Skip to main content
Top
Published in: Critical Care 3/2017

Open Access 01-12-2017 | Review

Tailoring nutrition therapy to illness and recovery

Author: Paul E. Wischmeyer

Published in: Critical Care | Special Issue 3/2017

Login to get access

Abstract

Without doubt, in medicine as in life, one size does not fit all. We do not administer the same drug or dose to every patient at all times, so why then would we live under the illusion that we should give the same nutrition at all times in the continuum of critical illness? We have long lived under the assumption that critical illness and trauma lead to a consistent early increase in metabolic/caloric need, the so-called “hypermetabolism” of critical illness. What if this is incorrect? Recent data indicate that early underfeeding of calories (trophic feeding) may have benefits and may require consideration in well-nourished patients. However, we must confront the reality that currently ICU nutrition delivery worldwide is actually leading to “starvation” of our patients and is likely a major contributor to poor long-term quality of life outcomes. To begin to ascertain the actual calorie and protein delivery required for optimal ICU recovery, an understanding of “starvation” and recovery from starvation and lean body mass (LBM) loss is needed. To begin to answer this question, we must look to the landmark Minnesota Starvation Study from 1945. This trial defines much of the world’s knowledge about starvation, and most importantly what is required for recovery from starvation and massive LBM loss as occurs in the ICU. Recent and historic data indicate that critical illness is characterized by early massive catabolism, LBM loss, and escalating hypermetabolism that can persist for months or years. Early enteral nutrition during the acute phase should attempt to correct micronutrient/vitamin deficiencies, deliver adequate protein, and moderate nonprotein calories in well-nourished patients, as in the acute phase they are capable of generating significant endogenous energy. Post resuscitation, increasing protein (1.5–2.0 g/kg/day) and calories are needed to attenuate LBM loss and promote recovery. Malnutrition screening is essential and parenteral nutrition can be safely added following resuscitation when enteral nutrition is failing based on pre-illness malnutrition and LBM status. Following the ICU stay, significant protein/calorie delivery for months or years is required to facilitate functional and LBM recovery, with high-protein oral supplements being essential to achieve adequate nutrition.
Literature
1.
go back to reference Casaer MP, Mesotten D, Hermans G, Wouters PJ, Schetz M, Meyfroidt G, Van Cromphaut S, Ingels C, Meersseman P, Muller J, et al. Early versus late parenteral nutrition in critically ill adults. N Engl J Med. 2011;365(6):506–17.CrossRefPubMed Casaer MP, Mesotten D, Hermans G, Wouters PJ, Schetz M, Meyfroidt G, Van Cromphaut S, Ingels C, Meersseman P, Muller J, et al. Early versus late parenteral nutrition in critically ill adults. N Engl J Med. 2011;365(6):506–17.CrossRefPubMed
2.
go back to reference National Heart, Lung, ans Blood Institute Acute Respiratory Distress Syndrome Clinical Trials Network, Rice TW, Wheeler AP, Thompson BT, Steingrub J, Hite RD, Moss M, Morris A, Dong N, 8, et al. Initial trophic vs full enteral feeding in patients with acute lung injury: the EDEN randomized trial. JAMA. 2012;307:795–803.CrossRef National Heart, Lung, ans Blood Institute Acute Respiratory Distress Syndrome Clinical Trials Network, Rice TW, Wheeler AP, Thompson BT, Steingrub J, Hite RD, Moss M, Morris A, Dong N, 8, et al. Initial trophic vs full enteral feeding in patients with acute lung injury: the EDEN randomized trial. JAMA. 2012;307:795–803.CrossRef
3.
go back to reference Herridge MS, Batt J, Santos CD. ICU-acquired weakness, morbidity, and death. Am J Respir Crit Care Med. 2014;190(4):360–2.CrossRefPubMed Herridge MS, Batt J, Santos CD. ICU-acquired weakness, morbidity, and death. Am J Respir Crit Care Med. 2014;190(4):360–2.CrossRefPubMed
4.
go back to reference Keys A. Recollections of pioneers in nutrition: from starvation to cholesterol. J Am Coll Nutr. 1990;9(4):288–91.CrossRefPubMed Keys A. Recollections of pioneers in nutrition: from starvation to cholesterol. J Am Coll Nutr. 1990;9(4):288–91.CrossRefPubMed
5.
go back to reference Keys A, Brozek J, Henschel A, Mickelsen O, Taylor HL. The Biology of Human Starvation. Vols I–II. Minneapolis: University of Minnesota Press; 1950. Keys A, Brozek J, Henschel A, Mickelsen O, Taylor HL. The Biology of Human Starvation. Vols I–II. Minneapolis: University of Minnesota Press; 1950.
6.
go back to reference Kalm LM, Semba RD. They starved so that others be better fed: remembering Ancel Keys and the Minnesota experiment. J Nutr. 2005;135(6):1347–52.PubMed Kalm LM, Semba RD. They starved so that others be better fed: remembering Ancel Keys and the Minnesota experiment. J Nutr. 2005;135(6):1347–52.PubMed
7.
go back to reference Keys A, Brozek J, Henschel A, Mickelsen O, Taylor HL. Experimental Starvation in Man: A Report from the Laboratory of Physiological Hygiene, University of Minnesota. Minneapolis: University of Minnesota; 1945. Keys A, Brozek J, Henschel A, Mickelsen O, Taylor HL. Experimental Starvation in Man: A Report from the Laboratory of Physiological Hygiene, University of Minnesota. Minneapolis: University of Minnesota; 1945.
8.
go back to reference Keys A, Brozek J, Henschel A, Mickelsen O, Taylor HL. Rehabilitation Following Experimental Starvation in Man: A Report from the Laboratory of Physiological Hygiene, University of Minnesota. Minneapolis: University of Minnesota; 1946. Keys A, Brozek J, Henschel A, Mickelsen O, Taylor HL. Rehabilitation Following Experimental Starvation in Man: A Report from the Laboratory of Physiological Hygiene, University of Minnesota. Minneapolis: University of Minnesota; 1946.
9.
go back to reference Gillis C, Carli F. Promoting perioperative metabolic and nutritional care. Anesthesiology. 2015;123(6):1455–72.CrossRefPubMed Gillis C, Carli F. Promoting perioperative metabolic and nutritional care. Anesthesiology. 2015;123(6):1455–72.CrossRefPubMed
10.
go back to reference Preiser JC, van Zanten AR, Berger MM, Biolo G, Casaer MP, Doig GS, Griffiths RD, Heyland DK, Hiesmayr M, Iapichino G, et al. Metabolic and nutritional support of critically ill patients: consensus and controversies. Crit Care. 2015;19:35.CrossRefPubMedPubMedCentral Preiser JC, van Zanten AR, Berger MM, Biolo G, Casaer MP, Doig GS, Griffiths RD, Heyland DK, Hiesmayr M, Iapichino G, et al. Metabolic and nutritional support of critically ill patients: consensus and controversies. Crit Care. 2015;19:35.CrossRefPubMedPubMedCentral
11.
go back to reference Oshima T, Deutz NE, Doig G, Wischmeyer PE, Pichard C. Protein-energy nutrition in the ICU is the power couple: a hypothesis forming analysis. Clin Nutr. 2016;35(4):968–74.CrossRefPubMed Oshima T, Deutz NE, Doig G, Wischmeyer PE, Pichard C. Protein-energy nutrition in the ICU is the power couple: a hypothesis forming analysis. Clin Nutr. 2016;35(4):968–74.CrossRefPubMed
12.
go back to reference Uehara M, Plank LD, Hill GL. Components of energy expenditure in patients with severe sepsis and major trauma: a basis for clinical care. Crit Care Med. 1999;27(7):1295–302.CrossRefPubMed Uehara M, Plank LD, Hill GL. Components of energy expenditure in patients with severe sepsis and major trauma: a basis for clinical care. Crit Care Med. 1999;27(7):1295–302.CrossRefPubMed
13.
go back to reference Kreymann G, Grosser S, Buggisch P, Gottschall C, Matthaei S, Greten H. Oxygen consumption and resting metabolic rate in sepsis, sepsis syndrome, and septic shock. Crit Care Med. 1993;21(7):1012–9.CrossRefPubMed Kreymann G, Grosser S, Buggisch P, Gottschall C, Matthaei S, Greten H. Oxygen consumption and resting metabolic rate in sepsis, sepsis syndrome, and septic shock. Crit Care Med. 1993;21(7):1012–9.CrossRefPubMed
14.
go back to reference Donnino MW, Andersen LW, Chase M, Berg KM, Tidswell M, Giberson T, Wolfe R, Moskowitz A, Smithline H, Ngo L, et al. Randomized, double-blind, placebo-controlled trial of thiamine as a metabolic resuscitator in septic shock: a pilot study. Crit Care Med. 2016;44(2):360–7.CrossRefPubMedPubMedCentral Donnino MW, Andersen LW, Chase M, Berg KM, Tidswell M, Giberson T, Wolfe R, Moskowitz A, Smithline H, Ngo L, et al. Randomized, double-blind, placebo-controlled trial of thiamine as a metabolic resuscitator in septic shock: a pilot study. Crit Care Med. 2016;44(2):360–7.CrossRefPubMedPubMedCentral
15.
go back to reference Fürst P. Protein and amino acid metabolism: Composition of stressed and nonstressed states. In: Cresci G, editor. Nutrition support for the critically ill patient. Boca Raton: Taylor & Francis (CRC); 2005. p. 29. Fürst P. Protein and amino acid metabolism: Composition of stressed and nonstressed states. In: Cresci G, editor. Nutrition support for the critically ill patient. Boca Raton: Taylor & Francis (CRC); 2005. p. 29.
16.
go back to reference Alberda C, Gramlich L, Jones N, Jeejeebhoy K, Day AG, Dhaliwal R, Heyland DK. The relationship between nutritional intake and clinical outcomes in critically ill patients: results of an international multicenter observational study. Intensive Care Med. 2009;35(10):1728–37.CrossRefPubMed Alberda C, Gramlich L, Jones N, Jeejeebhoy K, Day AG, Dhaliwal R, Heyland DK. The relationship between nutritional intake and clinical outcomes in critically ill patients: results of an international multicenter observational study. Intensive Care Med. 2009;35(10):1728–37.CrossRefPubMed
17.
go back to reference McClave SA, Taylor BE, Martindale RG, Warren MM, Johnson DR, Braunschweig C, McCarthy MS, Davanos E, Rice TW, Cresci GA, et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J Parenter Enteral Nutr. 2016;40(2):159–211.CrossRefPubMed McClave SA, Taylor BE, Martindale RG, Warren MM, Johnson DR, Braunschweig C, McCarthy MS, Davanos E, Rice TW, Cresci GA, et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J Parenter Enteral Nutr. 2016;40(2):159–211.CrossRefPubMed
18.
go back to reference Wischmeyer PE. Are we creating survivors … or victims in critical care? Delivering targeted nutrition to improve outcomes. Curr Opin Crit Care. 2016;22(4):279–84.CrossRefPubMed Wischmeyer PE. Are we creating survivors … or victims in critical care? Delivering targeted nutrition to improve outcomes. Curr Opin Crit Care. 2016;22(4):279–84.CrossRefPubMed
19.
go back to reference Heyland DK, Dhaliwal R, Jiang X, Day AG. Identifying critically ill patients who benefit the most from nutrition therapy: the development and initial validation of a novel risk assessment tool. Crit Care. 2011;15(6):R268.CrossRefPubMedPubMedCentral Heyland DK, Dhaliwal R, Jiang X, Day AG. Identifying critically ill patients who benefit the most from nutrition therapy: the development and initial validation of a novel risk assessment tool. Crit Care. 2011;15(6):R268.CrossRefPubMedPubMedCentral
20.
go back to reference Needham DM, Feldman DR, Kho ME. The functional costs of ICU survivorship. Collaborating to improve post-ICU disability. Am J Respir Crit Care Med. 2011;183(8):962–4.CrossRefPubMed Needham DM, Feldman DR, Kho ME. The functional costs of ICU survivorship. Collaborating to improve post-ICU disability. Am J Respir Crit Care Med. 2011;183(8):962–4.CrossRefPubMed
21.
go back to reference Wischmeyer PE, San-Millan I. Winning the war against ICU-acquired weakness: new innovations in nutrition and exercise physiology. Crit Care. 2015;19 Suppl 3:S6.PubMed Wischmeyer PE, San-Millan I. Winning the war against ICU-acquired weakness: new innovations in nutrition and exercise physiology. Crit Care. 2015;19 Suppl 3:S6.PubMed
22.
go back to reference Doig GS, Simpson F, Sweetman EA, Finfer SR, Cooper DJ, Heighes PT, Davies AR, O'Leary M, Solano T, Peake S, et al. Early parenteral nutrition in critically ill patients with short-term relative contraindications to early enteral nutrition: a randomized controlled trial. JAMA. 2013;309(20):2130–8.CrossRefPubMed Doig GS, Simpson F, Sweetman EA, Finfer SR, Cooper DJ, Heighes PT, Davies AR, O'Leary M, Solano T, Peake S, et al. Early parenteral nutrition in critically ill patients with short-term relative contraindications to early enteral nutrition: a randomized controlled trial. JAMA. 2013;309(20):2130–8.CrossRefPubMed
23.
go back to reference Heidegger CP, Berger MM, Graf S, Zingg W, Darmon P, Costanza MC, Thibault R, Pichard C. Optimisation of energy provision with supplemental parenteral nutrition in critically ill patients: a randomised controlled clinical trial. Lancet. 2013;381(9864):385–93.CrossRefPubMed Heidegger CP, Berger MM, Graf S, Zingg W, Darmon P, Costanza MC, Thibault R, Pichard C. Optimisation of energy provision with supplemental parenteral nutrition in critically ill patients: a randomised controlled clinical trial. Lancet. 2013;381(9864):385–93.CrossRefPubMed
24.
go back to reference Harvey SE, Parrott F, Harrison DA, Bear DE, Segaran E, Beale R, Bellingan G, Leonard R, Mythen MG, Rowan KM, et al. Trial of the route of early nutritional support in critically ill adults. N Engl J Med. 2014;371(18):1673–84.CrossRefPubMed Harvey SE, Parrott F, Harrison DA, Bear DE, Segaran E, Beale R, Bellingan G, Leonard R, Mythen MG, Rowan KM, et al. Trial of the route of early nutritional support in critically ill adults. N Engl J Med. 2014;371(18):1673–84.CrossRefPubMed
25.
go back to reference Manzanares W, Langlois PL, Hardy G. Intravenous lipid emulsions in the critically ill: an update. Curr Opin Crit Care. 2016;22(4):308–15.CrossRefPubMed Manzanares W, Langlois PL, Hardy G. Intravenous lipid emulsions in the critically ill: an update. Curr Opin Crit Care. 2016;22(4):308–15.CrossRefPubMed
26.
go back to reference Nicolo M, Heyland DK, Chittams J, Sammarco T, Compher C. Clinical outcomes related to protein delivery in a critically ill population: a multicenter, multinational observation study. JPEN. 2016;40(1):45–51.CrossRef Nicolo M, Heyland DK, Chittams J, Sammarco T, Compher C. Clinical outcomes related to protein delivery in a critically ill population: a multicenter, multinational observation study. JPEN. 2016;40(1):45–51.CrossRef
27.
go back to reference Kaukonen KM, Bailey M, Suzuki S, Pilcher D, Bellomo R. Mortality related to severe sepsis and septic shock among critically ill patients in Australia and New Zealand, 2000-2012. JAMA. 2014;311(13):1308–16.CrossRefPubMed Kaukonen KM, Bailey M, Suzuki S, Pilcher D, Bellomo R. Mortality related to severe sepsis and septic shock among critically ill patients in Australia and New Zealand, 2000-2012. JAMA. 2014;311(13):1308–16.CrossRefPubMed
28.
go back to reference Wei X, Day AG, Ouellette-Kuntz H, Heyland DK. The association between nutritional adequacy and long-term outcomes in critically ill patients requiring prolonged mechanical ventilation: a multicenter cohort study. Crit Care Med. 2015;43(8):1569–79. Wei X, Day AG, Ouellette-Kuntz H, Heyland DK. The association between nutritional adequacy and long-term outcomes in critically ill patients requiring prolonged mechanical ventilation: a multicenter cohort study. Crit Care Med. 2015;43(8):1569–79.
29.
go back to reference Wischmeyer PE. Ensuring optimal survival and post-ICU quality of life in high-risk ICU patients: permissive underfeeding is not safe! Crit Care Med. 2015;43(8):1769–72.CrossRefPubMedPubMedCentral Wischmeyer PE. Ensuring optimal survival and post-ICU quality of life in high-risk ICU patients: permissive underfeeding is not safe! Crit Care Med. 2015;43(8):1769–72.CrossRefPubMedPubMedCentral
30.
go back to reference Wischmeyer PE, Hasselmann M, Kummerlen C, Kozar R, Kutsogiannis DJ, Karvellas CJ, Besecker B, Evans DK, Preiser JC, Gramlich L, et al. A randomized trial of supplemental parenteral nutrition in underweight and overweight critically ill patients: the TOP-UP pilot trial. Crit Care. 2017;21(1):142.CrossRefPubMedPubMedCentral Wischmeyer PE, Hasselmann M, Kummerlen C, Kozar R, Kutsogiannis DJ, Karvellas CJ, Besecker B, Evans DK, Preiser JC, Gramlich L, et al. A randomized trial of supplemental parenteral nutrition in underweight and overweight critically ill patients: the TOP-UP pilot trial. Crit Care. 2017;21(1):142.CrossRefPubMedPubMedCentral
31.
go back to reference Rahman A, Hasan RM, Agarwala R, Martin C, Day AG, Heyland DK. Identifying critically-ill patients who will benefit most from nutritional therapy: further validation of the “modified NUTRIC” nutritional risk assessment tool. Clin Nutr. 2016;35(1):158–62.CrossRefPubMed Rahman A, Hasan RM, Agarwala R, Martin C, Day AG, Heyland DK. Identifying critically-ill patients who will benefit most from nutritional therapy: further validation of the “modified NUTRIC” nutritional risk assessment tool. Clin Nutr. 2016;35(1):158–62.CrossRefPubMed
32.
go back to reference Hoffer LJ, Bistrian BR. Appropriate protein provision in critical illness: a systematic and narrative review. Am J Clin Nutr. 2012;96(3):591–600.CrossRefPubMed Hoffer LJ, Bistrian BR. Appropriate protein provision in critical illness: a systematic and narrative review. Am J Clin Nutr. 2012;96(3):591–600.CrossRefPubMed
33.
go back to reference Hoffer LJ, Bistrian BR. What is the best nutritional support for critically ill patients? Hepatobiliary Surg Nutr. 2014;3(4):172–4.PubMedPubMedCentral Hoffer LJ, Bistrian BR. What is the best nutritional support for critically ill patients? Hepatobiliary Surg Nutr. 2014;3(4):172–4.PubMedPubMedCentral
34.
go back to reference Hoffer LJ, Bistrian BR. Energy deficit is clinically relevant for critically ill patients: no. Intensive Care Med. 2015;41(2):339–41.CrossRefPubMed Hoffer LJ, Bistrian BR. Energy deficit is clinically relevant for critically ill patients: no. Intensive Care Med. 2015;41(2):339–41.CrossRefPubMed
35.
go back to reference Peterson SJ, Tsai AA, Scala CM, Sowa DC, Sheean PM, Braunschweig CL. Adequacy of oral intake in critically ill patients 1 week after extubation. J Am Diet Assoc. 2010;110(3):427–33.CrossRefPubMed Peterson SJ, Tsai AA, Scala CM, Sowa DC, Sheean PM, Braunschweig CL. Adequacy of oral intake in critically ill patients 1 week after extubation. J Am Diet Assoc. 2010;110(3):427–33.CrossRefPubMed
36.
go back to reference Cawood AL, Elia M, Stratton RJ. Systematic review and meta-analysis of the effects of high protein oral nutritional supplements. Ageing Res Rev. 2012;11(2):278–96.CrossRefPubMed Cawood AL, Elia M, Stratton RJ. Systematic review and meta-analysis of the effects of high protein oral nutritional supplements. Ageing Res Rev. 2012;11(2):278–96.CrossRefPubMed
37.
go back to reference Elia M, Normand C, Norman K, Laviano A. A systematic review of the cost and cost effectiveness of using standard oral nutritional supplements in the hospital setting. Clin Nutr. 2016;35(2):370–80.CrossRefPubMed Elia M, Normand C, Norman K, Laviano A. A systematic review of the cost and cost effectiveness of using standard oral nutritional supplements in the hospital setting. Clin Nutr. 2016;35(2):370–80.CrossRefPubMed
38.
go back to reference Stratton RJ, Hebuterne X, Elia M. A systematic review and meta-analysis of the impact of oral nutritional supplements on hospital readmissions. Ageing Res Rev. 2013;12(4):884–97.CrossRefPubMed Stratton RJ, Hebuterne X, Elia M. A systematic review and meta-analysis of the impact of oral nutritional supplements on hospital readmissions. Ageing Res Rev. 2013;12(4):884–97.CrossRefPubMed
39.
go back to reference Stratton R, Green C, Elia M. Disease-Related Malnutrition: An Evidence-Based Approach to Treatment. Wallingford: CABI Publishing; 2003.CrossRef Stratton R, Green C, Elia M. Disease-Related Malnutrition: An Evidence-Based Approach to Treatment. Wallingford: CABI Publishing; 2003.CrossRef
40.
go back to reference Philipson TJ, Snider JT, Lakdawalla DN, Stryckman B, Goldman DP. Impact of oral nutritional supplementation on hospital outcomes. Am J Manag Care. 2013;19(2):121–8.PubMed Philipson TJ, Snider JT, Lakdawalla DN, Stryckman B, Goldman DP. Impact of oral nutritional supplementation on hospital outcomes. Am J Manag Care. 2013;19(2):121–8.PubMed
41.
go back to reference Deutz NE, Matheson EM, Matarese LE, Luo M, Baggs GE, Nelson JL, Hegazi RA, Tappenden KA, Ziegler TR, Group NS. Readmission and mortality in malnourished, older, hospitalized adults treated with a specialized oral nutritional supplement: a randomized clinical trial. Clin Nutr. 2016;35(1):18–26.CrossRefPubMed Deutz NE, Matheson EM, Matarese LE, Luo M, Baggs GE, Nelson JL, Hegazi RA, Tappenden KA, Ziegler TR, Group NS. Readmission and mortality in malnourished, older, hospitalized adults treated with a specialized oral nutritional supplement: a randomized clinical trial. Clin Nutr. 2016;35(1):18–26.CrossRefPubMed
42.
go back to reference Stanojcic M, Finnerty CC, Jeschke MG. Anabolic and anticatabolic agents in critical care. Curr Opin Crit Care. 2016;22(4):325–31.CrossRefPubMed Stanojcic M, Finnerty CC, Jeschke MG. Anabolic and anticatabolic agents in critical care. Curr Opin Crit Care. 2016;22(4):325–31.CrossRefPubMed
43.
go back to reference Amrein K, Schnedl C, Holl A, Riedl R, Christopher KB, Pachler C, Urbanic Purkart T, Waltensdorfer A, Munch A, Warnkross H, et al. Effect of high-dose vitamin D3 on hospital length of stay in critically ill patients with vitamin D deficiency: the VITdAL-ICU randomized clinical trial. JAMA. 2014;312(15):1520–30.CrossRefPubMed Amrein K, Schnedl C, Holl A, Riedl R, Christopher KB, Pachler C, Urbanic Purkart T, Waltensdorfer A, Munch A, Warnkross H, et al. Effect of high-dose vitamin D3 on hospital length of stay in critically ill patients with vitamin D deficiency: the VITdAL-ICU randomized clinical trial. JAMA. 2014;312(15):1520–30.CrossRefPubMed
44.
45.
go back to reference Wischmeyer PE, McDonald D, Knight R. Role of the microbiome, probiotics, and “dysbiosis therapy” in critical illness. Curr Opin Crit Care. 2016;22(4):347–53.CrossRefPubMedPubMedCentral Wischmeyer PE, McDonald D, Knight R. Role of the microbiome, probiotics, and “dysbiosis therapy” in critical illness. Curr Opin Crit Care. 2016;22(4):347–53.CrossRefPubMedPubMedCentral
46.
go back to reference Whigham LD, Butz DE, Johnson LK, Schoeller DA, Abbott DH, Porter WP, Cook ME. Breath carbon stable isotope ratios identify changes in energy balance and substrate utilization in humans. Int J Obes (Lond). 2014;38(9):1248–50.CrossRef Whigham LD, Butz DE, Johnson LK, Schoeller DA, Abbott DH, Porter WP, Cook ME. Breath carbon stable isotope ratios identify changes in energy balance and substrate utilization in humans. Int J Obes (Lond). 2014;38(9):1248–50.CrossRef
47.
go back to reference Wischmeyer PE, Puthucheary Z, San Millan I, Butz D, Grocott MPW. Muscle mass and physical recovery in ICU: innovations for targeting of nutrition and exercise. Curr Opin Crit Care. 2017;23(4):269–78.CrossRefPubMed Wischmeyer PE, Puthucheary Z, San Millan I, Butz D, Grocott MPW. Muscle mass and physical recovery in ICU: innovations for targeting of nutrition and exercise. Curr Opin Crit Care. 2017;23(4):269–78.CrossRefPubMed
Metadata
Title
Tailoring nutrition therapy to illness and recovery
Author
Paul E. Wischmeyer
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Critical Care / Issue Special Issue 3/2017
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-017-1906-8

Other articles of this Special Issue 3/2017

Critical Care 3/2017 Go to the issue