Skip to main content
Top
Published in: Critical Care 1/2019

Open Access 01-12-2019 | Computed Tomography | Research

Left ventricular wall findings in non-electrocardiography-gated contrast-enhanced computed tomography after extracorporeal cardiopulmonary resuscitation

Authors: Kazuhiro Sugiyama, Masamichi Takahashi, Kazuki Miyazaki, Takuto Ishida, Mioko Kobayashi, Yuichi Hamabe

Published in: Critical Care | Issue 1/2019

Login to get access

Abstract

Background

Few studies have reported left ventricular wall findings in contrast-enhanced computed tomography (CE-CT) after extracorporeal cardiopulmonary resuscitation (ECPR). This study examined left ventricular wall CE-CT findings after ECPR and evaluated the association between these findings and the results of coronary angiography and prognosis.

Methods

We evaluated out-of-hospital cardiac arrest patients who were treated with ECPR and subsequently underwent both non-electrocardiography-gated CE-CT and coronary angiography at our center between January 2011 and April 2018. Left ventricular wall CE-CT findings were classified as follows: (1) homogeneously enhanced (HE; the left ventricular wall was homogeneously enhanced), (2) segmental defect (SD; the left ventricular wall was not segmentally enhanced according to the coronary artery territory), (3) total defect (TD; the entire left ventricular wall was not enhanced), and (4) others. Successful weaning from extracorporeal membrane oxygenation, survival to hospital discharge, and predictive ability of significant stenosis on coronary angiography were compared among patients with HE, SD, and TD patterns.

Results

A total of 74 patients (median age, 59 years) were eligible, 50 (68%) of whom had initial shockable rhythm. Twenty-three (31%) patients survived to hospital discharge. HE, SD, TD, and other patterns were observed in 19, 33, 11, and 11 patients, respectively. The rates of successful weaning from extracorporeal membrane oxygenation (84% vs. 39% vs. 9%, p < 0.01) and survival to hospital discharge (47% vs. 27% vs. 0%, p = 0.02) were significantly different among patients with HE, SD, and TD patterns. In post hoc analysis, patients with HE patterns had a significantly higher success rate of weaning from extracorporeal membrane oxygenation than those with SD and TD patterns. SD predicted significant stenosis with a sensitivity of 74% and specificity of 94%.

Conclusions

Homogenously enhanced left ventricular wall might be a predictor of good left ventricular function recovery. In contrast, total enhancement defect in the entire left ventricular wall was associated with poor outcomes. Contrast defect matching the coronary artery territory could predict significant coronary artery stenosis with good specificity. The left ventricular wall findings in non-electrocardiography-gated CE-CT after ECPR might be useful for diagnosis and prognostic prediction.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sakamoto T, Morimura N, Nagao K, Asai Y, Yokota H, Nara S, et al. Extracorporeal cardiopulmonary resuscitation versus conventional cardiopulmonary resuscitation in adults with out-of-hospital cardiac arrest: a prospective observational study. Resuscitation. 2014;85:762–8.CrossRef Sakamoto T, Morimura N, Nagao K, Asai Y, Yokota H, Nara S, et al. Extracorporeal cardiopulmonary resuscitation versus conventional cardiopulmonary resuscitation in adults with out-of-hospital cardiac arrest: a prospective observational study. Resuscitation. 2014;85:762–8.CrossRef
2.
go back to reference Stub D, Bernard S, Pellegrino V, Smith K, Walker T, Sheldrake J, et al. Refractory cardiac arrest treated with mechanical CPR, hypothermia, ECMO and early reperfusion (the CHEER trial). Resuscitation. 2015;86:88–94.CrossRef Stub D, Bernard S, Pellegrino V, Smith K, Walker T, Sheldrake J, et al. Refractory cardiac arrest treated with mechanical CPR, hypothermia, ECMO and early reperfusion (the CHEER trial). Resuscitation. 2015;86:88–94.CrossRef
3.
go back to reference Bartos JA, Carlson K, Carlson C, Raveendran G, John R, Aufderheide TP, et al. Surviving refractory out-of-hospital ventricular fibrillation cardiac arrest: critical care and extracorporeal membrane oxygenation management. Resuscitation. 2018;132:47–55.CrossRef Bartos JA, Carlson K, Carlson C, Raveendran G, John R, Aufderheide TP, et al. Surviving refractory out-of-hospital ventricular fibrillation cardiac arrest: critical care and extracorporeal membrane oxygenation management. Resuscitation. 2018;132:47–55.CrossRef
4.
go back to reference Chelly J, Mongardon N, Dumas F, Varenne O, Spaulding C, Vignaux O, et al. Benefit of an early and systematic imaging procedure after cardiac arrest: insights from the PROCAT (Parisian Region Out of Hospital Cardiac Arrest) registry. Resuscitation. 2012;83:1444–50.CrossRef Chelly J, Mongardon N, Dumas F, Varenne O, Spaulding C, Vignaux O, et al. Benefit of an early and systematic imaging procedure after cardiac arrest: insights from the PROCAT (Parisian Region Out of Hospital Cardiac Arrest) registry. Resuscitation. 2012;83:1444–50.CrossRef
5.
go back to reference Yannopoulos D, Bartos JA, Raveendran G, Conterato M, Frascone RJ, Trembley A, et al. Coronary artery disease in patients with out-of-hospital refractory ventricular fibrillation cardiac arrest. J Am Coll Cardiol. 2017;70:1109–17.CrossRef Yannopoulos D, Bartos JA, Raveendran G, Conterato M, Frascone RJ, Trembley A, et al. Coronary artery disease in patients with out-of-hospital refractory ventricular fibrillation cardiac arrest. J Am Coll Cardiol. 2017;70:1109–17.CrossRef
6.
go back to reference Lessick J, Ghersin E, Dragu R, Litmanovich D, Mutlak D, Rispler S, et al. Diagnostic accuracy of myocardial hypoenhancement on multidetector computed tomography in identifying myocardial infarction in patients admitted with acute chest pain syndrome. J Comput Assist Tomogr. 2007;31:780–8.CrossRef Lessick J, Ghersin E, Dragu R, Litmanovich D, Mutlak D, Rispler S, et al. Diagnostic accuracy of myocardial hypoenhancement on multidetector computed tomography in identifying myocardial infarction in patients admitted with acute chest pain syndrome. J Comput Assist Tomogr. 2007;31:780–8.CrossRef
7.
go back to reference Watanabe T, Furuse Y, Ohta Y, Kato M, Ogawa T, Yamamoto K. The effectiveness of non-ECG-gated contrast-enhanced computed tomography for the diagnosis of non-ST segment elevation acute coronary syndrome. Int Heart J. 2016;57:558–64.CrossRef Watanabe T, Furuse Y, Ohta Y, Kato M, Ogawa T, Yamamoto K. The effectiveness of non-ECG-gated contrast-enhanced computed tomography for the diagnosis of non-ST segment elevation acute coronary syndrome. Int Heart J. 2016;57:558–64.CrossRef
8.
go back to reference Kinoshita T, Yamakawa K, Matsuda H, Yoshikawa Y, Wada D, Hamasaki T, et al. The survival benefit of a novel trauma workflow that includes immediate whole-body computed tomography, surgery, and interventional radiology, all in one trauma resuscitation room: a retrospective historical control study. Ann Surg. 2019;269:370–6.CrossRef Kinoshita T, Yamakawa K, Matsuda H, Yoshikawa Y, Wada D, Hamasaki T, et al. The survival benefit of a novel trauma workflow that includes immediate whole-body computed tomography, surgery, and interventional radiology, all in one trauma resuscitation room: a retrospective historical control study. Ann Surg. 2019;269:370–6.CrossRef
9.
go back to reference Nolan JP, Soar J, Cariou A, Cronberg T, Moulaert VR, Deakin CD, et al. European Resuscitation Council and European Society of Intensive Care Medicine guidelines for post-resuscitation care 2015: section 5 of the European Resuscitation Council guidelines for resuscitation 2015. Resuscitation. 2015;95:202–22.CrossRef Nolan JP, Soar J, Cariou A, Cronberg T, Moulaert VR, Deakin CD, et al. European Resuscitation Council and European Society of Intensive Care Medicine guidelines for post-resuscitation care 2015: section 5 of the European Resuscitation Council guidelines for resuscitation 2015. Resuscitation. 2015;95:202–22.CrossRef
10.
go back to reference Callaway CW, Donnino MW, Fink EL, Geocadin RG, Golan E, Kern KB, et al. Part 8: post-cardiac arrest care: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2015;132:S465–82.CrossRef Callaway CW, Donnino MW, Fink EL, Geocadin RG, Golan E, Kern KB, et al. Part 8: post-cardiac arrest care: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2015;132:S465–82.CrossRef
11.
go back to reference Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105:539–42.CrossRef Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105:539–42.CrossRef
12.
go back to reference Kanda Y. Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant. 2013;48:452–8.CrossRef Kanda Y. Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant. 2013;48:452–8.CrossRef
13.
go back to reference Raney AR, Saremi F, Kenchaiah S, Gurudevan SV, Narula J, Narula N, et al. Multidetector computed tomography shows intramyocardial fat deposition. J Cardiovasc Comput Tomogr. 2008;2:152–63.CrossRef Raney AR, Saremi F, Kenchaiah S, Gurudevan SV, Narula J, Narula N, et al. Multidetector computed tomography shows intramyocardial fat deposition. J Cardiovasc Comput Tomogr. 2008;2:152–63.CrossRef
14.
go back to reference Mano Y, Anzai T, Yoshizawa A, Itabashi Y, Ohki T. Role of non-electrocardiogram-gated contrast-enhanced computed tomography in the diagnosis of acute coronary syndrome. Heart Vessel. 2015;30:1–8.CrossRef Mano Y, Anzai T, Yoshizawa A, Itabashi Y, Ohki T. Role of non-electrocardiogram-gated contrast-enhanced computed tomography in the diagnosis of acute coronary syndrome. Heart Vessel. 2015;30:1–8.CrossRef
15.
go back to reference Guglin M, Zucker MJ, Bazan VM, Bozkurt B, El Banayosy A, Estep JD, et al. Venoarterial ECMO for adults. J Am Coll Cardiol. 2019;73:698–716.CrossRef Guglin M, Zucker MJ, Bazan VM, Bozkurt B, El Banayosy A, Estep JD, et al. Venoarterial ECMO for adults. J Am Coll Cardiol. 2019;73:698–716.CrossRef
16.
go back to reference Duncker DJ, Canty JM Jr. Coronary blood flow and myocardial ischemia. In: Zipes DP, Mann DL, Libby P, Tomasellis GF, Bonow RO, Braunwalk E, editors. Braunwald’s heart disease: a textbook of cardiovascular medicine. 11. Med. 2-Volume Set. Philadelphia: Elsevier Inc.; 2019. p. 2069–2094. Duncker DJ, Canty JM Jr. Coronary blood flow and myocardial ischemia. In: Zipes DP, Mann DL, Libby P, Tomasellis GF, Bonow RO, Braunwalk E, editors. Braunwald’s heart disease: a textbook of cardiovascular medicine. 11. Med. 2-Volume Set. Philadelphia: Elsevier Inc.; 2019. p. 2069–2094.
17.
go back to reference Goodwill AG, Dick GM, Kiel AM, Tune JD. Regulation of coronary blood flow. Compr Physiol. 2017;7:321–82.CrossRef Goodwill AG, Dick GM, Kiel AM, Tune JD. Regulation of coronary blood flow. Compr Physiol. 2017;7:321–82.CrossRef
18.
go back to reference Desjardins B, Kazerooni EA. ECG-gated cardiac CT. AJR Am J Roentgenol. 2004;182:993–1010.CrossRef Desjardins B, Kazerooni EA. ECG-gated cardiac CT. AJR Am J Roentgenol. 2004;182:993–1010.CrossRef
19.
go back to reference Shapiro MD, Sarwar A, Nieman K, Nasir K, Brady TJ, Cury RC. Cardiac computed tomography for prediction of myocardial viability after reperfused acute myocardial infarction. J Cardiovasc Comput Tomogr. 2010;4:267–73.CrossRef Shapiro MD, Sarwar A, Nieman K, Nasir K, Brady TJ, Cury RC. Cardiac computed tomography for prediction of myocardial viability after reperfused acute myocardial infarction. J Cardiovasc Comput Tomogr. 2010;4:267–73.CrossRef
20.
go back to reference Lessick J, Dragu R, Mutlak D, Rispler S, Beyar R, Litmanovich D, et al. Is functional improvement after myocardial infarction predicted with myocardial enhancement patterns at multidetector CT? Radiology. 2007;244:736–44.CrossRef Lessick J, Dragu R, Mutlak D, Rispler S, Beyar R, Litmanovich D, et al. Is functional improvement after myocardial infarction predicted with myocardial enhancement patterns at multidetector CT? Radiology. 2007;244:736–44.CrossRef
21.
go back to reference Ichinose T, Yamase M, Yokomatsu Y, Kawano Y, Konishi H, Tanimoto K, et al. Acute myocardial infarction with myocardial perfusion defect detected by contrast-enhanced computed tomography. Intern Med. 2009;48:1235–8.CrossRef Ichinose T, Yamase M, Yokomatsu Y, Kawano Y, Konishi H, Tanimoto K, et al. Acute myocardial infarction with myocardial perfusion defect detected by contrast-enhanced computed tomography. Intern Med. 2009;48:1235–8.CrossRef
22.
go back to reference Sato A, Nozato T, Hikita H, Akiyama D, Nishina H, Hoshi T, et al. Prognostic value of myocardial contrast delayed enhancement with 64-slice multidetector computed tomography after acute myocardial infarction. J Am Coll Cardiol. 2012;59:730–8.CrossRef Sato A, Nozato T, Hikita H, Akiyama D, Nishina H, Hoshi T, et al. Prognostic value of myocardial contrast delayed enhancement with 64-slice multidetector computed tomography after acute myocardial infarction. J Am Coll Cardiol. 2012;59:730–8.CrossRef
Metadata
Title
Left ventricular wall findings in non-electrocardiography-gated contrast-enhanced computed tomography after extracorporeal cardiopulmonary resuscitation
Authors
Kazuhiro Sugiyama
Masamichi Takahashi
Kazuki Miyazaki
Takuto Ishida
Mioko Kobayashi
Yuichi Hamabe
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2019
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-019-2624-1

Other articles of this Issue 1/2019

Critical Care 1/2019 Go to the issue