Skip to main content
Top
Published in: Critical Care 1/2019

Open Access 01-12-2019 | Acute Kidney Injury | Research

Machine learning versus physicians’ prediction of acute kidney injury in critically ill adults: a prospective evaluation of the AKIpredictor

Authors: Marine Flechet, Stefano Falini, Claudia Bonetti, Fabian Güiza, Miet Schetz, Greet Van den Berghe, Geert Meyfroidt

Published in: Critical Care | Issue 1/2019

Login to get access

Abstract

Background

Early diagnosis of acute kidney injury (AKI) is a major challenge in the intensive care unit (ICU). The AKIpredictor is a set of machine-learning-based prediction models for AKI using routinely collected patient information, and accessible online. In order to evaluate its clinical value, the AKIpredictor was compared to physicians’ predictions.

Methods

Prospective observational study in five ICUs of a tertiary academic center. Critically ill adults without end-stage renal disease or AKI upon admission were considered for enrollment. Using structured questionnaires, physicians were asked upon admission, on the first morning, and after 24 h to predict the development of AKI stages 2 or 3 (AKI-23) during the first week of ICU stay. Discrimination, calibration, and net benefit of physicians’ predictions were compared against the ones by the AKIpredictor.

Results

Two hundred fifty-two patients were included, 30 (12%) developed AKI-23. In the cohort of patients with predictions by physicians and AKIpredictor, the performance of physicians and AKIpredictor were respectively upon ICU admission, area under the receiver operating characteristic curve (AUROC) 0.80 [0.69–0.92] versus 0.75 [0.62–0.88] (n = 120, P = 0.25) with net benefit in ranges 0–26% versus 0–74%; on the first morning, AUROC 0.94 [0.89–0.98] versus 0.89 [0.82–0.97] (n = 187, P = 0.27) with main net benefit in ranges 0–10% versus 0–48%; after 24 h, AUROC 0.95 [0.89–1.00] versus 0.89 [0.79–0.99] (n = 89, P = 0.09) with main net benefit in ranges 0–67% versus 0–50%.

Conclusions

The machine-learning-based AKIpredictor achieved similar discriminative performance as physicians for prediction of AKI-23, and higher net benefit overall, because physicians overestimated the risk of AKI. This suggests an added value of the systematic risk stratification by the AKIpredictor to physicians’ predictions, in particular to select high-risk patients or reduce false positives in studies evaluating new and potentially harmful therapies. Due to the low event rate, future studies are needed to validate these findings.

Trial registration

ClinicalTrials.gov, NCT03574896 registration date: July 2nd, 2018
Appendix
Available only for authorised users
Literature
1.
go back to reference Lameire NH, Bagga A, Cruz D, De Maeseneer J, Endre Z, Kellum JA, et al. Acute kidney injury: an increasing global concern. Lancet. 2013;382:170–9.PubMedCrossRef Lameire NH, Bagga A, Cruz D, De Maeseneer J, Endre Z, Kellum JA, et al. Acute kidney injury: an increasing global concern. Lancet. 2013;382:170–9.PubMedCrossRef
2.
go back to reference Wilson JG, Butcher BW, Liu KD. Evolving practices in critical care and their influence on acute kidney injury. Curr Opin Crit Care. 2013;19:523–30.PubMed Wilson JG, Butcher BW, Liu KD. Evolving practices in critical care and their influence on acute kidney injury. Curr Opin Crit Care. 2013;19:523–30.PubMed
3.
go back to reference Hoste EAJ, Bagshaw SM, Bellomo R, Cely CM, Colman R, Cruz DN, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med. 2015;41:1411–23.PubMedCrossRef Hoste EAJ, Bagshaw SM, Bellomo R, Cely CM, Colman R, Cruz DN, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med. 2015;41:1411–23.PubMedCrossRef
4.
go back to reference Joannidis M, Metnitz B, Bauer P, Schusterschitz N, Moreno R, Druml W, et al. Acute kidney injury in critically ill patients classified by AKIN versus RIFLE using the SAPS 3 database. Intensive Care Med. 2009;35:1692–702.PubMedCrossRef Joannidis M, Metnitz B, Bauer P, Schusterschitz N, Moreno R, Druml W, et al. Acute kidney injury in critically ill patients classified by AKIN versus RIFLE using the SAPS 3 database. Intensive Care Med. 2009;35:1692–702.PubMedCrossRef
6.
go back to reference Nisula S, Kaukonen K-M, Vaara ST, Korhonen A-M, Poukkanen M, Karlsson S, et al. Incidence, risk factors and 90-day mortality of patients with acute kidney injury in Finnish intensive care units: the FINNAKI study. Intensive Care Med. 2013;39:420–8.PubMedCrossRef Nisula S, Kaukonen K-M, Vaara ST, Korhonen A-M, Poukkanen M, Karlsson S, et al. Incidence, risk factors and 90-day mortality of patients with acute kidney injury in Finnish intensive care units: the FINNAKI study. Intensive Care Med. 2013;39:420–8.PubMedCrossRef
7.
go back to reference Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;2:1–138.CrossRef Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;2:1–138.CrossRef
8.
go back to reference Obermüller N, Geiger H, Weipert C, Urbschat A. Current developments in early diagnosis of acute kidney injury. Int Urol Nephrol. 2014;46:1–7.PubMedCrossRef Obermüller N, Geiger H, Weipert C, Urbschat A. Current developments in early diagnosis of acute kidney injury. Int Urol Nephrol. 2014;46:1–7.PubMedCrossRef
10.
go back to reference Kellum JA, Prowle JR. Paradigms of acute kidney injury in the intensive care setting. Nat Rev Nephrol. 2018;14:217–30.PubMedCrossRef Kellum JA, Prowle JR. Paradigms of acute kidney injury in the intensive care setting. Nat Rev Nephrol. 2018;14:217–30.PubMedCrossRef
11.
go back to reference Kashani K, Cheungpasitporn W, Ronco C. Biomarkers of acute kidney injury: the pathway from discovery to clinical adoption. Clin Chem Lab Med. 2017;55:1074–89.PubMedCrossRef Kashani K, Cheungpasitporn W, Ronco C. Biomarkers of acute kidney injury: the pathway from discovery to clinical adoption. Clin Chem Lab Med. 2017;55:1074–89.PubMedCrossRef
12.
go back to reference Beker BM, Corleto MG, Fieiras C, Musso CG. Novel acute kidney injury biomarkers: their characteristics, utility and concerns. Int Urol Nephrol. 2018;50:705–13.PubMedCrossRef Beker BM, Corleto MG, Fieiras C, Musso CG. Novel acute kidney injury biomarkers: their characteristics, utility and concerns. Int Urol Nephrol. 2018;50:705–13.PubMedCrossRef
13.
go back to reference Sutherland SM, Chawla LS, Kane-Gill SL, Hsu RK, Kramer AA, Goldstein SL, et al. Utilizing electronic health records to predict acute kidney injury risk and outcomes: workgroup statements from the 15th ADQI Consensus Conference. Can J Kidney Heal Dis. 2016;3:11. Sutherland SM, Chawla LS, Kane-Gill SL, Hsu RK, Kramer AA, Goldstein SL, et al. Utilizing electronic health records to predict acute kidney injury risk and outcomes: workgroup statements from the 15th ADQI Consensus Conference. Can J Kidney Heal Dis. 2016;3:11.
15.
go back to reference Forni LG, Dawes T, Sinclair H, Cheek E, Bewick V, Dennis M, et al. Identifying the patient at risk of acute kidney injury: a predictive scoring system for the development of acute kidney injury in acute medical patients. Nephron Clin Pract. 2013;123:143–50.PubMedCrossRef Forni LG, Dawes T, Sinclair H, Cheek E, Bewick V, Dennis M, et al. Identifying the patient at risk of acute kidney injury: a predictive scoring system for the development of acute kidney injury in acute medical patients. Nephron Clin Pract. 2013;123:143–50.PubMedCrossRef
16.
go back to reference Hodgson LE, Dimitrov BD, Roderick PJ, Venn R, Forni LG. Predicting AKI in emergency admissions: an external validation study of the acute kidney injury prediction score (APS). BMJ Open. 2017;7:e013511.PubMedPubMedCentralCrossRef Hodgson LE, Dimitrov BD, Roderick PJ, Venn R, Forni LG. Predicting AKI in emergency admissions: an external validation study of the acute kidney injury prediction score (APS). BMJ Open. 2017;7:e013511.PubMedPubMedCentralCrossRef
17.
go back to reference Haines RW, Lin S-P, Hewson R, Kirwan CJ, Torrance HD, O’Dwyer MJ, et al. Acute kidney injury in trauma patients admitted to critical care: development and validation of a diagnostic prediction model. Sci Rep. 2018;8:3665.PubMedPubMedCentralCrossRef Haines RW, Lin S-P, Hewson R, Kirwan CJ, Torrance HD, O’Dwyer MJ, et al. Acute kidney injury in trauma patients admitted to critical care: development and validation of a diagnostic prediction model. Sci Rep. 2018;8:3665.PubMedPubMedCentralCrossRef
18.
go back to reference Casaer MP, Mesotten D, Hermans G, Wouters PJ, Schetz M, Meyfroidt G, et al. Early versus late parenteral nutrition in critically ill adults. N Engl J Med. 2011;365:506–17.PubMedCrossRef Casaer MP, Mesotten D, Hermans G, Wouters PJ, Schetz M, Meyfroidt G, et al. Early versus late parenteral nutrition in critically ill adults. N Engl J Med. 2011;365:506–17.PubMedCrossRef
19.
go back to reference Flechet M, Güiza F, Schetz M, Wouters P, Vanhorebeek I, Derese I, et al. AKIpredictor, an online prognostic calculator for acute kidney injury in adult critically ill patients: development, validation and comparison to serum neutrophil gelatinase-associated lipocalin. Intensive Care Med. 2017;43:764–73.PubMedCrossRef Flechet M, Güiza F, Schetz M, Wouters P, Vanhorebeek I, Derese I, et al. AKIpredictor, an online prognostic calculator for acute kidney injury in adult critically ill patients: development, validation and comparison to serum neutrophil gelatinase-associated lipocalin. Intensive Care Med. 2017;43:764–73.PubMedCrossRef
20.
go back to reference de Geus HRH, Betjes MG, Bakker J. Biomarkers for the prediction of acute kidney injury: a narrative review on current status and future challenges. Clin Kidney J. 2012;5:102–8.PubMedPubMedCentralCrossRef de Geus HRH, Betjes MG, Bakker J. Biomarkers for the prediction of acute kidney injury: a narrative review on current status and future challenges. Clin Kidney J. 2012;5:102–8.PubMedPubMedCentralCrossRef
21.
go back to reference Shemin D, Dworkin LD. Neutrophil gelatinase–associated lipocalin (NGAL) as a biomarker for early acute kidney injury. Crit Care Clin. 2011;27:379–89.PubMedCrossRef Shemin D, Dworkin LD. Neutrophil gelatinase–associated lipocalin (NGAL) as a biomarker for early acute kidney injury. Crit Care Clin. 2011;27:379–89.PubMedCrossRef
22.
go back to reference Darmon M, Ostermann M, Joannidis M. Predictions are difficult … especially about AKI. Intensive Care Med. 2017;43:932–4.PubMedCrossRef Darmon M, Ostermann M, Joannidis M. Predictions are difficult … especially about AKI. Intensive Care Med. 2017;43:932–4.PubMedCrossRef
23.
go back to reference Bellomo R, Vaara ST, Kellum JA. How to improve the care of patients with acute kidney injury. Intensive Care Med. 2017;43:727–9.PubMedCrossRef Bellomo R, Vaara ST, Kellum JA. How to improve the care of patients with acute kidney injury. Intensive Care Med. 2017;43:727–9.PubMedCrossRef
24.
go back to reference Bailly S, Meyfroidt G, Timsit J-F. What’s new in ICU in 2050: big data and machine learning. Intensive Care Med. 2017:1–4. Bailly S, Meyfroidt G, Timsit J-F. What’s new in ICU in 2050: big data and machine learning. Intensive Care Med. 2017:1–4.
25.
go back to reference Hodgson LE, Sarnowski A, Roderick PJ, Dimitrov BD, Venn RM, Forni LG. Systematic review of prognostic prediction models for acute kidney injury (AKI) in general hospital populations. BMJ Open. 2017;7:e016591.PubMedPubMedCentralCrossRef Hodgson LE, Sarnowski A, Roderick PJ, Dimitrov BD, Venn RM, Forni LG. Systematic review of prognostic prediction models for acute kidney injury (AKI) in general hospital populations. BMJ Open. 2017;7:e016591.PubMedPubMedCentralCrossRef
26.
go back to reference Levey AS, Bosch JP. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Ann Intern Med. 1999;130:461.PubMedCrossRef Levey AS, Bosch JP. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Ann Intern Med. 1999;130:461.PubMedCrossRef
27.
go back to reference von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Ann Intern Med. 2007;147:573.CrossRef von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Ann Intern Med. 2007;147:573.CrossRef
30.
go back to reference Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, et al. Assessing the performance of prediction models. Epidemiology. 2010;21:128–38.PubMedPubMedCentralCrossRef Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, et al. Assessing the performance of prediction models. Epidemiology. 2010;21:128–38.PubMedPubMedCentralCrossRef
31.
go back to reference Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation. Eur Heart J. 2014;35:1925–31.PubMedPubMedCentralCrossRef Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation. Eur Heart J. 2014;35:1925–31.PubMedPubMedCentralCrossRef
32.
go back to reference DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837.PubMedCrossRef DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837.PubMedCrossRef
33.
go back to reference Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:77.PubMedPubMedCentralCrossRef Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:77.PubMedPubMedCentralCrossRef
34.
go back to reference Nattino G, Finazzi S, Bertolini G. A new calibration test and a reappraisal of the calibration belt for the assessment of prediction models based on dichotomous outcomes. Stat Med. 2014;33:2390–407.PubMedCrossRef Nattino G, Finazzi S, Bertolini G. A new calibration test and a reappraisal of the calibration belt for the assessment of prediction models based on dichotomous outcomes. Stat Med. 2014;33:2390–407.PubMedCrossRef
35.
go back to reference Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating prediction models. Med Decis Mak. 2006;26:565–74.CrossRef Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating prediction models. Med Decis Mak. 2006;26:565–74.CrossRef
37.
go back to reference Van Calster B, Vickers AJ. Calibration of risk prediction models: impact on decision-analytic performance. Med Decis Mak. 2015;35:162–9.CrossRef Van Calster B, Vickers AJ. Calibration of risk prediction models: impact on decision-analytic performance. Med Decis Mak. 2015;35:162–9.CrossRef
Metadata
Title
Machine learning versus physicians’ prediction of acute kidney injury in critically ill adults: a prospective evaluation of the AKIpredictor
Authors
Marine Flechet
Stefano Falini
Claudia Bonetti
Fabian Güiza
Miet Schetz
Greet Van den Berghe
Geert Meyfroidt
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2019
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-019-2563-x

Other articles of this Issue 1/2019

Critical Care 1/2019 Go to the issue