Skip to main content
Top
Published in: Critical Care 1/2019

Open Access 01-12-2019 | Stroke | Research

Continual measurement of arterial dP/dtmax enables minimally invasive monitoring of left ventricular contractility in patients with acute heart failure

Authors: Petr Ostadal, Dagmar Vondrakova, Andreas Krüger, Marek Janotka, Jan Naar

Published in: Critical Care | Issue 1/2019

Login to get access

Abstract

Background

Continuous, reliable evaluation of left ventricular (LV) contractile function in patients with advanced heart failure requiring intensive care remains challenging. Continual monitoring of dP/dtmax from the arterial line has recently become available in hemodynamic monitoring. However, the relationship between arterial dP/dtmax and LV dP/dtmax remains unclear. This study aimed to determine the relationship between arterial dP/dtmax and LV dP/dtmax assessed using echocardiography in patients with acute heart failure.

Methods

Forty-eight patients (mean age 70.4 years [65% male]) with acute heart failure requiring intensive care and hemodynamic monitoring were recruited. Hemodynamic variables, including arterial dP/dtmax, were continually monitored using arterial line pressure waveform analysis. LV dP/dtmax was assessed using continuous-wave Doppler analysis of mitral regurgitation flow.

Results

Values from continual arterial dP/dtmax monitoring were significantly correlated with LV dP/dtmax assessed using echocardiography (r = 0.70 [95% confidence interval (CI) 0.51–0.82]; P < 0.0001). Linear regression analysis revealed that LV dP/dtmax = 1.25 × (arterial dP/dtmax) (P < 0.0001). Arterial dP/dtmax was also significantly correlated with stroke volume (SV) (r = 0.63; P < 0.0001) and cardiac output (CO) (r = 0.42; P = 0.0289). In contrast, arterial dP/dtmax was not correlated with SV variation, dynamic arterial elastance, heart rate, systemic vascular resistance (SVR), or mean arterial pressure. Markedly stronger agreement between arterial and LV dP/dtmax was observed in subgroups with higher SVR (N = 28; r = 0.91; P <  0.0001), lower CO (N = 26; r = 0.81; P <  0.0001), and lower SV (N = 25; r = 0.60; P = 0.0014). A weak correlation was observed in the subjects with lower SVR (N = 20; r = 0.61; P = 0.0004); in the subgroups with higher CO (N = 22) and higher SV (N = 23), no significant correlation was found.

Conclusion

Our results suggest that in patients with acute heart failure requiring intensive care with an arterial line, continuous calculation of arterial dP/dtmax may be used for monitoring LV contractility, especially in those with higher SVR, lower CO, and lower SV, such as in patients experiencing cardiogenic shock. On the other hand, there was only a weak or no significant correlation in the subgroups with higher CO, higher SV, and lower SVR.
Literature
1.
go back to reference Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, Jaeschke R, Mebazaa A, Pinsky MR, Teboul JL, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40(12):1795–815.CrossRef Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, Jaeschke R, Mebazaa A, Pinsky MR, Teboul JL, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40(12):1795–815.CrossRef
2.
go back to reference Dewilde WJ, Oirbans T, Verheugt FW, Kelder JC, De Smet BJ, Herrman JP, Adriaenssens T, Vrolix M, Heestermans AA, Vis MM, et al. Use of clopidogrel with or without aspirin in patients taking oral anticoagulant therapy and undergoing percutaneous coronary intervention: an open-label, randomised, controlled trial. Lancet. 2013;381(9872):1107–15.CrossRef Dewilde WJ, Oirbans T, Verheugt FW, Kelder JC, De Smet BJ, Herrman JP, Adriaenssens T, Vrolix M, Heestermans AA, Vis MM, et al. Use of clopidogrel with or without aspirin in patients taking oral anticoagulant therapy and undergoing percutaneous coronary intervention: an open-label, randomised, controlled trial. Lancet. 2013;381(9872):1107–15.CrossRef
3.
go back to reference Suga H, Sagawa K. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ Res. 1974;35(1):117–26.CrossRef Suga H, Sagawa K. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ Res. 1974;35(1):117–26.CrossRef
4.
go back to reference Sagawa K. The end-systolic pressure-volume relation of the ventricle: definition, modifications and clinical use. Circulation. 1981;63(6):1223–7.CrossRef Sagawa K. The end-systolic pressure-volume relation of the ventricle: definition, modifications and clinical use. Circulation. 1981;63(6):1223–7.CrossRef
5.
go back to reference Wallace AG, Skinner NS Jr, Mitchell JH. Hemodynamic determinants of the maximal rate of rise of left ventricular pressure. Am J Phys. 1963;205:30–6.CrossRef Wallace AG, Skinner NS Jr, Mitchell JH. Hemodynamic determinants of the maximal rate of rise of left ventricular pressure. Am J Phys. 1963;205:30–6.CrossRef
6.
go back to reference Bargiggia GS, Bertucci C, Recusani F, Raisaro A, de Servi S, Valdes-Cruz LM, Sahn DJ, Tronconi L. A new method for estimating left ventricular dP/dt by continuous wave Doppler-echocardiography. Validation studies at cardiac catheterization. Circulation. 1989;80(5):1287–92.CrossRef Bargiggia GS, Bertucci C, Recusani F, Raisaro A, de Servi S, Valdes-Cruz LM, Sahn DJ, Tronconi L. A new method for estimating left ventricular dP/dt by continuous wave Doppler-echocardiography. Validation studies at cardiac catheterization. Circulation. 1989;80(5):1287–92.CrossRef
7.
go back to reference Chung N, Nishimura RA, Holmes DR Jr, Tajik AJ. Measurement of left ventricular dp/dt by simultaneous Doppler echocardiography and cardiac catheterization. J Am Soc Echocardiogr. 1992;5(2):147–52.CrossRef Chung N, Nishimura RA, Holmes DR Jr, Tajik AJ. Measurement of left ventricular dp/dt by simultaneous Doppler echocardiography and cardiac catheterization. J Am Soc Echocardiogr. 1992;5(2):147–52.CrossRef
8.
go back to reference Morimont P, Lambermont B, Desaive T, Janssen N, Chase G, D'Orio V. Arterial dP/dtmax accurately reflects left ventricular contractility during shock when adequate vascular filling is achieved. BMC Cardiovasc Disord. 2012;12:13.CrossRef Morimont P, Lambermont B, Desaive T, Janssen N, Chase G, D'Orio V. Arterial dP/dtmax accurately reflects left ventricular contractility during shock when adequate vascular filling is achieved. BMC Cardiovasc Disord. 2012;12:13.CrossRef
9.
go back to reference De Hert SG, Robert D, Cromheecke S, Michard F, Nijs J, Rodrigus IE. Evaluation of left ventricular function in anesthetized patients using femoral artery dP/dt (max). J Cardiothorac Vasc Anesth. 2006;20(3):325–30.CrossRef De Hert SG, Robert D, Cromheecke S, Michard F, Nijs J, Rodrigus IE. Evaluation of left ventricular function in anesthetized patients using femoral artery dP/dt (max). J Cardiothorac Vasc Anesth. 2006;20(3):325–30.CrossRef
10.
go back to reference Monge Garcia MI, Jian Z, Settels JJ, Hunley C, Cecconi M, Hatib F, Pinsky MR. Performance comparison of ventricular and arterial dP/dtmax for assessing left ventricular systolic function during different experimental loading and contractile conditions. Crit Care. 2018;22(1):325.CrossRef Monge Garcia MI, Jian Z, Settels JJ, Hunley C, Cecconi M, Hatib F, Pinsky MR. Performance comparison of ventricular and arterial dP/dtmax for assessing left ventricular systolic function during different experimental loading and contractile conditions. Crit Care. 2018;22(1):325.CrossRef
11.
go back to reference Tartiere JM, Logeart D, Beauvais F, Chavelas C, Kesri L, Tabet JY, Cohen-Solal A. Non-invasive radial pulse wave assessment for the evaluation of left ventricular systolic performance in heart failure. Eur J Heart Fail. 2007;9(5):477–83.CrossRef Tartiere JM, Logeart D, Beauvais F, Chavelas C, Kesri L, Tabet JY, Cohen-Solal A. Non-invasive radial pulse wave assessment for the evaluation of left ventricular systolic performance in heart failure. Eur J Heart Fail. 2007;9(5):477–83.CrossRef
12.
go back to reference Mebazaa A, Tolppanen H, Mueller C, Lassus J, DiSomma S, Baksyte G, Cecconi M, Choi DJ, Cohen Solal A, Christ M, et al. Acute heart failure and cardiogenic shock: a multidisciplinary practical guidance. Intensive Care Med. 2016;42(2):147–63.CrossRef Mebazaa A, Tolppanen H, Mueller C, Lassus J, DiSomma S, Baksyte G, Cecconi M, Choi DJ, Cohen Solal A, Christ M, et al. Acute heart failure and cardiogenic shock: a multidisciplinary practical guidance. Intensive Care Med. 2016;42(2):147–63.CrossRef
13.
go back to reference Robotham JL, Takata M, Berman M, Harasawa Y. Ejection fraction revisited. Anesthesiology. 1991;74(1):172–83.CrossRef Robotham JL, Takata M, Berman M, Harasawa Y. Ejection fraction revisited. Anesthesiology. 1991;74(1):172–83.CrossRef
14.
go back to reference Boissier F, Razazi K, Seemann A, Bedet A, Thille AW, de Prost N, Lim P, Brun-Buisson C, Mekontso Dessap A. Left ventricular systolic dysfunction during septic shock: the role of loading conditions. Intensive Care Med. 2017;43(5):633–42.CrossRef Boissier F, Razazi K, Seemann A, Bedet A, Thille AW, de Prost N, Lim P, Brun-Buisson C, Mekontso Dessap A. Left ventricular systolic dysfunction during septic shock: the role of loading conditions. Intensive Care Med. 2017;43(5):633–42.CrossRef
15.
go back to reference Cikes M, Solomon SD. Beyond ejection fraction: an integrative approach for assessment of cardiac structure and function in heart failure. Eur Heart J. 2016;37(21):1642–50.CrossRef Cikes M, Solomon SD. Beyond ejection fraction: an integrative approach for assessment of cardiac structure and function in heart failure. Eur Heart J. 2016;37(21):1642–50.CrossRef
16.
go back to reference Burns AT, La Gerche A, D'Hooge J, MacIsaac AI, Prior DL. Left ventricular strain and strain rate: characterization of the effect of load in human subjects. Eur J Echocardiogr. 2010;11(3):283–9.CrossRef Burns AT, La Gerche A, D'Hooge J, MacIsaac AI, Prior DL. Left ventricular strain and strain rate: characterization of the effect of load in human subjects. Eur J Echocardiogr. 2010;11(3):283–9.CrossRef
17.
go back to reference Nafati C, Gardette M, Leone M, Reydellet L, Blasco V, Lannelongue A, Sayagh F, Wiramus S, Antonini F, Albanese J, et al. Use of speckle-tracking strain in preload-dependent patients, need for cautious interpretation! Ann Intensive Care. 2018;8(1):29.CrossRef Nafati C, Gardette M, Leone M, Reydellet L, Blasco V, Lannelongue A, Sayagh F, Wiramus S, Antonini F, Albanese J, et al. Use of speckle-tracking strain in preload-dependent patients, need for cautious interpretation! Ann Intensive Care. 2018;8(1):29.CrossRef
18.
go back to reference Scolletta S, Bodson L, Donadello K, Taccone FS, Devigili A, Vincent JL, De Backer D. Assessment of left ventricular function by pulse wave analysis in critically ill patients. Intensive Care Med. 2013;39(6):1025–33.CrossRef Scolletta S, Bodson L, Donadello K, Taccone FS, Devigili A, Vincent JL, De Backer D. Assessment of left ventricular function by pulse wave analysis in critically ill patients. Intensive Care Med. 2013;39(6):1025–33.CrossRef
19.
go back to reference Kim JW, Bang JY, Park CS, Gwak M, Shin WJ, Hwang GS. Usefulness of the maximum rate of pressure rise in the central and peripheral arteries after weaning from cardiopulmonary bypass in pediatric congenital heart surgery: a retrospective analysis. Medicine (Baltimore). 2016;95(49):e5405.CrossRef Kim JW, Bang JY, Park CS, Gwak M, Shin WJ, Hwang GS. Usefulness of the maximum rate of pressure rise in the central and peripheral arteries after weaning from cardiopulmonary bypass in pediatric congenital heart surgery: a retrospective analysis. Medicine (Baltimore). 2016;95(49):e5405.CrossRef
20.
go back to reference Vaquer S, Chemla D, Teboul JL, Ahmad U, Cipriani F, Oliva JC, Ochagavia A, Artigas A, Baigorri F, Monnet X. Influence of changes in ventricular systolic function and loading conditions on pulse contour analysis-derived femoral dP/dtmax. Ann Intensive Care. 2019;9(1):61.CrossRef Vaquer S, Chemla D, Teboul JL, Ahmad U, Cipriani F, Oliva JC, Ochagavia A, Artigas A, Baigorri F, Monnet X. Influence of changes in ventricular systolic function and loading conditions on pulse contour analysis-derived femoral dP/dtmax. Ann Intensive Care. 2019;9(1):61.CrossRef
Metadata
Title
Continual measurement of arterial dP/dtmax enables minimally invasive monitoring of left ventricular contractility in patients with acute heart failure
Authors
Petr Ostadal
Dagmar Vondrakova
Andreas Krüger
Marek Janotka
Jan Naar
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2019
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-019-2654-8

Other articles of this Issue 1/2019

Critical Care 1/2019 Go to the issue