Skip to main content
Top
Published in: Critical Care 1/2020

Open Access 01-12-2020 | Research

Continuous assessment of neuro-ventilatory drive during 12 h of pressure support ventilation in critically ill patients

Authors: Rosa Di mussi, Savino Spadaro, Carlo Alberto Volta, Nicola Bartolomeo, Paolo Trerotoli, Francesco Staffieri, Luigi Pisani, Rachele Iannuzziello, Lidia Dalfino, Francesco Murgolo, Salvatore Grasso

Published in: Critical Care | Issue 1/2020

Login to get access

Abstract

Introduction

Pressure support ventilation (PSV) should allow spontaneous breathing with a “normal” neuro-ventilatory drive. Low neuro-ventilatory drive puts the patient at risk of diaphragmatic atrophy while high neuro-ventilatory drive may causes dyspnea and patient self-inflicted lung injury. We continuously assessed for 12 h the electrical activity of the diaphragm (EAdi), a close surrogate of neuro-ventilatory drive, during PSV. Our aim was to document the EAdi trend and the occurrence of periods of “Low” and/or “High” neuro-ventilatory drive during clinical application of PSV.

Method

In 16 critically ill patients ventilated in the PSV mode for clinical reasons, inspiratory peak EAdi peak (EAdiPEAK), pressure time product of the trans-diaphragmatic pressure per breath and per minute (PTPDI/b and PTPDI/min, respectively), breathing pattern and major asynchronies were continuously monitored for 12 h (from 8 a.m. to 8 p.m.). We identified breaths with “Normal” (EAdiPEAK 5–15 μV), “Low” (EAdiPEAK < 5 μV) and “High” (EAdiPEAK > 15 μV) neuro-ventilatory drive.

Results

Within all the analyzed breaths (177.117), the neuro-ventilatory drive, as expressed by the EAdiPEAK, was “Low” in 50.116 breath (28%), “Normal” in 88.419 breaths (50%) and “High” in 38.582 breaths (22%). The average times spent in “Low”, “Normal” and “High” class were 1.37, 3.67 and 0.55 h, respectively (p < 0.0001), with wide variations among patients. Eleven patients remained in the “Low” neuro-ventilatory drive class for more than 1 h, median 6.1 [3.9–8.5] h and 6 in the “High” neuro-ventilatory drive class, median 3.4 [2.2–7.8] h. The asynchrony index was significantly higher in the “Low” neuro-ventilatory class, mainly because of a higher number of missed efforts.

Conclusions

We observed wide variations in EAdi amplitude and unevenly distributed “Low” and “High” neuro ventilatory drive periods during 12 h of PSV in critically ill patients. Further studies are needed to assess the possible clinical implications of our physiological findings.
Literature
1.
go back to reference Putensen C, Hering R, Wrigge H. Controlled versus assisted mechanical ventilation. Curr Opin Crit Care. 2002;8:51–7.PubMedCrossRef Putensen C, Hering R, Wrigge H. Controlled versus assisted mechanical ventilation. Curr Opin Crit Care. 2002;8:51–7.PubMedCrossRef
2.
go back to reference Putensen C, Muders T, Varelmann D, Wrigge H. The impact of spontaneous breathing during mechanical ventilation. Curr Opin Crit Care. 2006;12:13–8.PubMedCrossRef Putensen C, Muders T, Varelmann D, Wrigge H. The impact of spontaneous breathing during mechanical ventilation. Curr Opin Crit Care. 2006;12:13–8.PubMedCrossRef
3.
go back to reference Tobin MJ, Jubran A, Laghi F. Critical care perspective patient—ventilator interaction. Am J Respir Crit Care Med. 2001;163:1059–63.PubMedCrossRef Tobin MJ, Jubran A, Laghi F. Critical care perspective patient—ventilator interaction. Am J Respir Crit Care Med. 2001;163:1059–63.PubMedCrossRef
4.
go back to reference Esteban A, Ferguson ND, Meade MO, Frutos-Vivar F, Apezteguia C, Brochard L, et al. Evolution of mechanical ventilation in response to clinical research. Am J Respir Crit Care Med. 2008;177:170–7.PubMedCrossRef Esteban A, Ferguson ND, Meade MO, Frutos-Vivar F, Apezteguia C, Brochard L, et al. Evolution of mechanical ventilation in response to clinical research. Am J Respir Crit Care Med. 2008;177:170–7.PubMedCrossRef
5.
go back to reference MacIntyre NR. Respiratory function during pressure support ventilation. Chest [Internet]. 1986;89:677–83.CrossRef MacIntyre NR. Respiratory function during pressure support ventilation. Chest [Internet]. 1986;89:677–83.CrossRef
6.
go back to reference Brochard L, Pluskwa F, Lemaire F. Improved efficacy of spontaneous breathing with inspiratory pressure support. Am Rev Respir Dis. 1987;136:411–5.PubMedCrossRef Brochard L, Pluskwa F, Lemaire F. Improved efficacy of spontaneous breathing with inspiratory pressure support. Am Rev Respir Dis. 1987;136:411–5.PubMedCrossRef
7.
go back to reference Di Mussi R, Spadaro S, Mirabella L, Volta CA, Serio G, Staffieri F, et al. Impact of prolonged assisted ventilation on diaphragmatic efficiency: NAVA versus PSV. Crit Care [Internet]. 2016;20:1–12. Di Mussi R, Spadaro S, Mirabella L, Volta CA, Serio G, Staffieri F, et al. Impact of prolonged assisted ventilation on diaphragmatic efficiency: NAVA versus PSV. Crit Care [Internet]. 2016;20:1–12.
8.
go back to reference Vaporidi K, Akoumianaki E, Telias I, Goligher EC, Brochard L, Georgopoulos D. Respiratory drive in critically ill patients pathophysiology and clinical implications. Am J Respir Crit Care Med. 2020;201(1):20–32.PubMedCrossRef Vaporidi K, Akoumianaki E, Telias I, Goligher EC, Brochard L, Georgopoulos D. Respiratory drive in critically ill patients pathophysiology and clinical implications. Am J Respir Crit Care Med. 2020;201(1):20–32.PubMedCrossRef
9.
go back to reference Jaber S, Petrof BJ, Jung B, Chanques G, Berthet JP, Rabuel C, et al. Rapidly progressive diaphragmatic weakness and injury during mechanical ventilation in humans. Am J Respir Crit Care Med. 2011;183:364–71.PubMedCrossRef Jaber S, Petrof BJ, Jung B, Chanques G, Berthet JP, Rabuel C, et al. Rapidly progressive diaphragmatic weakness and injury during mechanical ventilation in humans. Am J Respir Crit Care Med. 2011;183:364–71.PubMedCrossRef
10.
go back to reference Hudson MB, Smuder AJ, Nelson WB, Bruells CS, Levine S, Powers SK. Both high level pressure support ventilation and controlled mechanical ventilation induce diaphragm dysfunction and atrophy. Crit Care Med. 2012;40(4):1254–60.PubMedPubMedCentralCrossRef Hudson MB, Smuder AJ, Nelson WB, Bruells CS, Levine S, Powers SK. Both high level pressure support ventilation and controlled mechanical ventilation induce diaphragm dysfunction and atrophy. Crit Care Med. 2012;40(4):1254–60.PubMedPubMedCentralCrossRef
12.
go back to reference Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med. 2017;195(4):438–42.PubMedCrossRef Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med. 2017;195(4):438–42.PubMedCrossRef
13.
go back to reference Bertoni M, Spadaro S, Goligher EC. Monitoring patient respiratory effort during mechanical ventilation: lung and diaphragm-protective ventilation. Crit Care. 2020;24:106–14.PubMedPubMedCentralCrossRef Bertoni M, Spadaro S, Goligher EC. Monitoring patient respiratory effort during mechanical ventilation: lung and diaphragm-protective ventilation. Crit Care. 2020;24:106–14.PubMedPubMedCentralCrossRef
14.
go back to reference Betensley AD, Khalid I, Crawford J, Pensler RA, Digiovine B. Patient comfort during pressure support and volume controlled-continuous mandatory ventilation. Respir Care. 2008;53(7):897–902.PubMed Betensley AD, Khalid I, Crawford J, Pensler RA, Digiovine B. Patient comfort during pressure support and volume controlled-continuous mandatory ventilation. Respir Care. 2008;53(7):897–902.PubMed
15.
go back to reference de Wit M. Monitoring of patient-ventilator interaction at the bedside Marjolein de Wit MD MSc. Respir Care. 2011;56:61–72.PubMedCrossRef de Wit M. Monitoring of patient-ventilator interaction at the bedside Marjolein de Wit MD MSc. Respir Care. 2011;56:61–72.PubMedCrossRef
16.
go back to reference Grasso S, Puntillo F, Mascia L, Ancona G, Fiore T, Bruno F, et al. Compensation for increase in respiratory workload during mechanical ventilation: pressure-support versus proportional-assist ventilation. Am J Respir Crit Care Med. 2000;161:819–26.PubMedCrossRef Grasso S, Puntillo F, Mascia L, Ancona G, Fiore T, Bruno F, et al. Compensation for increase in respiratory workload during mechanical ventilation: pressure-support versus proportional-assist ventilation. Am J Respir Crit Care Med. 2000;161:819–26.PubMedCrossRef
17.
go back to reference Macintyre NR, Leatherman NE. Ventilatory muscle loads and the frequency-tidal volume pattern during inspiratory pressure-assisted (pressure-supported) ventilation. Am Rev Respir Dis. 1990;141:327–31.PubMedCrossRef Macintyre NR, Leatherman NE. Ventilatory muscle loads and the frequency-tidal volume pattern during inspiratory pressure-assisted (pressure-supported) ventilation. Am Rev Respir Dis. 1990;141:327–31.PubMedCrossRef
18.
go back to reference Stripoli T, Spadaro S, Di Mussi R, Volta CA, Trerotoli P, De Carlo F, et al. High-flow oxygen therapy in tracheostomized patients at high risk of weaning failure. Ann Intensive Care [Internet]. 2019;9:4.CrossRef Stripoli T, Spadaro S, Di Mussi R, Volta CA, Trerotoli P, De Carlo F, et al. High-flow oxygen therapy in tracheostomized patients at high risk of weaning failure. Ann Intensive Care [Internet]. 2019;9:4.CrossRef
19.
go back to reference Sinderby C, Navalesi P, Beck J, Skrobik Y, Comtois N, Friberg S, et al. Neural control of mechanical ventilation in respiratory failure. Nat Med. 1999;5:1433–6.PubMedCrossRef Sinderby C, Navalesi P, Beck J, Skrobik Y, Comtois N, Friberg S, et al. Neural control of mechanical ventilation in respiratory failure. Nat Med. 1999;5:1433–6.PubMedCrossRef
20.
go back to reference Beck J, Sinderby C, Lindström L, Grassino A. Influence of bipolar esophageal electrode positioning on measurements of human crural diaphragm electromyogram. J Appl Physiol. 1996;81:1434–49.PubMedCrossRef Beck J, Sinderby C, Lindström L, Grassino A. Influence of bipolar esophageal electrode positioning on measurements of human crural diaphragm electromyogram. J Appl Physiol. 1996;81:1434–49.PubMedCrossRef
21.
go back to reference Di Mussi R, Spadaro S, Stripoli T, Volta CA, Trerotoli P, Pierucci P, et al. High-flow nasal cannula oxygen therapy decreases postextubation neuroventilatory drive and work of breathing in patients with chronic obstructive pulmonary disease. Crit Care. 2018;22:1–11.CrossRef Di Mussi R, Spadaro S, Stripoli T, Volta CA, Trerotoli P, Pierucci P, et al. High-flow nasal cannula oxygen therapy decreases postextubation neuroventilatory drive and work of breathing in patients with chronic obstructive pulmonary disease. Crit Care. 2018;22:1–11.CrossRef
22.
go back to reference Beck J, Sinderby C, Lindström L, Grassino A. Effects of lung volume on diaphragm EMG signal strength during voluntary contractions. J Appl Physiol. 1998;85:1123–34.PubMedCrossRef Beck J, Sinderby C, Lindström L, Grassino A. Effects of lung volume on diaphragm EMG signal strength during voluntary contractions. J Appl Physiol. 1998;85:1123–34.PubMedCrossRef
23.
go back to reference Doorduin J, Van Hees HWH, Van Der Hoeven JG, Heunks LMA. Monitoring of the respiratory muscles in the critically ill. Am J Respir Crit Care Med. 2013;187:20–7.PubMedCrossRef Doorduin J, Van Hees HWH, Van Der Hoeven JG, Heunks LMA. Monitoring of the respiratory muscles in the critically ill. Am J Respir Crit Care Med. 2013;187:20–7.PubMedCrossRef
24.
go back to reference Rozé H, Lafrikh A, Perrier V, Germain A, Dewitte A, Gomez F, et al. Daily titration of neurally adjusted ventilatory assist using the diaphragm electrical activity. Intensive Care Med. 2011;37:1087–94.PubMedCrossRef Rozé H, Lafrikh A, Perrier V, Germain A, Dewitte A, Gomez F, et al. Daily titration of neurally adjusted ventilatory assist using the diaphragm electrical activity. Intensive Care Med. 2011;37:1087–94.PubMedCrossRef
25.
go back to reference Piquilloud L, Beloncle F, Richard JCM, Mancebo J, Mercat A, Brochard L. Information conveyed by electrical diaphragmatic activity during unstressed, stressed and assisted spontaneous breathing: a physiological study. Ann Intensive Care [Internet]. 2019;9:1–14. Piquilloud L, Beloncle F, Richard JCM, Mancebo J, Mercat A, Brochard L. Information conveyed by electrical diaphragmatic activity during unstressed, stressed and assisted spontaneous breathing: a physiological study. Ann Intensive Care [Internet]. 2019;9:1–14.
26.
go back to reference Spinelli E, Mauri T, Beitler JR, Pesenti A, Brodie D. Respiratory drive in the acute respiratory distress syndrome: pathophysiology, monitoring, and therapeutic interventions. Intensive Care Med [Internet]. 2020;46(4):606–18.CrossRef Spinelli E, Mauri T, Beitler JR, Pesenti A, Brodie D. Respiratory drive in the acute respiratory distress syndrome: pathophysiology, monitoring, and therapeutic interventions. Intensive Care Med [Internet]. 2020;46(4):606–18.CrossRef
27.
go back to reference Spadaro S, Marangoni E, Ragazzi R, Mojoli F, Verri M, Longo L, et al. A methodological approach for determination of maximal inspiratory pressure in patients undergoing invasive mechanical ventilation. Minerva Anestesiol. 2015;81:33–8.PubMed Spadaro S, Marangoni E, Ragazzi R, Mojoli F, Verri M, Longo L, et al. A methodological approach for determination of maximal inspiratory pressure in patients undergoing invasive mechanical ventilation. Minerva Anestesiol. 2015;81:33–8.PubMed
28.
go back to reference Beloncle F, Piquilloud L, Rittayamai N, Sinderby C, Rozé H, Brochard L. A diaphragmatic electrical activity-based optimization strategy during pressure support ventilation improves synchronization but does not impact work of breathing. Crit Care. 2017;21:1–8.CrossRef Beloncle F, Piquilloud L, Rittayamai N, Sinderby C, Rozé H, Brochard L. A diaphragmatic electrical activity-based optimization strategy during pressure support ventilation improves synchronization but does not impact work of breathing. Crit Care. 2017;21:1–8.CrossRef
29.
go back to reference Barwing J, Pedroni C, Olgemöller U, Quintel M, Moerer O. Electrical activity of the diaphragm (EAdi) as a monitoring parameter in difficult weaning from respirator: a pilot study. Crit Care. 2013;17:R182.PubMedPubMedCentralCrossRef Barwing J, Pedroni C, Olgemöller U, Quintel M, Moerer O. Electrical activity of the diaphragm (EAdi) as a monitoring parameter in difficult weaning from respirator: a pilot study. Crit Care. 2013;17:R182.PubMedPubMedCentralCrossRef
30.
go back to reference Barwing J, Ambold M, Linden N, Quintel M, Moerer O. Evaluation of the catheter positioning for neurally adjusted ventilatory assist. Intensive Care Med. 2009;35:1809–14.PubMedPubMedCentralCrossRef Barwing J, Ambold M, Linden N, Quintel M, Moerer O. Evaluation of the catheter positioning for neurally adjusted ventilatory assist. Intensive Care Med. 2009;35:1809–14.PubMedPubMedCentralCrossRef
31.
go back to reference Bellani G, Mauri T, Coppadoro A, Grasselli G, Patroniti N, Spadaro S, et al. Estimation of patient’s inspiratory effort from the electrical activity of the diaphragm. Crit Care Med. 2013;41:1483–91.PubMedCrossRef Bellani G, Mauri T, Coppadoro A, Grasselli G, Patroniti N, Spadaro S, et al. Estimation of patient’s inspiratory effort from the electrical activity of the diaphragm. Crit Care Med. 2013;41:1483–91.PubMedCrossRef
32.
go back to reference Baydur A, Behrakis PK, Zin WA, Jaeger M, Milic-Emili J. A simple method for assessing the validity of the esophageal balloon technique. Am Rev Respir Dis. 1982;126:788–91.PubMed Baydur A, Behrakis PK, Zin WA, Jaeger M, Milic-Emili J. A simple method for assessing the validity of the esophageal balloon technique. Am Rev Respir Dis. 1982;126:788–91.PubMed
33.
go back to reference Sessler CN, Gosnell MS, Grap MJ, Brophy GM, O’Neal PV, Keane KA, et al. The Richmond Agitation-Sedation Scale: validity and reliability in adult intensive care unit patients. Am J Respir Crit Care Med. 2002;166:1338–44.PubMedCrossRef Sessler CN, Gosnell MS, Grap MJ, Brophy GM, O’Neal PV, Keane KA, et al. The Richmond Agitation-Sedation Scale: validity and reliability in adult intensive care unit patients. Am J Respir Crit Care Med. 2002;166:1338–44.PubMedCrossRef
34.
go back to reference Coisel Y, Chanques G, Jung B, Constantin JM, Capdevila X, Matecki S, et al. Neurally adjusted ventilatory assist in critically ill postoperative patients: a crossover randomized study. Anesthesiology. 2010;113:925–35.PubMedCrossRef Coisel Y, Chanques G, Jung B, Constantin JM, Capdevila X, Matecki S, et al. Neurally adjusted ventilatory assist in critically ill postoperative patients: a crossover randomized study. Anesthesiology. 2010;113:925–35.PubMedCrossRef
35.
go back to reference Berger KI, Sorkin IB, Norman RG, Rapoport DM, Goldring RM. Mechanism of relief of tachypnea during pressure support ventilation. Chest [Internet]. 1996a;109:1320–7.CrossRef Berger KI, Sorkin IB, Norman RG, Rapoport DM, Goldring RM. Mechanism of relief of tachypnea during pressure support ventilation. Chest [Internet]. 1996a;109:1320–7.CrossRef
36.
go back to reference Thille AW, Rodriguez P, Cabello B, Lellouche F, Brochard L. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 2006;32:1515–22.PubMedCrossRef Thille AW, Rodriguez P, Cabello B, Lellouche F, Brochard L. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 2006;32:1515–22.PubMedCrossRef
37.
go back to reference Liang KY, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika. 1986;73:13–22.CrossRef Liang KY, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika. 1986;73:13–22.CrossRef
38.
go back to reference Younes M. Proportional assist ventilation and pressure support ventilation: similarities and differences. In: Marini JJ, Roussos C, editors. Ventilatory failure. Berlin: Springer; 1991. Younes M. Proportional assist ventilation and pressure support ventilation: similarities and differences. In: Marini JJ, Roussos C, editors. Ventilatory failure. Berlin: Springer; 1991.
39.
go back to reference Younes M. Proportional assist ventilation, a new approach to ventilatory support: theory. Am Rev Respir Dis. 1992;145:114–20.PubMedCrossRef Younes M. Proportional assist ventilation, a new approach to ventilatory support: theory. Am Rev Respir Dis. 1992;145:114–20.PubMedCrossRef
40.
go back to reference Nava S, Bruschi C, Fracchia C, Braschi A, Rubini F. Patient-ventilator interaction and inspiratory effort during pressure support ventilation in patients with different pathologies. Eur Respir J. 1997;10(1):177–83.PubMedCrossRef Nava S, Bruschi C, Fracchia C, Braschi A, Rubini F. Patient-ventilator interaction and inspiratory effort during pressure support ventilation in patients with different pathologies. Eur Respir J. 1997;10(1):177–83.PubMedCrossRef
41.
go back to reference Brochard L, Harf A, Lorino H, Lemaire F. Inspiratory pressure support prevents diaphragmatic fatigue during weaning from mechanical ventilation. Am Rev Respir Dis. 1989;139:513–21.PubMedCrossRef Brochard L, Harf A, Lorino H, Lemaire F. Inspiratory pressure support prevents diaphragmatic fatigue during weaning from mechanical ventilation. Am Rev Respir Dis. 1989;139:513–21.PubMedCrossRef
42.
go back to reference Spadaro S, Grasso S, Mauri T, Dalla Corte F, Alvisi V, Ragazzi R, et al. Can diaphragmatic ultrasonography performed during the T-tube trial predict weaning failure? The role of diaphragmatic rapid shallow breathing index. Crit Care. 2016;28(20):305.CrossRef Spadaro S, Grasso S, Mauri T, Dalla Corte F, Alvisi V, Ragazzi R, et al. Can diaphragmatic ultrasonography performed during the T-tube trial predict weaning failure? The role of diaphragmatic rapid shallow breathing index. Crit Care. 2016;28(20):305.CrossRef
43.
go back to reference Berger KI, Sorkin IB, Norman RG, Rapoport DM, Goldring RM. Mechanism of relief of tachypnea during pressure support ventilation. Chest. 1996b;109:1320–7.PubMedCrossRef Berger KI, Sorkin IB, Norman RG, Rapoport DM, Goldring RM. Mechanism of relief of tachypnea during pressure support ventilation. Chest. 1996b;109:1320–7.PubMedCrossRef
44.
go back to reference Yonis H, Crognier L, Conil JM, Serres I, Rouget A, Virtos M, et al. Patient-ventilator synchrony in Neurally Adjusted Ventilatory Assist (NAVA) and Pressure Support Ventilation (PSV): a prospective observational study. BMC Anesthesiol [Internet]. 2015;15:1–9.CrossRef Yonis H, Crognier L, Conil JM, Serres I, Rouget A, Virtos M, et al. Patient-ventilator synchrony in Neurally Adjusted Ventilatory Assist (NAVA) and Pressure Support Ventilation (PSV): a prospective observational study. BMC Anesthesiol [Internet]. 2015;15:1–9.CrossRef
45.
go back to reference Colombo D, Cammarota G, Bergamaschi V, De Lucia M, Corte FD, Navalesi P. Physiologic response to varying levels of pressure support and neurally adjusted ventilatory assist in patients with acute respiratory failure. Intensive Care Med. 2008;34:2010–8.PubMedCrossRef Colombo D, Cammarota G, Bergamaschi V, De Lucia M, Corte FD, Navalesi P. Physiologic response to varying levels of pressure support and neurally adjusted ventilatory assist in patients with acute respiratory failure. Intensive Care Med. 2008;34:2010–8.PubMedCrossRef
46.
go back to reference Younes M, Riddle W. Relation between respiratory neural output and tidal volume. J Appl Physiol Respir Environ Exerc Physiol. 1984;56:1110–9.PubMed Younes M, Riddle W. Relation between respiratory neural output and tidal volume. J Appl Physiol Respir Environ Exerc Physiol. 1984;56:1110–9.PubMed
48.
go back to reference Alexopoulou C, Kondili E, Plataki M, Georgopoulos D. Patient-ventilator synchrony and sleep quality with proportional assist and pressure support ventilation. Intensive Care Med. 2013;39:1040–7.PubMedCrossRef Alexopoulou C, Kondili E, Plataki M, Georgopoulos D. Patient-ventilator synchrony and sleep quality with proportional assist and pressure support ventilation. Intensive Care Med. 2013;39:1040–7.PubMedCrossRef
49.
go back to reference Cooper AB, Thornley KS, Young GB, Slutsky AS, Stewart TE, Hanly PJ. Sleep in critically ill patients requiring mechanical ventilation. Chest. 2000;117:809–18.PubMedCrossRef Cooper AB, Thornley KS, Young GB, Slutsky AS, Stewart TE, Hanly PJ. Sleep in critically ill patients requiring mechanical ventilation. Chest. 2000;117:809–18.PubMedCrossRef
50.
go back to reference Parthasarathy S, Tobin MJ. Sleep in the intensive care unit. Intensive Care Med. 2004;30(2):197–206.PubMedCrossRef Parthasarathy S, Tobin MJ. Sleep in the intensive care unit. Intensive Care Med. 2004;30(2):197–206.PubMedCrossRef
51.
go back to reference Ranieri VM, Giuliani R, Mascia L, Grasso S, Petruzzelli V, Puntillo N, et al. Patient-ventilator interaction during acute hypercapnia: pressure-support vs. proportional-assist ventilation. J Appl Physiol. 1996;81(1):426–36.PubMedCrossRef Ranieri VM, Giuliani R, Mascia L, Grasso S, Petruzzelli V, Puntillo N, et al. Patient-ventilator interaction during acute hypercapnia: pressure-support vs. proportional-assist ventilation. J Appl Physiol. 1996;81(1):426–36.PubMedCrossRef
52.
go back to reference Terzi N, Piquilloud L, Rozé H, Mercat A, Lofaso F, Delisle S, et al. Clinical review: update on neurally adjusted ventilatory assist–report of a round-table conference. Crit Care. 2012;16(3):225.PubMedPubMedCentralCrossRef Terzi N, Piquilloud L, Rozé H, Mercat A, Lofaso F, Delisle S, et al. Clinical review: update on neurally adjusted ventilatory assist–report of a round-table conference. Crit Care. 2012;16(3):225.PubMedPubMedCentralCrossRef
53.
go back to reference Younes M, Puddy A, Roberts D, Light RB, Quesada A, Taylor K, et al. Proportional assist ventilation: results of an initial clinical trial. Am Rev Respir Dis. 1992;145:121–9.PubMedCrossRef Younes M, Puddy A, Roberts D, Light RB, Quesada A, Taylor K, et al. Proportional assist ventilation: results of an initial clinical trial. Am Rev Respir Dis. 1992;145:121–9.PubMedCrossRef
54.
go back to reference Iotti GA, Polito A, Belliato M, Pasero D, Beduneau G, Wysocki M, et al. Adaptive support ventilation versus conventional ventilation for total ventilatory support in acute respiratory failure. Intensive Care Med. 2010;36:1371–9.PubMedCrossRef Iotti GA, Polito A, Belliato M, Pasero D, Beduneau G, Wysocki M, et al. Adaptive support ventilation versus conventional ventilation for total ventilatory support in acute respiratory failure. Intensive Care Med. 2010;36:1371–9.PubMedCrossRef
55.
go back to reference Arnal JM, Wysocki M, Nafati C, Donati S, Granier I, Corno G, et al. Automatic selection of breathing pattern using adaptive support ventilation. Intensive Care Med. 2008;34:75–81.PubMedCrossRef Arnal JM, Wysocki M, Nafati C, Donati S, Granier I, Corno G, et al. Automatic selection of breathing pattern using adaptive support ventilation. Intensive Care Med. 2008;34:75–81.PubMedCrossRef
56.
go back to reference Chen C, Wen T, Liao W. Neurally adjusted ventilatory assist versus pressure support ventilation in patient-ventilator interaction and clinical outcomes: a meta-analysis of clinical trials. Ann Transl Med. 2019;17(16):382.CrossRef Chen C, Wen T, Liao W. Neurally adjusted ventilatory assist versus pressure support ventilation in patient-ventilator interaction and clinical outcomes: a meta-analysis of clinical trials. Ann Transl Med. 2019;17(16):382.CrossRef
57.
go back to reference Levine S, Nguyen T, Taylor N, Friscia ME, Budak MT, Rothenberg P, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008;358:1327–35.PubMedCrossRef Levine S, Nguyen T, Taylor N, Friscia ME, Budak MT, Rothenberg P, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008;358:1327–35.PubMedCrossRef
58.
go back to reference Blanch L, Villagra A, Sales B, Montanya J, Lucangelo U, Luján M, et al. Asynchronies during mechanical ventilation are associated with mortality. Intensive Care Med. 2015;41:633–41.PubMedCrossRef Blanch L, Villagra A, Sales B, Montanya J, Lucangelo U, Luján M, et al. Asynchronies during mechanical ventilation are associated with mortality. Intensive Care Med. 2015;41:633–41.PubMedCrossRef
59.
go back to reference Petrof BJ, Jaber S, Matecki S. Ventilator-induced diaphragmatic dysfunction. Curr Opin Crit Care. 2010;16(1):19–25.PubMedCrossRef Petrof BJ, Jaber S, Matecki S. Ventilator-induced diaphragmatic dysfunction. Curr Opin Crit Care. 2010;16(1):19–25.PubMedCrossRef
60.
go back to reference Goligher EC, Fan E, Herridge MS, Murray A, Vorona S, Brace D, et al. Evolution of diaphragm thickness during mechanical ventilation: Impact of inspiratory effort. Am J Respir Crit Care Med. 2015;192(9):1080–8.PubMedCrossRef Goligher EC, Fan E, Herridge MS, Murray A, Vorona S, Brace D, et al. Evolution of diaphragm thickness during mechanical ventilation: Impact of inspiratory effort. Am J Respir Crit Care Med. 2015;192(9):1080–8.PubMedCrossRef
61.
go back to reference Yoshida T, Fujino Y, Amato MBP, Kavanagh BP. Fifty years of research in ards spontaneous breathing during mechanical ventilation risks, mechanisms, and management. Am J Respir Crit Care Med. 2017;195:985–92.PubMedCrossRef Yoshida T, Fujino Y, Amato MBP, Kavanagh BP. Fifty years of research in ards spontaneous breathing during mechanical ventilation risks, mechanisms, and management. Am J Respir Crit Care Med. 2017;195:985–92.PubMedCrossRef
62.
go back to reference Mortamet G, Proulx F, Crulli B, Savy N, Jouvet P, Emeriaud G. Diaphragm electrical activity monitoring as a breakpoint in the management of a tetraplegic child. Crit Care. 2017;26(21):116.CrossRef Mortamet G, Proulx F, Crulli B, Savy N, Jouvet P, Emeriaud G. Diaphragm electrical activity monitoring as a breakpoint in the management of a tetraplegic child. Crit Care. 2017;26(21):116.CrossRef
63.
go back to reference Goligher EC, Dres M, Patel BK, Sahetya SK, Beitler JR, Telias I, et al. Lung and diaphragm-protective ventilation. J Respir Crit Care Med. 2020;202(7):950–61.CrossRef Goligher EC, Dres M, Patel BK, Sahetya SK, Beitler JR, Telias I, et al. Lung and diaphragm-protective ventilation. J Respir Crit Care Med. 2020;202(7):950–61.CrossRef
64.
go back to reference Liu L, Liu H, Yang Y, Huang Y, Liu S, Beck J, et al. Neuroventilatory efficiency and extubation readiness in critically ill patients. Crit Care. 2012;31(16):R143.CrossRef Liu L, Liu H, Yang Y, Huang Y, Liu S, Beck J, et al. Neuroventilatory efficiency and extubation readiness in critically ill patients. Crit Care. 2012;31(16):R143.CrossRef
65.
go back to reference Sassoon CSH, Light RW, Lodia R, Sieck GC, Mahutte CK. Pressure-time product during continuous positive airway pressure, pressure support ventilation, and T-piece during weaning from mechanical ventilation. Am Rev Respir Dis. 1991;143:469–75.PubMedCrossRef Sassoon CSH, Light RW, Lodia R, Sieck GC, Mahutte CK. Pressure-time product during continuous positive airway pressure, pressure support ventilation, and T-piece during weaning from mechanical ventilation. Am Rev Respir Dis. 1991;143:469–75.PubMedCrossRef
66.
go back to reference Yoshida T, Roldan R, Beraldo MA, Torsani V, Gomes S, De Santis RR, et al. Spontaneous effort during mechanical ventilation: maximal injury with less positive end-expiratory pressure. Crit Care Med. 2016;44:e678–88.PubMedCrossRef Yoshida T, Roldan R, Beraldo MA, Torsani V, Gomes S, De Santis RR, et al. Spontaneous effort during mechanical ventilation: maximal injury with less positive end-expiratory pressure. Crit Care Med. 2016;44:e678–88.PubMedCrossRef
67.
go back to reference Lindqvist J, Van Den Berg M, Van Der Pijl R, Hooijman PE, Beishuizen A, Elshof J, et al. Positive end-expiratory pressure ventilation induces longitudinal atrophy in diaphragm fibers. Am J Respir Crit Care Med. 2018;198(4):472–85.PubMedPubMedCentralCrossRef Lindqvist J, Van Den Berg M, Van Der Pijl R, Hooijman PE, Beishuizen A, Elshof J, et al. Positive end-expiratory pressure ventilation induces longitudinal atrophy in diaphragm fibers. Am J Respir Crit Care Med. 2018;198(4):472–85.PubMedPubMedCentralCrossRef
68.
go back to reference Mauri T, Yoshida T, Bellani G, Goligher EC, Carteaux G, Rittayamai N, et al. Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives. Intensive Care Med. 2016;42:1360–73.PubMedCrossRef Mauri T, Yoshida T, Bellani G, Goligher EC, Carteaux G, Rittayamai N, et al. Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives. Intensive Care Med. 2016;42:1360–73.PubMedCrossRef
Metadata
Title
Continuous assessment of neuro-ventilatory drive during 12 h of pressure support ventilation in critically ill patients
Authors
Rosa Di mussi
Savino Spadaro
Carlo Alberto Volta
Nicola Bartolomeo
Paolo Trerotoli
Francesco Staffieri
Luigi Pisani
Rachele Iannuzziello
Lidia Dalfino
Francesco Murgolo
Salvatore Grasso
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2020
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-020-03357-9

Other articles of this Issue 1/2020

Critical Care 1/2020 Go to the issue