Skip to main content
Top
Published in: Critical Care 1/2018

Open Access 01-12-2018 | Research

Subclinical acute kidney injury is associated with adverse outcomes in critically ill neonates and children

Authors: Fang Fang, Xiaohan Hu, Xiaomei Dai, Sanfeng Wang, Zhenjiang Bai, Jiao Chen, Jian Pan, Xiaozhong Li, Jian Wang, Yanhong Li

Published in: Critical Care | Issue 1/2018

Login to get access

Abstract

Background

Research on acute kidney injury (AKI) has focused on identifying early biomarkers. However, whether AKI could be diagnosed in the absence of the classic signs of clinical AKI and whether the condition of subclinical AKI, identified by damage or functional biomarkers in the absence of oliguria or increased serum creatinine (sCr) levels, is clinically significant remains to be elucidated in critically ill children. The aims of the study were to investigate the associations between urinary cystatin C (uCysC) levels and AKI and mortality and to determine whether uCysC-positive subclinical AKI is associated with adverse outcomes in critically ill neonates and children.

Methods

In this prospective cohort study, uCysC levels were serially measured during the first week after intensive care unit (ICU) admission in a heterogeneous group of patients (n = 510) presenting to a tertiary neonatal and pediatric ICU. The diagnosis of neonatal AKI that developed during the first week after admission was based on neonatal KDIGO criteria or sCr >1.5 mg/dL, and pediatric AKI was based on Kidney Disease: Improving Global Outcomes (KDIGO) criteria. The term “uCysC(−)” or “uCysC(+)”, indicating the absence or presence of tubular injury, was defined by the optimal peak uCysC cutoff value for predicting ICU mortality.

Results

The initial and peak uCysC levels were significantly associated with AKI and mortality, and had an area under the receiver operating characteristic curve of 0.76 and 0.81, respectively, for predicting mortality. At the optimal cutoff value of 1260 ng/mg uCr, the peak uCysC displayed sensitivity of 79.2% and specificity of 72.3% for predicting mortality. Among all patients, 130 (25.5%) developed uCysC(+)/AKI(−) status during the first week after admission. The adjusted odds ratio for patients with uCysC(+)/AKI(−) status in association with an increased risk of mortality compared with that for patients with uCysC(−)/AKI(−) was 9.34 (P < 0.001). Patients with uCysC(+)/AKI(−) spent 2.8 times as long in the ICU as those with uCysC(−)/AKI(−) (P < 0.001).

Conclusions

Both initial and peak uCysC levels are associated with AKI and mortality and are independently predictive of mortality in critically ill neonates and children. Subclinical AKI may occur without detectable loss of kidney function, and uCysC-positive subclinical AKI is associated with worse clinical outcomes in this population.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kaddourah A, Basu RK, Bagshaw SM, Goldstein SL, Investigators A. Epidemiology of acute kidney injury in critically ill children and young adults. N Engl J Med. 2017;376:11–20.CrossRefPubMed Kaddourah A, Basu RK, Bagshaw SM, Goldstein SL, Investigators A. Epidemiology of acute kidney injury in critically ill children and young adults. N Engl J Med. 2017;376:11–20.CrossRefPubMed
2.
go back to reference Alkandari O, Eddington KA, Hyder A, Gauvin F, Ducruet T, Gottesman R, Phan V, Zappitelli M. Acute kidney injury is an independent risk factor for pediatric intensive care unit mortality, longer length of stay and prolonged mechanical ventilation in critically ill children: a two-center retrospective cohort study. Crit Care. 2011;15:R146.CrossRefPubMedCentralPubMed Alkandari O, Eddington KA, Hyder A, Gauvin F, Ducruet T, Gottesman R, Phan V, Zappitelli M. Acute kidney injury is an independent risk factor for pediatric intensive care unit mortality, longer length of stay and prolonged mechanical ventilation in critically ill children: a two-center retrospective cohort study. Crit Care. 2011;15:R146.CrossRefPubMedCentralPubMed
3.
go back to reference Sutherland SM, Ji J, Sheikhi FH, Widen E, Tian L, Alexander SR, Ling XB. AKI in hospitalized children: epidemiology and clinical associations in a national cohort. Clin J Am Soc Nephrol. 2013;8:1661–9.CrossRefPubMedCentralPubMed Sutherland SM, Ji J, Sheikhi FH, Widen E, Tian L, Alexander SR, Ling XB. AKI in hospitalized children: epidemiology and clinical associations in a national cohort. Clin J Am Soc Nephrol. 2013;8:1661–9.CrossRefPubMedCentralPubMed
4.
go back to reference Kellum JA, Prowle JR. Paradigms of acute kidney injury in the intensive care setting. Nat Rev Nephrol. 2018;14:217–30.CrossRefPubMed Kellum JA, Prowle JR. Paradigms of acute kidney injury in the intensive care setting. Nat Rev Nephrol. 2018;14:217–30.CrossRefPubMed
6.
go back to reference Malhotra R, Siew ED. Biomarkers for the early detection and prognosis of acute kidney injury. Clin J Am Soc Nephrol. 2017;12:149–73.CrossRefPubMed Malhotra R, Siew ED. Biomarkers for the early detection and prognosis of acute kidney injury. Clin J Am Soc Nephrol. 2017;12:149–73.CrossRefPubMed
8.
go back to reference Murray PT, Mehta RL, Shaw A, Ronco C, Endre Z, Kellum JA, Chawla LS, Cruz D, Ince C, Okusa MD, et al. Potential use of biomarkers in acute kidney injury: report and summary of recommendations from the 10th Acute Dialysis Quality Initiative consensus conference. Kidney Int. 2014;85:513–21.CrossRefPubMed Murray PT, Mehta RL, Shaw A, Ronco C, Endre Z, Kellum JA, Chawla LS, Cruz D, Ince C, Okusa MD, et al. Potential use of biomarkers in acute kidney injury: report and summary of recommendations from the 10th Acute Dialysis Quality Initiative consensus conference. Kidney Int. 2014;85:513–21.CrossRefPubMed
9.
go back to reference Haase M, Bellomo R, Devarajan P, Schlattmann P, Haase-Fielitz A, Group NM-aI. Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis. 2009;54:1012–24.CrossRefPubMed Haase M, Bellomo R, Devarajan P, Schlattmann P, Haase-Fielitz A, Group NM-aI. Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis. 2009;54:1012–24.CrossRefPubMed
10.
go back to reference Ralib AM, Pickering JW, Shaw GM, Than MP, George PM, Endre ZH. The clinical utility window for acute kidney injury biomarkers in the critically ill. Crit Care. 2014;18:601.CrossRefPubMedCentralPubMed Ralib AM, Pickering JW, Shaw GM, Than MP, George PM, Endre ZH. The clinical utility window for acute kidney injury biomarkers in the critically ill. Crit Care. 2014;18:601.CrossRefPubMedCentralPubMed
11.
go back to reference Koyner JL, Bennett MR, Worcester EM, Ma Q, Raman J, Jeevanandam V, Kasza KE, O'Connor MF, Konczal DJ, Trevino S, et al. Urinary cystatin C as an early biomarker of acute kidney injury following adult cardiothoracic surgery. Kidney Int. 2008;74:1059–69.CrossRefPubMedCentralPubMed Koyner JL, Bennett MR, Worcester EM, Ma Q, Raman J, Jeevanandam V, Kasza KE, O'Connor MF, Konczal DJ, Trevino S, et al. Urinary cystatin C as an early biomarker of acute kidney injury following adult cardiothoracic surgery. Kidney Int. 2008;74:1059–69.CrossRefPubMedCentralPubMed
12.
go back to reference Haase M, Kellum JA, Ronco C. Subclinical AKI–an emerging syndrome with important consequences. Nat Rev Nephrol. 2012;8:735–9.CrossRefPubMed Haase M, Kellum JA, Ronco C. Subclinical AKI–an emerging syndrome with important consequences. Nat Rev Nephrol. 2012;8:735–9.CrossRefPubMed
15.
go back to reference Haase M, Devarajan P, Haase-Fielitz A, Bellomo R, Cruz DN, Wagener G, Krawczeski CD, Koyner JL, Murray P, Zappitelli M, et al. The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury: a multicenter pooled analysis of prospective studies. J Am Coll Cardiol. 2011;57:1752–61.CrossRefPubMedCentralPubMed Haase M, Devarajan P, Haase-Fielitz A, Bellomo R, Cruz DN, Wagener G, Krawczeski CD, Koyner JL, Murray P, Zappitelli M, et al. The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury: a multicenter pooled analysis of prospective studies. J Am Coll Cardiol. 2011;57:1752–61.CrossRefPubMedCentralPubMed
16.
go back to reference Conti M, Moutereau S, Zater M, Lallali K, Durrbach A, Manivet P, Eschwege P, Loric S. Urinary cystatin C as a specific marker of tubular dysfunction. Clin Chem Lab Med. 2006;44:288–91.CrossRefPubMed Conti M, Moutereau S, Zater M, Lallali K, Durrbach A, Manivet P, Eschwege P, Loric S. Urinary cystatin C as a specific marker of tubular dysfunction. Clin Chem Lab Med. 2006;44:288–91.CrossRefPubMed
17.
go back to reference Herget-Rosenthal S, van Wijk JA, Brocker-Preuss M, Bokenkamp A. Increased urinary cystatin C reflects structural and functional renal tubular impairment independent of glomerular filtration rate. Clin Biochem. 2007;40:946–51.CrossRefPubMed Herget-Rosenthal S, van Wijk JA, Brocker-Preuss M, Bokenkamp A. Increased urinary cystatin C reflects structural and functional renal tubular impairment independent of glomerular filtration rate. Clin Biochem. 2007;40:946–51.CrossRefPubMed
18.
go back to reference Endre ZH, Pickering JW, Walker RJ, Devarajan P, Edelstein CL, Bonventre JV, Frampton CM, Bennett MR, Ma Q, Sabbisetti VS, et al. Improved performance of urinary biomarkers of acute kidney injury in the critically ill by stratification for injury duration and baseline renal function. Kidney Int. 2011;79:1119–30.CrossRefPubMed Endre ZH, Pickering JW, Walker RJ, Devarajan P, Edelstein CL, Bonventre JV, Frampton CM, Bennett MR, Ma Q, Sabbisetti VS, et al. Improved performance of urinary biomarkers of acute kidney injury in the critically ill by stratification for injury duration and baseline renal function. Kidney Int. 2011;79:1119–30.CrossRefPubMed
19.
go back to reference Nejat M, Pickering JW, Walker RJ, Westhuyzen J, Shaw GM, Frampton CM, Endre ZH. Urinary cystatin C is diagnostic of acute kidney injury and sepsis, and predicts mortality in the intensive care unit. Crit Care. 2010;14:R85.CrossRefPubMedCentralPubMed Nejat M, Pickering JW, Walker RJ, Westhuyzen J, Shaw GM, Frampton CM, Endre ZH. Urinary cystatin C is diagnostic of acute kidney injury and sepsis, and predicts mortality in the intensive care unit. Crit Care. 2010;14:R85.CrossRefPubMedCentralPubMed
20.
go back to reference Li Y, Fu C, Zhou X, Xiao Z, Zhu X, Jin M, Li X, Feng X. Urine interleukin-18 and cystatin-C as biomarkers of acute kidney injury in critically ill neonates. Pediatr Nephrol. 2012;27:851–60.CrossRefPubMedCentralPubMed Li Y, Fu C, Zhou X, Xiao Z, Zhu X, Jin M, Li X, Feng X. Urine interleukin-18 and cystatin-C as biomarkers of acute kidney injury in critically ill neonates. Pediatr Nephrol. 2012;27:851–60.CrossRefPubMedCentralPubMed
21.
go back to reference Li Y, Li X, Zhou X, Yan J, Zhu X, Pan J, Jin M, Zhu X, Feng X, Xiao Z. Impact of sepsis on the urinary level of interleukin-18 and cystatin C in critically ill neonates. Pediatr Nephrol. 2013;28:135–44.CrossRefPubMed Li Y, Li X, Zhou X, Yan J, Zhu X, Pan J, Jin M, Zhu X, Feng X, Xiao Z. Impact of sepsis on the urinary level of interleukin-18 and cystatin C in critically ill neonates. Pediatr Nephrol. 2013;28:135–44.CrossRefPubMed
22.
go back to reference Li Y, Wang J, Bai Z, Chen J, Wang X, Pan J, Li X, Feng X. Early fluid overload is associated with acute kidney injury and PICU mortality in critically ill children. Eur J Pediatr. 2016;175:39–48.CrossRefPubMed Li Y, Wang J, Bai Z, Chen J, Wang X, Pan J, Li X, Feng X. Early fluid overload is associated with acute kidney injury and PICU mortality in critically ill children. Eur J Pediatr. 2016;175:39–48.CrossRefPubMed
23.
go back to reference Chen J, Li X, Bai Z, Fang F, Hua J, Li Y, Pan J, Wang J, Feng X, Li Y. Association of fluid accumulation with clinical outcomes in critically ill children with severe sepsis. PLoS One. 2016;11:e0160093.CrossRefPubMedCentralPubMed Chen J, Li X, Bai Z, Fang F, Hua J, Li Y, Pan J, Wang J, Feng X, Li Y. Association of fluid accumulation with clinical outcomes in critically ill children with severe sepsis. PLoS One. 2016;11:e0160093.CrossRefPubMedCentralPubMed
24.
go back to reference Richardson DK, Gray JE, McCormick MC, Workman K, Goldmann DA. Score for Neonatal Acute Physiology: a physiologic severity index for neonatal intensive care. Pediatrics. 1993;91:617–23.PubMed Richardson DK, Gray JE, McCormick MC, Workman K, Goldmann DA. Score for Neonatal Acute Physiology: a physiologic severity index for neonatal intensive care. Pediatrics. 1993;91:617–23.PubMed
25.
go back to reference Pollack MM, Patel KM, Ruttimann UE. PRISM III: an updated Pediatric Risk of Mortality score. Crit Care Med. 1996;24:743–52.CrossRefPubMed Pollack MM, Patel KM, Ruttimann UE. PRISM III: an updated Pediatric Risk of Mortality score. Crit Care Med. 1996;24:743–52.CrossRefPubMed
26.
go back to reference Li Y, Yan J, Li M, Xiao Z, Zhu X, Pan J, Li X, Feng X. Addition of SNAP to perinatal risk factors improves the prediction of bronchopulmonary dysplasia or death in critically ill preterm infants. BMC Pediatr. 2013;13:138.CrossRefPubMedCentralPubMed Li Y, Yan J, Li M, Xiao Z, Zhu X, Pan J, Li X, Feng X. Addition of SNAP to perinatal risk factors improves the prediction of bronchopulmonary dysplasia or death in critically ill preterm infants. BMC Pediatr. 2013;13:138.CrossRefPubMedCentralPubMed
27.
go back to reference Selewski DT, Charlton JR, Jetton JG, Guillet R, Mhanna MJ, Askenazi DJ, Kent AL. Neonatal acute kidney injury. Pediatrics. 2015;136:e463–73.CrossRefPubMed Selewski DT, Charlton JR, Jetton JG, Guillet R, Mhanna MJ, Askenazi DJ, Kent AL. Neonatal acute kidney injury. Pediatrics. 2015;136:e463–73.CrossRefPubMed
28.
go back to reference Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, Levin A. Acute Kidney Injury N. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11:R31.PubMed Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, Levin A. Acute Kidney Injury N. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11:R31.PubMed
29.
go back to reference Pickering JW, Endre ZH. Back-calculating baseline creatinine with MDRD misclassifies acute kidney injury in the intensive care unit. Clin J Am Soc Nephrol. 2010;5:1165–73.CrossRefPubMedCentralPubMed Pickering JW, Endre ZH. Back-calculating baseline creatinine with MDRD misclassifies acute kidney injury in the intensive care unit. Clin J Am Soc Nephrol. 2010;5:1165–73.CrossRefPubMedCentralPubMed
30.
go back to reference Askenazi DJ, Koralkar R, Hundley HE, Montesanti A, Parwar P, Sonjara S, Ambalavanan N. Urine biomarkers predict acute kidney injury in newborns. J Pediatr. 2012;161:270–5 e1.CrossRefPubMedCentralPubMed Askenazi DJ, Koralkar R, Hundley HE, Montesanti A, Parwar P, Sonjara S, Ambalavanan N. Urine biomarkers predict acute kidney injury in newborns. J Pediatr. 2012;161:270–5 e1.CrossRefPubMedCentralPubMed
31.
go back to reference Hazle MA, Gajarski RJ, Aiyagari R, Yu S, Abraham A, Donohue J, Blatt NB. Urinary biomarkers and renal near-infrared spectroscopy predict intensive care unit outcomes after cardiac surgery in infants younger than 6 months of age. J Thorac Cardiovasc Surg. 2013;146:861–7 e1.CrossRefPubMedCentralPubMed Hazle MA, Gajarski RJ, Aiyagari R, Yu S, Abraham A, Donohue J, Blatt NB. Urinary biomarkers and renal near-infrared spectroscopy predict intensive care unit outcomes after cardiac surgery in infants younger than 6 months of age. J Thorac Cardiovasc Surg. 2013;146:861–7 e1.CrossRefPubMedCentralPubMed
32.
go back to reference Herget-Rosenthal S, Marggraf G, Husing J, Goring F, Pietruck F, Janssen O, Philipp T, Kribben A. Early detection of acute renal failure by serum cystatin C. Kidney Int. 2004;66:1115–22.CrossRefPubMed Herget-Rosenthal S, Marggraf G, Husing J, Goring F, Pietruck F, Janssen O, Philipp T, Kribben A. Early detection of acute renal failure by serum cystatin C. Kidney Int. 2004;66:1115–22.CrossRefPubMed
33.
go back to reference Nehus E, Kaddourah A, Bennett M, Pyles O, Devarajan P. Subclinical kidney injury in children receiving nonsteroidal anti-inflammatory drugs after cardiac surgery. J Pediatr. 2017;189:175–80.CrossRefPubMedCentralPubMed Nehus E, Kaddourah A, Bennett M, Pyles O, Devarajan P. Subclinical kidney injury in children receiving nonsteroidal anti-inflammatory drugs after cardiac surgery. J Pediatr. 2017;189:175–80.CrossRefPubMedCentralPubMed
36.
go back to reference Carmody JB, Swanson JR, Rhone ET, Charlton JR. Recognition and reporting of AKI in very low birth weight infants. Clin J Am Soc Nephrol. 2014;9:2036–43.CrossRefPubMedCentralPubMed Carmody JB, Swanson JR, Rhone ET, Charlton JR. Recognition and reporting of AKI in very low birth weight infants. Clin J Am Soc Nephrol. 2014;9:2036–43.CrossRefPubMedCentralPubMed
37.
go back to reference Liborio AB, Branco KM. Torres de Melo Bezerra C. Acute kidney injury in neonates: from urine output to new biomarkers. Biomed Res Int. 2014;2014:601568.PubMed Liborio AB, Branco KM. Torres de Melo Bezerra C. Acute kidney injury in neonates: from urine output to new biomarkers. Biomed Res Int. 2014;2014:601568.PubMed
38.
go back to reference Drukker A, Guignard JP. Renal aspects of the term and preterm infant: a selective update. Curr Opin Pediatr. 2002;14:175–82.CrossRefPubMed Drukker A, Guignard JP. Renal aspects of the term and preterm infant: a selective update. Curr Opin Pediatr. 2002;14:175–82.CrossRefPubMed
39.
go back to reference Gallini F, Maggio L, Romagnoli C, Marrocco G, Tortorolo G. Progression of renal function in preterm neonates with gestational age < or = 32 weeks. Pediatr Nephrol. 2000;15:119–24.CrossRefPubMed Gallini F, Maggio L, Romagnoli C, Marrocco G, Tortorolo G. Progression of renal function in preterm neonates with gestational age < or = 32 weeks. Pediatr Nephrol. 2000;15:119–24.CrossRefPubMed
40.
go back to reference Jin K, Murugan R, Sileanu FE, Foldes E, Priyanka P, Clermont G, Kellum JA. Intensive monitoring of urine output is associated with increased detection of acute kidney injury and improved outcomes. Chest. 2017;152:972–9.CrossRefPubMed Jin K, Murugan R, Sileanu FE, Foldes E, Priyanka P, Clermont G, Kellum JA. Intensive monitoring of urine output is associated with increased detection of acute kidney injury and improved outcomes. Chest. 2017;152:972–9.CrossRefPubMed
41.
go back to reference Saeidi B, Koralkar R, Griffin RL, Halloran B, Ambalavanan N, Askenazi DJ. Impact of gestational age, sex, and postnatal age on urine biomarkers in premature neonates. Pediatr Nephrol. 2015;30:2037–44.CrossRefPubMedCentralPubMed Saeidi B, Koralkar R, Griffin RL, Halloran B, Ambalavanan N, Askenazi DJ. Impact of gestational age, sex, and postnatal age on urine biomarkers in premature neonates. Pediatr Nephrol. 2015;30:2037–44.CrossRefPubMedCentralPubMed
Metadata
Title
Subclinical acute kidney injury is associated with adverse outcomes in critically ill neonates and children
Authors
Fang Fang
Xiaohan Hu
Xiaomei Dai
Sanfeng Wang
Zhenjiang Bai
Jiao Chen
Jian Pan
Xiaozhong Li
Jian Wang
Yanhong Li
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2018
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-018-2193-8

Other articles of this Issue 1/2018

Critical Care 1/2018 Go to the issue