Skip to main content
Top
Published in: Journal of Mammary Gland Biology and Neoplasia 2-3/2007

01-09-2007

Organotropism of Breast Cancer Metastasis

Authors: Xin Lu, Yibin Kang

Published in: Journal of Mammary Gland Biology and Neoplasia | Issue 2-3/2007

Login to get access

Abstract

Breast cancer causes mortality by metastasizing to a variety of vital organs, such as bone, lung, brain and liver. Effective therapeutic intervention of this deadly process relies on a better mechanistic understanding of metastasis organotropism. Recent studies have confirmed earlier speculations that metastasis is a non-random process and is dependent on intricate tumor-stroma interactions at the target organ. Both the intrinsic properties of breast cancer cells and the host organ microenvironment are important in determining the efficiency of organ-specific metastasis. Advances in animal modeling, in vivo imaging and functional genomics have accelerated the discovery of important molecular mediators of organ-specific metastasis. A conceptual framework of breast cancer organotropism is emerging and will be instrumental in guiding future efforts in this exciting research field.
Literature
1.
go back to reference Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A, et al. Cancer statistics, 2005. CA Cancer J Clin 2005;55 1:10–30.PubMedCrossRef Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A, et al. Cancer statistics, 2005. CA Cancer J Clin 2005;55 1:10–30.PubMedCrossRef
2.
go back to reference Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2002;2 8:563–72.PubMedCrossRef Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2002;2 8:563–72.PubMedCrossRef
4.
go back to reference Steeg PS. Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 2006;12 8:895–904.PubMedCrossRef Steeg PS. Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 2006;12 8:895–904.PubMedCrossRef
5.
go back to reference Hess KR, Varadhachary GR, Taylor SH, Wei W, Raber MN, Lenzi R, et al. Metastatic patterns in adenocarcinoma. Cancer 2006;106 7:1624–33.PubMedCrossRef Hess KR, Varadhachary GR, Taylor SH, Wei W, Raber MN, Lenzi R, et al. Metastatic patterns in adenocarcinoma. Cancer 2006;106 7:1624–33.PubMedCrossRef
6.
7.
go back to reference Weil RJ, Palmieri DC, Bronder JL, Stark AM, Steeg PS. Breast cancer metastasis to the central nervous system. Am J Pathol 2005;167 4:913–20.PubMed Weil RJ, Palmieri DC, Bronder JL, Stark AM, Steeg PS. Breast cancer metastasis to the central nervous system. Am J Pathol 2005;167 4:913–20.PubMed
8.
go back to reference Fidler IJ. Selection of successive tumour lines for metastasis. Nat New Biol 1973;242 118:148–9.PubMed Fidler IJ. Selection of successive tumour lines for metastasis. Nat New Biol 1973;242 118:148–9.PubMed
9.
go back to reference Kang Y. Functional genomic analysis of cancer metastasis: biologic insights and clinical implications. Expert Rev Mol Diagn 2005;5 3:385–95.PubMedCrossRef Kang Y. Functional genomic analysis of cancer metastasis: biologic insights and clinical implications. Expert Rev Mol Diagn 2005;5 3:385–95.PubMedCrossRef
10.
go back to reference Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 2003;3 6:537–49.PubMedCrossRef Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 2003;3 6:537–49.PubMedCrossRef
11.
go back to reference Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, et al. Genes that mediate breast cancer metastasis to lung. Nature 2005;436 7050:518–24.PubMedCrossRef Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, et al. Genes that mediate breast cancer metastasis to lung. Nature 2005;436 7050:518–24.PubMedCrossRef
12.
go back to reference Minn AJ, Kang Y, Serganova I, Gupta GP, Giri DD, Doubrovin M, et al. Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest 2005;115 1:44–55.PubMedCrossRef Minn AJ, Kang Y, Serganova I, Gupta GP, Giri DD, Doubrovin M, et al. Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest 2005;115 1:44–55.PubMedCrossRef
13.
go back to reference Paget S. Distribution of secondary growths in cancer of the breast. Lancet 1889;1:571–3.CrossRef Paget S. Distribution of secondary growths in cancer of the breast. Lancet 1889;1:571–3.CrossRef
14.
go back to reference Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 2003;3 6:453–8.PubMedCrossRef Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 2003;3 6:453–8.PubMedCrossRef
15.
go back to reference Welch DR. Technical considerations for studying cancer metastasis in vivo. Clin Exp Metastasis 1997;15 3:272–306.PubMedCrossRef Welch DR. Technical considerations for studying cancer metastasis in vivo. Clin Exp Metastasis 1997;15 3:272–306.PubMedCrossRef
16.
go back to reference Kang Y, He W, Tulley S, Gupta GP, Serganova I, Chen CR, et al. Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc Natl Acad Sci USA 2005;102 39:13909–14.PubMedCrossRef Kang Y, He W, Tulley S, Gupta GP, Serganova I, Chen CR, et al. Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc Natl Acad Sci USA 2005;102 39:13909–14.PubMedCrossRef
17.
go back to reference Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2002;2 8:584–93.PubMedCrossRef Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2002;2 8:584–93.PubMedCrossRef
18.
go back to reference Harada S, Rodan GA. Control of osteoblast function and regulation of bone mass. Nature 2003;423 6937:349–55.PubMedCrossRef Harada S, Rodan GA. Control of osteoblast function and regulation of bone mass. Nature 2003;423 6937:349–55.PubMedCrossRef
19.
go back to reference Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature 2003;423 6937:337–42.PubMedCrossRef Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature 2003;423 6937:337–42.PubMedCrossRef
20.
go back to reference Siclari VA, Guise TA, Chirgwin JM. Molecular interactions between breast cancer cells and the bone microenvironment drive skeletal metastases. Cancer Metastasis Rev 2006;25 4:621–33.PubMedCrossRef Siclari VA, Guise TA, Chirgwin JM. Molecular interactions between breast cancer cells and the bone microenvironment drive skeletal metastases. Cancer Metastasis Rev 2006;25 4:621–33.PubMedCrossRef
22.
go back to reference Pantschenko AG, Pushkar I, Anderson KH, Wang Y, Miller LJ, Kurtzman SH, et al. The interleukin-1 family of cytokines and receptors in human breast cancer: implications for tumor progression. Int J Oncol 2003;23 2:269–84.PubMed Pantschenko AG, Pushkar I, Anderson KH, Wang Y, Miller LJ, Kurtzman SH, et al. The interleukin-1 family of cytokines and receptors in human breast cancer: implications for tumor progression. Int J Oncol 2003;23 2:269–84.PubMed
23.
go back to reference Bendre MS, Gaddy-Kurten D, Mon-Foote T, Akel NS, Skinner RA, Nicholas RW, et al. Expression of interleukin 8 and not parathyroid hormone-related protein by human breast cancer cells correlates with bone metastasis in vivo. Cancer Res 2002;62 19:5571–9.PubMed Bendre MS, Gaddy-Kurten D, Mon-Foote T, Akel NS, Skinner RA, Nicholas RW, et al. Expression of interleukin 8 and not parathyroid hormone-related protein by human breast cancer cells correlates with bone metastasis in vivo. Cancer Res 2002;62 19:5571–9.PubMed
24.
go back to reference Park BK, Zhang H, Zeng Q, Dai J, Keller ET, Giordano T, et al. NF-[kappa]B in breast cancer cells promotes osteolytic bone metastasis by inducing osteoclastogenesis via GM-CSF. Nat Med 2007;13 1:62–9PubMedCrossRef Park BK, Zhang H, Zeng Q, Dai J, Keller ET, Giordano T, et al. NF-[kappa]B in breast cancer cells promotes osteolytic bone metastasis by inducing osteoclastogenesis via GM-CSF. Nat Med 2007;13 1:62–9PubMedCrossRef
25.
go back to reference Ohshiba T, Miyaura C, Ito A. Role of prostaglandin E produced by osteoblasts in osteolysis due to bone metastasis. Biochem Biophys Res Commun 2003;300 4:957–64.PubMedCrossRef Ohshiba T, Miyaura C, Ito A. Role of prostaglandin E produced by osteoblasts in osteolysis due to bone metastasis. Biochem Biophys Res Commun 2003;300 4:957–64.PubMedCrossRef
26.
27.
go back to reference Kovacs CS. Calcium and Bone Metabolism During Pregnancy and Lactation. J Mammary Gland Biol Neoplasia 2005;10 2:105–18.PubMedCrossRef Kovacs CS. Calcium and Bone Metabolism During Pregnancy and Lactation. J Mammary Gland Biol Neoplasia 2005;10 2:105–18.PubMedCrossRef
28.
go back to reference VanHouten JN, Dann P, Stewart AF, Watson CJ, Pollak M, Karaplis AC, et al. Mammary-specific deletion of parathyroid hormone-related protein preserves bone mass during lactation. J Clin Invest 2003;112 9:1429–36.PubMedCrossRef VanHouten JN, Dann P, Stewart AF, Watson CJ, Pollak M, Karaplis AC, et al. Mammary-specific deletion of parathyroid hormone-related protein preserves bone mass during lactation. J Clin Invest 2003;112 9:1429–36.PubMedCrossRef
29.
go back to reference Fata JE, Kong YY, Li J, Sasaki T, Irie-Sasaki J, Moorehead RA, et al. The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell 2000;103 1:41–50.PubMedCrossRef Fata JE, Kong YY, Li J, Sasaki T, Irie-Sasaki J, Moorehead RA, et al. The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell 2000;103 1:41–50.PubMedCrossRef
30.
go back to reference Cao Y, Bonizzi G, Seagroves TN, Greten FR, Johnson R, Schmidt EV, et al. IKKalpha provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development. Cell 2001;107 6:763–75.PubMedCrossRef Cao Y, Bonizzi G, Seagroves TN, Greten FR, Johnson R, Schmidt EV, et al. IKKalpha provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development. Cell 2001;107 6:763–75.PubMedCrossRef
31.
go back to reference Jones DH, Nakashima T, Sanchez OH, Kozieradzki I, Komarova SV, Sarosi I, et al. Regulation of cancer cell migration and bone metastasis by RANKL. Nature 2006;440 7084:692–6.PubMedCrossRef Jones DH, Nakashima T, Sanchez OH, Kozieradzki I, Komarova SV, Sarosi I, et al. Regulation of cancer cell migration and bone metastasis by RANKL. Nature 2006;440 7084:692–6.PubMedCrossRef
32.
go back to reference Shore P. A role for Runx2 in normal mammary gland and breast cancer bone metastasis. J Cell Biochem 2005;96 3:484–9.PubMedCrossRef Shore P. A role for Runx2 in normal mammary gland and breast cancer bone metastasis. J Cell Biochem 2005;96 3:484–9.PubMedCrossRef
33.
go back to reference Barnes GL, Javed A, Waller SM, Kamal MH, Hebert KE, Hassan MQ, et al. Osteoblast-related transcription factors Runx2 (Cbfa1/AML3) and MSX2 mediate the expression of bone sialoprotein in human metastatic breast cancer cells. Cancer Res 2003;63 10:2631–7.PubMed Barnes GL, Javed A, Waller SM, Kamal MH, Hebert KE, Hassan MQ, et al. Osteoblast-related transcription factors Runx2 (Cbfa1/AML3) and MSX2 mediate the expression of bone sialoprotein in human metastatic breast cancer cells. Cancer Res 2003;63 10:2631–7.PubMed
34.
go back to reference Pratap J, Javed A, Languino LR, van Wijnen AJ, Stein JL, Stein GS, et al. The Runx2 osteogenic transcription factor regulates matrix metalloproteinase 9 in bone metastatic cancer cells and controls cell invasion. Mol Cell Biol 2005;25 19:8581–91.PubMedCrossRef Pratap J, Javed A, Languino LR, van Wijnen AJ, Stein JL, Stein GS, et al. The Runx2 osteogenic transcription factor regulates matrix metalloproteinase 9 in bone metastatic cancer cells and controls cell invasion. Mol Cell Biol 2005;25 19:8581–91.PubMedCrossRef
35.
go back to reference Barnes GL, Hebert KE, Kamal M, Javed A, Einhorn TA, Lian JB, et al. Fidelity of Runx2 activity in breast cancer cells is required for the generation of metastases-associated osteolytic disease. Cancer Res 2004;64 13:4506–13.PubMedCrossRef Barnes GL, Hebert KE, Kamal M, Javed A, Einhorn TA, Lian JB, et al. Fidelity of Runx2 activity in breast cancer cells is required for the generation of metastases-associated osteolytic disease. Cancer Res 2004;64 13:4506–13.PubMedCrossRef
36.
go back to reference Bellahcene A, Bachelier R, Detry C, Lidereau R, Clezardin P, Castronovo V. Transcriptome analysis reveals an osteoblast-like phenotype for human osteotropic breast cancer cells. Breast Cancer Res Treat 2007;101 2:135–48.PubMedCrossRef Bellahcene A, Bachelier R, Detry C, Lidereau R, Clezardin P, Castronovo V. Transcriptome analysis reveals an osteoblast-like phenotype for human osteotropic breast cancer cells. Breast Cancer Res Treat 2007;101 2:135–48.PubMedCrossRef
37.
go back to reference Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001;410 6824:50–6.PubMedCrossRef Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001;410 6824:50–6.PubMedCrossRef
38.
go back to reference Brown DM, Ruoslahti E. Metadherin, a cell surface protein in breast tumors that mediates lung metastasis. Cancer Cell 2004;5 4:365–74.PubMedCrossRef Brown DM, Ruoslahti E. Metadherin, a cell surface protein in breast tumors that mediates lung metastasis. Cancer Cell 2004;5 4:365–74.PubMedCrossRef
39.
go back to reference Abdel-Ghany M, Cheng H-C, Elble RC, Pauli BU. The breast cancer beta 4 integrin and endothelial human CLCA2 mediate lung metastasis. J Biol Chem 2001;276 27:25438–46.PubMedCrossRef Abdel-Ghany M, Cheng H-C, Elble RC, Pauli BU. The breast cancer beta 4 integrin and endothelial human CLCA2 mediate lung metastasis. J Biol Chem 2001;276 27:25438–46.PubMedCrossRef
40.
go back to reference Cheng H-C, Abdel-Ghany M, Elble RC, Pauli BU. Lung endothelial ipeptidyl peptidaseD IV promotes adhesion and metastasis of rat breast cancer cells via tumor cell surface-associated fibronectin. J Biol Chem 1998;273 37:24207–15.PubMedCrossRef Cheng H-C, Abdel-Ghany M, Elble RC, Pauli BU. Lung endothelial ipeptidyl peptidaseD IV promotes adhesion and metastasis of rat breast cancer cells via tumor cell surface-associated fibronectin. J Biol Chem 1998;273 37:24207–15.PubMedCrossRef
41.
go back to reference Jiang WG, Matsumoto K, Nakamura T, ebrary Inc. Growth factors and their receptors in cancer metastasis. Dordrecht: Kluwer; 2001. Jiang WG, Matsumoto K, Nakamura T, ebrary Inc. Growth factors and their receptors in cancer metastasis. Dordrecht: Kluwer; 2001.
42.
go back to reference Muraoka RS, Dumont N, Ritter CA, Dugger TC, Brantley DM, Chen J, et al. Blockade of TGF-beta inhibits mammary tumor cell viability, migration, and metastases. J Clin Invest 2002;109 12:1551–9.PubMedCrossRef Muraoka RS, Dumont N, Ritter CA, Dugger TC, Brantley DM, Chen J, et al. Blockade of TGF-beta inhibits mammary tumor cell viability, migration, and metastases. J Clin Invest 2002;109 12:1551–9.PubMedCrossRef
43.
go back to reference Siegel PM, Shu W, Cardiff RD, Muller WJ, Massague J. Transforming growth factor beta signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc Natl Acad Sci USA 2003;100 14:8430–5.PubMedCrossRef Siegel PM, Shu W, Cardiff RD, Muller WJ, Massague J. Transforming growth factor beta signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc Natl Acad Sci USA 2003;100 14:8430–5.PubMedCrossRef
44.
go back to reference Kang Y. Pro-metastasis function of TGF beta mediated by the smad pathway. J Cell Biochem 2006;98 6:1380–90.PubMedCrossRef Kang Y. Pro-metastasis function of TGF beta mediated by the smad pathway. J Cell Biochem 2006;98 6:1380–90.PubMedCrossRef
45.
go back to reference Yingling JM, Blanchard KL, Sawyer JS. Development of TGFb signalling inhibitors for cancer therapy. Nat Rev Drug Discov 2004;3 12:1011–22.PubMedCrossRef Yingling JM, Blanchard KL, Sawyer JS. Development of TGFb signalling inhibitors for cancer therapy. Nat Rev Drug Discov 2004;3 12:1011–22.PubMedCrossRef
46.
go back to reference Sierra A, Price JE, Garcia-Ramirez M, Mendez O, Lopez L, Fabra A. Astrocyte-derived cytokines contribute to the metastatic brain specificity of breast cancer cells. Lab Invest 1997;77 4:357–68.PubMed Sierra A, Price JE, Garcia-Ramirez M, Mendez O, Lopez L, Fabra A. Astrocyte-derived cytokines contribute to the metastatic brain specificity of breast cancer cells. Lab Invest 1997;77 4:357–68.PubMed
47.
go back to reference Kim LS, Huang S, Lu W, Lev DC, Price JE. Vascular endothelial growth factor expression promotes the growth of breast cancer brain metastases in nude mice. Clin Exp Metastasis 2004;21 2:107–18.CrossRef Kim LS, Huang S, Lu W, Lev DC, Price JE. Vascular endothelial growth factor expression promotes the growth of breast cancer brain metastases in nude mice. Clin Exp Metastasis 2004;21 2:107–18.CrossRef
48.
go back to reference Stessels F, Van den Eynden G, Van der Auwera I, Salgado R, Van den Heuvel E, Harris AL, et al. Breast adenocarcinoma liver metastases, in contrast to colorectal cancer liver metastases, display a non-angiogenic growth pattern that preserves the stroma and lacks hypoxia. Br J Cancer 2004;90 7:1429–36.PubMedCrossRef Stessels F, Van den Eynden G, Van der Auwera I, Salgado R, Van den Heuvel E, Harris AL, et al. Breast adenocarcinoma liver metastases, in contrast to colorectal cancer liver metastases, display a non-angiogenic growth pattern that preserves the stroma and lacks hypoxia. Br J Cancer 2004;90 7:1429–36.PubMedCrossRef
49.
go back to reference O’Reilly SM, Richards MA, Rubens RD. Liver metastases from breast cancer: the relationship between clinical, biochemical and pathological features and survival. Eur J Cancer 1990;26 5:574–7.PubMedCrossRef O’Reilly SM, Richards MA, Rubens RD. Liver metastases from breast cancer: the relationship between clinical, biochemical and pathological features and survival. Eur J Cancer 1990;26 5:574–7.PubMedCrossRef
50.
go back to reference Yoneda T, Williams PJ, Hiraga T, Niewolna M, Nishimura R. A bone-seeking clone exhibits different biological properties from the MDA-MB-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitro. J Bone Miner Res 2001;16 8:1486–95.PubMedCrossRef Yoneda T, Williams PJ, Hiraga T, Niewolna M, Nishimura R. A bone-seeking clone exhibits different biological properties from the MDA-MB-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitro. J Bone Miner Res 2001;16 8:1486–95.PubMedCrossRef
51.
go back to reference Price JE. Metastasis from human breast cancer cell lines. Breast Cancer Res Treat 1996;39 1:93–102.PubMedCrossRef Price JE. Metastasis from human breast cancer cell lines. Breast Cancer Res Treat 1996;39 1:93–102.PubMedCrossRef
52.
go back to reference Aslakson CJ, Miller FR. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res 1992;52 6:1399–405.PubMed Aslakson CJ, Miller FR. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res 1992;52 6:1399–405.PubMed
53.
go back to reference Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. From the cover: prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003;100 7:3983–88.PubMedCrossRef Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. From the cover: prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003;100 7:3983–88.PubMedCrossRef
54.
go back to reference Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003;63 18:5821–28.PubMed Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003;63 18:5821–28.PubMed
55.
go back to reference Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 2003;100 25:15178–83.PubMedCrossRef Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 2003;100 25:15178–83.PubMedCrossRef
56.
go back to reference Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature 2004;432 7015:396–401.PubMedCrossRef Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature 2004;432 7015:396–401.PubMedCrossRef
57.
go back to reference O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007;445 7123:106–10.PubMedCrossRef O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007;445 7123:106–10.PubMedCrossRef
58.
go back to reference Polyak K, Hahn WC. Roots and stems: stem cells in cancer. 2006;12 3:296–300. Polyak K, Hahn WC. Roots and stems: stem cells in cancer. 2006;12 3:296–300.
60.
go back to reference Li F, Tiede B, Massague J, Kang Y. Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res 2007;17 1:3–14.PubMedCrossRef Li F, Tiede B, Massague J, Kang Y. Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res 2007;17 1:3–14.PubMedCrossRef
61.
go back to reference Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, et al. Generation of a functional mammary gland from a single stem cell. Nature 2006;439 7072:84–8.PubMedCrossRef Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, et al. Generation of a functional mammary gland from a single stem cell. Nature 2006;439 7072:84–8.PubMedCrossRef
62.
go back to reference Talmadge JE, Wolman SR, Fidler IJ. Evidence for the clonal origin of spontaneous metastases. Science 1982;217 4557:361–3.PubMedCrossRef Talmadge JE, Wolman SR, Fidler IJ. Evidence for the clonal origin of spontaneous metastases. Science 1982;217 4557:361–3.PubMedCrossRef
63.
go back to reference Fidler IJ, Talmadge JE. Evidence that intravenously derived murine pulmonary melanoma metastases can originate from the expansion of a single tumor cell. Cancer Res 1986;46 10:5167–71.PubMed Fidler IJ, Talmadge JE. Evidence that intravenously derived murine pulmonary melanoma metastases can originate from the expansion of a single tumor cell. Cancer Res 1986;46 10:5167–71.PubMed
64.
go back to reference Weigelt B, Peterse JL, van’t Veer LJ. Breast cancer metastasis: markers and models. Nat Rev Cancer 2005;5 8:591–602.PubMedCrossRef Weigelt B, Peterse JL, van’t Veer LJ. Breast cancer metastasis: markers and models. Nat Rev Cancer 2005;5 8:591–602.PubMedCrossRef
65.
go back to reference Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005;438 7069:820–7.PubMedCrossRef Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005;438 7069:820–7.PubMedCrossRef
66.
go back to reference Kaplan RN, Rafii S, Lyden D. Preparing the “soil”: the premetastatic niche. Cancer Res 2006;66 23:11089–93.PubMedCrossRef Kaplan RN, Rafii S, Lyden D. Preparing the “soil”: the premetastatic niche. Cancer Res 2006;66 23:11089–93.PubMedCrossRef
67.
go back to reference Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 2003;425 6960:841–6.PubMedCrossRef Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 2003;425 6960:841–6.PubMedCrossRef
68.
go back to reference Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 2003;425 6960:836–41.PubMedCrossRef Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 2003;425 6960:836–41.PubMedCrossRef
Metadata
Title
Organotropism of Breast Cancer Metastasis
Authors
Xin Lu
Yibin Kang
Publication date
01-09-2007
Publisher
Springer US
Published in
Journal of Mammary Gland Biology and Neoplasia / Issue 2-3/2007
Print ISSN: 1083-3021
Electronic ISSN: 1573-7039
DOI
https://doi.org/10.1007/s10911-007-9047-3

Other articles of this Issue 2-3/2007

Journal of Mammary Gland Biology and Neoplasia 2-3/2007 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine