to reference Park H, Poo MM. Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci. 2013;14:7–23.CrossRefPubMed Park H, Poo MM. Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci. 2013;14:7–23.CrossRefPubMed
23.
go back to reference Sah DW, Ray J, Gage FH. Regulation of voltage- and ligand-gated currents in rat hippocampal progenitor cells in vitro. J Neurobiol. 1997;32:95–110.CrossRefPubMed Sah DW, Ray J, Gage FH. Regulation of voltage- and ligand-gated currents in rat hippocampal progenitor cells in vitro. J Neurobiol. 1997;32:95–110.CrossRefPubMed
24.
go back to reference Arteaga CL, Sliwkowski MX, Osborne CK, Perez EA, Puglisi F, et al. Treatment of HER2-positive breast cancer: current status and future perspectives. Nat Rev Clin Oncol. 2012;9:16–32.CrossRef Arteaga CL, Sliwkowski MX, Osborne CK, Perez EA, Puglisi F, et al. Treatment of HER2-positive breast cancer: current status and future perspectives. Nat Rev Clin Oncol. 2012;9:16–32.CrossRef
25.
go back to reference Piccirilli M, Sassun TE, Brogna C, Giangaspero F, Salvati M. Late brain metastases from breast cancer: clinical remarks on 11 patients and review of the literature. Tumori. 2007;93:150–4.PubMed Piccirilli M, Sassun TE, Brogna C, Giangaspero F, Salvati M. Late brain metastases from breast cancer: clinical remarks on 11 patients and review of the literature. Tumori. 2007;93:150–4.PubMed
26.
go back to reference Stark AM. Breast Cancer Brain Metastases: Genetic Profiling and Neurosurgical Therapy. In: Tumors of the central nervous system, volume 3: brain tumors (Part 1). MA Hayat eds. Netherlands: Springer; 2011. 85–95. Stark AM. Breast Cancer Brain Metastases: Genetic Profiling and Neurosurgical Therapy. In: Tumors of the central nervous system, volume 3: brain tumors (Part 1). MA Hayat eds. Netherlands: Springer; 2011. 85–95.
28.
go back to reference Patani N, Jiang WG, Mokbel K. Brain-derived neurotrophic factor expression predicts adverse pathological & clinical outcomes in human breast cancer. Cancer Cell Int. 2011;11:23.CrossRefPubMedPubMedCentral Patani N, Jiang WG, Mokbel K. Brain-derived neurotrophic factor expression predicts adverse pathological & clinical outcomes in human breast cancer. Cancer Cell Int. 2011;11:23.CrossRefPubMedPubMedCentral
29.
30.
go back to reference Marchetti D, McCutcheon I, Ross M, Nicolson G. Inverse expression of neurotrophins and neurotrophin receptors at the invasion front of human-melanoma brain metastases. Int J Oncol. 1995;7:87–94.PubMed Marchetti D, McCutcheon I, Ross M, Nicolson G. Inverse expression of neurotrophins and neurotrophin receptors at the invasion front of human-melanoma brain metastases. Int J Oncol. 1995;7:87–94.PubMed
31.
go back to reference Marchetti D, Nicolson GL. Neurotrophin stimulation of human melanoma cell invasion: selected enhancement of heparanase activity and heparanase degradation of specific heparan sulfate subpopulations. Adv Enzyme Regul. 1997;37:111–34.CrossRefPubMed Marchetti D, Nicolson GL. Neurotrophin stimulation of human melanoma cell invasion: selected enhancement of heparanase activity and heparanase degradation of specific heparan sulfate subpopulations. Adv Enzyme Regul. 1997;37:111–34.CrossRefPubMed
33.
go back to reference Nguyen DX, Chiang AC, Zhang XH, Kim JY, Kris MG, et al. WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell. 2009;138:51–62.CrossRefPubMedPubMedCentral Nguyen DX, Chiang AC, Zhang XH, Kim JY, Kris MG, et al. WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell. 2009;138:51–62.CrossRefPubMedPubMedCentral
34.
go back to reference Zhang L, Zhang S, Yao J, Lowery FJ, Zhang Q, et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature. 2015;527:100–4.CrossRefPubMedPubMedCentral Zhang L, Zhang S, Yao J, Lowery FJ, Zhang Q, et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature. 2015;527:100–4.CrossRefPubMedPubMedCentral
36.
go back to reference Fulmer CG, VonDran MW, Stillman AA, Huang Y, Hempstead BL, et al. Astrocyte-derived BDNF supports myelin protein synthesis after cuprizone-induced demyelination. J Neurosci. 2014;34:8186–96.CrossRefPubMedPubMedCentral Fulmer CG, VonDran MW, Stillman AA, Huang Y, Hempstead BL, et al. Astrocyte-derived BDNF supports myelin protein synthesis after cuprizone-induced demyelination. J Neurosci. 2014;34:8186–96.CrossRefPubMedPubMedCentral
37.
go back to reference Louie E, Chen XF, Coomes A, Ji K, Tsirka S, et al. Neurotrophin-3 modulates breast cancer cells and the microenvironment to promote the growth of breast cancer brain metastasis. Oncogene. 2013;32:4064–77.CrossRefPubMed Louie E, Chen XF, Coomes A, Ji K, Tsirka S, et al. Neurotrophin-3 modulates breast cancer cells and the microenvironment to promote the growth of breast cancer brain metastasis. Oncogene. 2013;32:4064–77.CrossRefPubMed
38.
go back to reference Qiu L, Zhou C, Sun Y, Di W, Scheffler E, et al. Crosstalk between EGFR and TrkB enhances ovarian cancer cell migration and proliferation. Int J Oncol. 2006;29:1003–11.PubMed Qiu L, Zhou C, Sun Y, Di W, Scheffler E, et al. Crosstalk between EGFR and TrkB enhances ovarian cancer cell migration and proliferation. Int J Oncol. 2006;29:1003–11.PubMed
Metadata
Title
Cooperation of neurotrophin receptor TrkB and Her2 in breast cancer cells facilitates brain metastases
Authors
Cecilia Choy
Khairul I. Ansari
Josh Neman
Sarah Hsu
Matthew J. Duenas
Hubert Li
Nagarajan Vaidehi
Rahul Jandial
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 1/2017
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/s13058-017-0844-3

Other articles of this Issue 1/2017

Breast Cancer Research 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine