Skip to main content
Top
Published in: Critical Care 1/2018

Open Access 01-12-2018 | Research

Performance comparison of ventricular and arterial dP/dtmax for assessing left ventricular systolic function during different experimental loading and contractile conditions

Authors: Manuel Ignacio Monge Garcia, Zhongping Jian, Jos J. Settels, Charles Hunley, Maurizio Cecconi, Feras Hatib, Michael R. Pinsky

Published in: Critical Care | Issue 1/2018

Login to get access

Abstract

Background

Maximal left ventricular (LV) pressure rise (LV dP/dtmax), a classical marker of LV systolic function, requires LV catheterization, thus surrogate arterial pressure waveform measures have been proposed. We compared LV and arterial (femoral and radial) dP/dtmax to the slope of the LV end-systolic pressure-volume relationship (Ees), a load-independent measure of LV contractility, to determine the interactions between dP/dtmax and Ees as loading and LV contractility varied.

Methods

We measured LV pressure-volume data using a conductance catheter and femoral and radial arterial pressures using a fluid-filled catheter in 10 anesthetized pigs. Ees was calculated as the slope of the end-systolic pressure-volume relationship during a transient inferior vena cava occlusion. Afterload was assessed by the effective arterial elastance. The experimental protocol consisted of sequentially changing afterload (phenylephrine/nitroprusside), preload (bleeding/fluid bolus), and contractility (esmolol/dobutamine). A linear-mixed analysis was used to assess the contribution of cardiac (Ees, end-diastolic volume, effective arterial elastance, heart rate, preload-dependency) and arterial factors (total vascular resistance and arterial compliance) to LV and arterial dP/dtmax.

Results

Both LV and arterial dP/dtmax allowed the tracking of Ees changes, especially during afterload and contractility changes, although arterial dP/dtmax was lower compared to LV dP/dtmax (bias 732 ± 539 mmHg⋅s− 1 for femoral dP/dtmax, and 625 ± 501 mmHg⋅s− 1 for radial dP/dtmax). Changes in cardiac contractility (Ees) were the main determinant of LV and arterial dP/dtmax changes.

Conclusion

Although arterial dP/dtmax is a complex function of central and peripheral arterial factors, radial and particularly femoral dP/dtmax allowed reasonably good tracking of LV contractility changes as loading and inotropic conditions varied.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40(12):1795–815.CrossRef Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40(12):1795–815.CrossRef
2.
3.
go back to reference Suga H, Sagawa K. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ Res. 1974;35(1):117–26.CrossRef Suga H, Sagawa K. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ Res. 1974;35(1):117–26.CrossRef
4.
go back to reference Sagawa K. The end-systolic pressure-volume relation of the ventricle: definition, modifications and clinical use. Circulation. 1981;63(6):1223–7.CrossRef Sagawa K. The end-systolic pressure-volume relation of the ventricle: definition, modifications and clinical use. Circulation. 1981;63(6):1223–7.CrossRef
5.
go back to reference Robotham JL, Takata M, Berman M, Harasawa Y. Ejection fraction revisited. Anesthesiology. 1991;74(1):172–83.CrossRef Robotham JL, Takata M, Berman M, Harasawa Y. Ejection fraction revisited. Anesthesiology. 1991;74(1):172–83.CrossRef
6.
go back to reference Boissier F, Razazi K, Seemann A, Bedet A, Thille AW, de Prost N, et al. Left ventricular systolic dysfunction during septic shock: the role of loading conditions. Intensive Care Med. 2017;43(5):633–42.CrossRef Boissier F, Razazi K, Seemann A, Bedet A, Thille AW, de Prost N, et al. Left ventricular systolic dysfunction during septic shock: the role of loading conditions. Intensive Care Med. 2017;43(5):633–42.CrossRef
7.
go back to reference Geyer H, Caracciolo G, Abe H, Wilansky S, Carerj S, Gentile F, et al. Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical applications. J Am Soc Echocardiogr. 2010;23(4):351–69 quiz 453-5.CrossRef Geyer H, Caracciolo G, Abe H, Wilansky S, Carerj S, Gentile F, et al. Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical applications. J Am Soc Echocardiogr. 2010;23(4):351–69 quiz 453-5.CrossRef
8.
go back to reference Wallace AG, Skinner NS Jr, Mitchell JH. Hemodynamic determinants of the maximal rate of rise of left ventricular pressure. Am J Phys. 1963;205:30–6. Wallace AG, Skinner NS Jr, Mitchell JH. Hemodynamic determinants of the maximal rate of rise of left ventricular pressure. Am J Phys. 1963;205:30–6.
9.
go back to reference Morimont P, Lambermont B, Desaive T, Janssen N, Chase G, D'Orio V. Arterial dP/dtmax accurately reflects left ventricular contractility during shock when adequate vascular filling is achieved. BMC Cardiovasc Disord. 2012;12:13.CrossRef Morimont P, Lambermont B, Desaive T, Janssen N, Chase G, D'Orio V. Arterial dP/dtmax accurately reflects left ventricular contractility during shock when adequate vascular filling is achieved. BMC Cardiovasc Disord. 2012;12:13.CrossRef
10.
go back to reference Tartiere JM, Logeart D, Beauvais F, Chavelas C, Kesri L, Tabet JY, et al. Non-invasive radial pulse wave assessment for the evaluation of left ventricular systolic performance in heart failure. Eur J Heart Fail. 2007;9(5):477–83.CrossRef Tartiere JM, Logeart D, Beauvais F, Chavelas C, Kesri L, Tabet JY, et al. Non-invasive radial pulse wave assessment for the evaluation of left ventricular systolic performance in heart failure. Eur J Heart Fail. 2007;9(5):477–83.CrossRef
11.
go back to reference De Hert SG, Robert D, Cromheecke S, Michard F, Nijs J, Rodrigus IE. Evaluation of left ventricular function in anesthetized patients using femoral artery dP/dt(max). J Cardiothorac Vasc Anesth. 2006;20(3):325–30.CrossRef De Hert SG, Robert D, Cromheecke S, Michard F, Nijs J, Rodrigus IE. Evaluation of left ventricular function in anesthetized patients using femoral artery dP/dt(max). J Cardiothorac Vasc Anesth. 2006;20(3):325–30.CrossRef
12.
go back to reference Group NCRRGW. Animal research: reporting in vivo experiments: the ARRIVE guidelines. J Physiol. 2010;588(Pt 14):2519–21. Group NCRRGW. Animal research: reporting in vivo experiments: the ARRIVE guidelines. J Physiol. 2010;588(Pt 14):2519–21.
13.
go back to reference Kass DA, Yamazaki T, Burkhoff D, Maughan WL, Sagawa K. Determination of left ventricular end-systolic pressure-volume relationships by the conductance (volume) catheter technique. Circulation. 1986;73(3):586–95.CrossRef Kass DA, Yamazaki T, Burkhoff D, Maughan WL, Sagawa K. Determination of left ventricular end-systolic pressure-volume relationships by the conductance (volume) catheter technique. Circulation. 1986;73(3):586–95.CrossRef
14.
go back to reference Baan J, van der Velde ET, de Bruin HG, Smeenk GJ, Koops J, van Dijk AD, et al. Continuous measurement of left ventricular volume in animals and humans by conductance catheter. Circulation. 1984;70(5):812–23.CrossRef Baan J, van der Velde ET, de Bruin HG, Smeenk GJ, Koops J, van Dijk AD, et al. Continuous measurement of left ventricular volume in animals and humans by conductance catheter. Circulation. 1984;70(5):812–23.CrossRef
15.
go back to reference Sunagawa K, Sagawa K, Maughan WL. Ventricular interaction with the loading system. Ann Biomed Eng. 1984;12(2):163–89.CrossRef Sunagawa K, Sagawa K, Maughan WL. Ventricular interaction with the loading system. Ann Biomed Eng. 1984;12(2):163–89.CrossRef
16.
go back to reference Westerhof N, Lankhaar JW, Westerhof BE. The arterial Windkessel. Med Biol Eng Comput. 2009;47(2):131–41.CrossRef Westerhof N, Lankhaar JW, Westerhof BE. The arterial Windkessel. Med Biol Eng Comput. 2009;47(2):131–41.CrossRef
17.
go back to reference Chemla D, Hebert JL, Coirault C, Zamani K, Suard I, Colin P, et al. Total arterial compliance estimated by stroke volume-to-aortic pulse pressure ratio in humans. Am J Phys. 1998;274(2 Pt 2):H500–5. Chemla D, Hebert JL, Coirault C, Zamani K, Suard I, Colin P, et al. Total arterial compliance estimated by stroke volume-to-aortic pulse pressure ratio in humans. Am J Phys. 1998;274(2 Pt 2):H500–5.
18.
go back to reference Fitzmaurice GM, Laird NM, Ware JH. Modeling the covariance. Applied longitudinal analyss. 2nd ed. Hoboken: Wiley; 2011. p. 165–88. Fitzmaurice GM, Laird NM, Ware JH. Modeling the covariance. Applied longitudinal analyss. 2nd ed. Hoboken: Wiley; 2011. p. 165–88.
19.
go back to reference Brown H, Prescott R. Repeated measures data. Applied mixed models in. medicine. 2nd ed. Chichester; Hoboken: Wiley; 2006. p. 215–70. Brown H, Prescott R. Repeated measures data. Applied mixed models in. medicine. 2nd ed. Chichester; Hoboken: Wiley; 2006. p. 215–70.
20.
go back to reference Mebazaa A, Pitsis AA, Rudiger A, Toller W, Longrois D, Ricksten SE, et al. Clinical review: practical recommendations on the management of perioperative heart failure in cardiac surgery. Crit Care. 2010;14(2):201.CrossRef Mebazaa A, Pitsis AA, Rudiger A, Toller W, Longrois D, Ricksten SE, et al. Clinical review: practical recommendations on the management of perioperative heart failure in cardiac surgery. Crit Care. 2010;14(2):201.CrossRef
21.
go back to reference Devereaux PJ, Goldman L, Cook DJ, Gilbert K, Leslie K, Guyatt GH. Perioperative cardiac events in patients undergoing noncardiac surgery: a review of the magnitude of the problem, the pathophysiology of the events and methods to estimate and communicate risk. CMAJ. 2005;173(6):627–34.CrossRef Devereaux PJ, Goldman L, Cook DJ, Gilbert K, Leslie K, Guyatt GH. Perioperative cardiac events in patients undergoing noncardiac surgery: a review of the magnitude of the problem, the pathophysiology of the events and methods to estimate and communicate risk. CMAJ. 2005;173(6):627–34.CrossRef
22.
go back to reference Guinot PG, Longrois D, Kamel S, Lorne E, Dupont H. Ventriculo-arterial coupling analysis predicts the hemodynamic response to norepinephrine in hypotensive postoperative patients: a prospective observational study. Crit Care Med. 2018;46(1):e17–e25.CrossRef Guinot PG, Longrois D, Kamel S, Lorne E, Dupont H. Ventriculo-arterial coupling analysis predicts the hemodynamic response to norepinephrine in hypotensive postoperative patients: a prospective observational study. Crit Care Med. 2018;46(1):e17–e25.CrossRef
23.
go back to reference Sagawa K. The ventricular pressure-volume diagram revisited. Circ Res. 1978;43(5):677–87.CrossRef Sagawa K. The ventricular pressure-volume diagram revisited. Circ Res. 1978;43(5):677–87.CrossRef
24.
go back to reference Suga H, Sagawa K, Shoukas AA. Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res. 1973;32(3):314–22.CrossRef Suga H, Sagawa K, Shoukas AA. Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res. 1973;32(3):314–22.CrossRef
25.
go back to reference Cikes M, Solomon SD. Beyond ejection fraction: an integrative approach for assessment of cardiac structure and function in heart failure. Eur Heart J. 2016;37(21):1642–50.CrossRef Cikes M, Solomon SD. Beyond ejection fraction: an integrative approach for assessment of cardiac structure and function in heart failure. Eur Heart J. 2016;37(21):1642–50.CrossRef
26.
go back to reference Burns AT, La Gerche A, D'Hooge J, MacIsaac AI, Prior DL. Left ventricular strain and strain rate: characterization of the effect of load in human subjects. Eur J Echocardiogr. 2010;11(3):283–9.CrossRef Burns AT, La Gerche A, D'Hooge J, MacIsaac AI, Prior DL. Left ventricular strain and strain rate: characterization of the effect of load in human subjects. Eur J Echocardiogr. 2010;11(3):283–9.CrossRef
27.
go back to reference Nafati C, Gardette M, Leone M, Reydellet L, Blasco V, Lannelongue A, et al. Use of speckle-tracking strain in preload-dependent patients, need for cautious interpretation! Ann Intensive Care. 2018;8(1):29.CrossRef Nafati C, Gardette M, Leone M, Reydellet L, Blasco V, Lannelongue A, et al. Use of speckle-tracking strain in preload-dependent patients, need for cautious interpretation! Ann Intensive Care. 2018;8(1):29.CrossRef
28.
go back to reference Trepte CJ, Eichhorn V, Haas SA, Richter HP, Goepfert MS, Kubitz JC, et al. Thermodilution-derived indices for assessment of left and right ventricular cardiac function in normal and impaired cardiac function. Crit Care Med. 2011;39(9):2106–12.CrossRef Trepte CJ, Eichhorn V, Haas SA, Richter HP, Goepfert MS, Kubitz JC, et al. Thermodilution-derived indices for assessment of left and right ventricular cardiac function in normal and impaired cardiac function. Crit Care Med. 2011;39(9):2106–12.CrossRef
29.
go back to reference Inuzuka R, Kuwata S, Kurishima C, Liang F, Sughimoto K, Senzaki H. Influence of cardiac function and loading conditions on the myocardial performance index - theoretical analysis based on a mathematical model. Circ J. 2016;80(1):148–56.CrossRef Inuzuka R, Kuwata S, Kurishima C, Liang F, Sughimoto K, Senzaki H. Influence of cardiac function and loading conditions on the myocardial performance index - theoretical analysis based on a mathematical model. Circ J. 2016;80(1):148–56.CrossRef
30.
go back to reference Quinones MA, Gaasch WH, Alexander JK. Influence of acute changes in preload, afterload, contractile state and heart rate on ejection and isovolumic indices of myocardial contractility in man. Circulation. 1976;53(2):293–302.CrossRef Quinones MA, Gaasch WH, Alexander JK. Influence of acute changes in preload, afterload, contractile state and heart rate on ejection and isovolumic indices of myocardial contractility in man. Circulation. 1976;53(2):293–302.CrossRef
31.
go back to reference Kass DA, Maughan WL, Guo ZM, Kono A, Sunagawa K, Sagawa K. Comparative influence of load versus inotropic states on indexes of ventricular contractility: experimental and theoretical analysis based on pressure-volume relationships. Circulation. 1987;76(6):1422–36.CrossRef Kass DA, Maughan WL, Guo ZM, Kono A, Sunagawa K, Sagawa K. Comparative influence of load versus inotropic states on indexes of ventricular contractility: experimental and theoretical analysis based on pressure-volume relationships. Circulation. 1987;76(6):1422–36.CrossRef
32.
go back to reference Little WC. The left ventricular dP/dtmax-end-diastolic volume relation in closed-chest dogs. Circ Res. 1985;56(6):808–15.CrossRef Little WC. The left ventricular dP/dtmax-end-diastolic volume relation in closed-chest dogs. Circ Res. 1985;56(6):808–15.CrossRef
33.
go back to reference Van den Bergh A, Flameng W, Herijgers P. Parameters of ventricular contractility in mice: influence of load and sensitivity to changes in inotropic state. Pflugers Arch. 2008;455(6):987–94.CrossRef Van den Bergh A, Flameng W, Herijgers P. Parameters of ventricular contractility in mice: influence of load and sensitivity to changes in inotropic state. Pflugers Arch. 2008;455(6):987–94.CrossRef
34.
go back to reference Nichols WW, O'Rourke M. Contours of pressure and flow waves in arteries. In: Nichols WW, O’Rourke M, editors. McDonald’s blood flow in arteries: theoretical, experimental and clinical principles. 5th ed. London: Oxford University Press; 2005. p. 165–91. Nichols WW, O'Rourke M. Contours of pressure and flow waves in arteries. In: Nichols WW, O’Rourke M, editors. McDonald’s blood flow in arteries: theoretical, experimental and clinical principles. 5th ed. London: Oxford University Press; 2005. p. 165–91.
35.
go back to reference Borow KM, Neumann A, Marcus RH, Sareli P, Lang RM. Effects of simultaneous alterations in preload and afterload on measurements of left ventricular contractility in patients with dilated cardiomyopathy: comparisons of ejection phase, isovolumetric and end-systolic force-velocity indexes. J Am Coll Cardiol. 1992;20(4):787–95.CrossRef Borow KM, Neumann A, Marcus RH, Sareli P, Lang RM. Effects of simultaneous alterations in preload and afterload on measurements of left ventricular contractility in patients with dilated cardiomyopathy: comparisons of ejection phase, isovolumetric and end-systolic force-velocity indexes. J Am Coll Cardiol. 1992;20(4):787–95.CrossRef
36.
go back to reference Blaudszun G, Licker MJ, Morel DR. Preload-adjusted left ventricular dP/dtmax: a sensitive, continuous, load-independent contractility index. Exp Physiol. 2013;98(10):1446–56.CrossRef Blaudszun G, Licker MJ, Morel DR. Preload-adjusted left ventricular dP/dtmax: a sensitive, continuous, load-independent contractility index. Exp Physiol. 2013;98(10):1446–56.CrossRef
37.
go back to reference Pinsky MR. Heart lung interactions during mechanical ventilation. Curr Opin Crit Care. 2012;18(3):256–60.CrossRef Pinsky MR. Heart lung interactions during mechanical ventilation. Curr Opin Crit Care. 2012;18(3):256–60.CrossRef
38.
go back to reference Hatib F, Jansen JR, Pinsky MR. Peripheral vascular decoupling in porcine endotoxic shock. J Appl Physiol. 2011;111(3):853–60.CrossRef Hatib F, Jansen JR, Pinsky MR. Peripheral vascular decoupling in porcine endotoxic shock. J Appl Physiol. 2011;111(3):853–60.CrossRef
Metadata
Title
Performance comparison of ventricular and arterial dP/dtmax for assessing left ventricular systolic function during different experimental loading and contractile conditions
Authors
Manuel Ignacio Monge Garcia
Zhongping Jian
Jos J. Settels
Charles Hunley
Maurizio Cecconi
Feras Hatib
Michael R. Pinsky
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2018
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-018-2260-1

Other articles of this Issue 1/2018

Critical Care 1/2018 Go to the issue