Skip to main content
Top
Published in: Critical Care 1/2017

Open Access 01-12-2017 | Research

Effects of neurally adjusted ventilatory assist on air distribution and dead space in patients with acute exacerbation of chronic obstructive pulmonary disease

Authors: Qin Sun, Ling Liu, Chun Pan, Zhanqi Zhao, Jingyuan Xu, Airan Liu, Haibo Qiu

Published in: Critical Care | Issue 1/2017

Login to get access

Abstract

Background

Neurally adjusted ventilatory assist (NAVA) could improve patient-ventilator interaction; its effects on ventilation distribution and dead space are still unknown. The aim of this study was to evaluate the effects of varying levels of assist during NAVA and pressure support ventilation (PSV) on ventilation distribution and dead space in patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD).

Methods

Fifteen mechanically ventilated patients with AECOPD were included in the study. The initial PSV levels were set to 10 cmH2O for 10 min. Thereafter, the ventilator mode was changed to NAVA for another 10 min with the same electrical activity of the diaphragm as during PSV. Furthermore, the ventilation mode was switched between PSV and NAVA every 10 min in the following order: PSV 5 cmH2O; NAVA 50%; PSV 15 cmH2O; and NAVA 150% (relative to the initial NAVA support level). Ventilation distribution in the lung was evaluated in percentages in regions of interest (ROI) of four anteroposterior segments of equal height (ROI1 to ROI4 represents ventral, mid-ventral, mid-dorsal, and dorsal, respectively). Blood gases, ventilation distribution (electrical impedance tomography), diaphragm activity (B-mode ultrasonography), and dead space fraction (PeCO2 and PaCO2) were measured.

Results

The trigger and cycle delays were lower during NAVA than during PSV. The work of trigger was significantly lower during NAVA compared to PSV. The diaphragm activities based on ultrasonography were higher during NAVA compared to the same support level during PSV. The ventilation distribution in ROI4 increased significantly (P < 0.05) during NAVA compared to PSV (except for a support level of 50%). Similar results were found in ROI3 + 4. NAVA reduced dead space fraction compared to the corresponding support level of PSV.

Conclusions

NAVA was superior to PSV in AECOPD for increasing ventilation distribution in ROI4 and reducing dead space.

Trial registration

Clinicaltrials.gov, NCT02289573. Registered on 12 November 2014.
Literature
1.
go back to reference Anna V, Matthew M, Dario M, et al. Muscle function in COPD: a complex interplay. Int J COPD. 2012;7:523–35. Anna V, Matthew M, Dario M, et al. Muscle function in COPD: a complex interplay. Int J COPD. 2012;7:523–35.
3.
go back to reference Simon BA, Kaczka DW, Bankier AA, Parraga G. What can computed tomography and magnetic resonance imaging tell us about ventilation? J Appl Physiol. 1985;113:647–57.CrossRef Simon BA, Kaczka DW, Bankier AA, Parraga G. What can computed tomography and magnetic resonance imaging tell us about ventilation? J Appl Physiol. 1985;113:647–57.CrossRef
4.
go back to reference Gonzalea-Castro A, Suarez-Lopez V, Gomez-Marcos V, et al. Utility of the dead space fraction (Vd/Vt) as a predictor of extubation success. Med Intensiva. 2011;35(9):529–38.CrossRef Gonzalea-Castro A, Suarez-Lopez V, Gomez-Marcos V, et al. Utility of the dead space fraction (Vd/Vt) as a predictor of extubation success. Med Intensiva. 2011;35(9):529–38.CrossRef
5.
go back to reference Blankman P, Hasan D, van Mourik MS, et al. Ventilation distribution measured with EIT at varying levels of pressure support and neurally adjusted ventilatory assist in patients with ALI. Intensive Care Med. 2013;39(6):1057–62.CrossRefPubMed Blankman P, Hasan D, van Mourik MS, et al. Ventilation distribution measured with EIT at varying levels of pressure support and neurally adjusted ventilatory assist in patients with ALI. Intensive Care Med. 2013;39(6):1057–62.CrossRefPubMed
6.
go back to reference Giannouli E, Webster K, Roberts D, et al. Response of ventilator-dependent patients to different levels of pressure support and proportional assist. Am J Respir Crit Care Med. 1999;159:1716–25.CrossRefPubMed Giannouli E, Webster K, Roberts D, et al. Response of ventilator-dependent patients to different levels of pressure support and proportional assist. Am J Respir Crit Care Med. 1999;159:1716–25.CrossRefPubMed
7.
go back to reference Beck J, Campoccia F, Allo JC, et al. Improved synchrony and respiratory unloading by neurally adjusted ventilatory assist (NAVA) in lung-injured rabbits. Pediatr Res. 2007;61:289–94.CrossRefPubMed Beck J, Campoccia F, Allo JC, et al. Improved synchrony and respiratory unloading by neurally adjusted ventilatory assist (NAVA) in lung-injured rabbits. Pediatr Res. 2007;61:289–94.CrossRefPubMed
8.
go back to reference Colombo D, Cammarota G, Bergamaschi V, et al. Physiologic response to varying levels of pressure support and neurally adjusted ventilatory assist in patients with acute respiratory failure. Intensive Care Med. 2008;34:2010–8.CrossRefPubMed Colombo D, Cammarota G, Bergamaschi V, et al. Physiologic response to varying levels of pressure support and neurally adjusted ventilatory assist in patients with acute respiratory failure. Intensive Care Med. 2008;34:2010–8.CrossRefPubMed
9.
go back to reference Oliva P, Schuffelmann C, GomezZamora A, et al. Asynchrony, neural drive, ventilator variability and COMFORT: NAVA versus pressure support in pediatric patients. A non-randomized cross-over trial. Intensive Care Med. 2012;38:838–46.CrossRefPubMed Oliva P, Schuffelmann C, GomezZamora A, et al. Asynchrony, neural drive, ventilator variability and COMFORT: NAVA versus pressure support in pediatric patients. A non-randomized cross-over trial. Intensive Care Med. 2012;38:838–46.CrossRefPubMed
10.
go back to reference Piquilloud L, Vignaux L, Bialais E, et al. Neurally adjusted ventilator assist improves patient-ventilator interaction. Intensive Care Med. 2011;37:263–71.CrossRefPubMed Piquilloud L, Vignaux L, Bialais E, et al. Neurally adjusted ventilator assist improves patient-ventilator interaction. Intensive Care Med. 2011;37:263–71.CrossRefPubMed
11.
go back to reference Sinderby C, Beck J, Spahija J, et al. Inspiratory muscle unloading by neurally adjusted ventilatory assist during maximal inspiratory efforts in healthy subjects. Chest. 2007;131:711–7.CrossRefPubMed Sinderby C, Beck J, Spahija J, et al. Inspiratory muscle unloading by neurally adjusted ventilatory assist during maximal inspiratory efforts in healthy subjects. Chest. 2007;131:711–7.CrossRefPubMed
12.
go back to reference Spahija J, Marchie M, Albert M, et al. Patient-ventilator interaction during pressure support ventilation and neurally adjusted ventilatory assist. Crit Care Med. 2010;38:518–26.CrossRefPubMed Spahija J, Marchie M, Albert M, et al. Patient-ventilator interaction during pressure support ventilation and neurally adjusted ventilatory assist. Crit Care Med. 2010;38:518–26.CrossRefPubMed
13.
go back to reference Allo JC, Beck JC, Brander L, et al. Influence of neurally adjusted ventilatory assist and positive end-expiratory pressure on breathing pattern in rabbits with acute lung injury. Crit Care Med. 2006;34:2997–3004.CrossRefPubMed Allo JC, Beck JC, Brander L, et al. Influence of neurally adjusted ventilatory assist and positive end-expiratory pressure on breathing pattern in rabbits with acute lung injury. Crit Care Med. 2006;34:2997–3004.CrossRefPubMed
14.
go back to reference Pulletz S, Genderingen HR, Schmitz G, et al. Comparison of different methods to define regions of interest for evaluation of regional lung ventilation by EIT. Physiol Meas. 2006;27(5):S115–127.CrossRefPubMed Pulletz S, Genderingen HR, Schmitz G, et al. Comparison of different methods to define regions of interest for evaluation of regional lung ventilation by EIT. Physiol Meas. 2006;27(5):S115–127.CrossRefPubMed
15.
go back to reference Muders T, Luepschen H, Zinserling J, et al. Tidal recruitment assessed by electrical impedance tomography and computed tomography in a porcine model of lung injury. Crit Care Med. 2012;40(3):903–11.CrossRefPubMed Muders T, Luepschen H, Zinserling J, et al. Tidal recruitment assessed by electrical impedance tomography and computed tomography in a porcine model of lung injury. Crit Care Med. 2012;40(3):903–11.CrossRefPubMed
16.
go back to reference Costa EL, Borges JB, Melo A, et al. Bedside estimation of recruitable alveolar collapse and hyperdistension by electrical impedance tomography. Intensive Care Med. 2009;35(6):1132–7.CrossRefPubMed Costa EL, Borges JB, Melo A, et al. Bedside estimation of recruitable alveolar collapse and hyperdistension by electrical impedance tomography. Intensive Care Med. 2009;35(6):1132–7.CrossRefPubMed
17.
go back to reference Rossier PH, Buhlmann A. The respiratory dead-space. Physiol Rev. 1955;35:860–76.PubMed Rossier PH, Buhlmann A. The respiratory dead-space. Physiol Rev. 1955;35:860–76.PubMed
18.
go back to reference Hedenstierna G, Tokics L, Lundquist H, et al. Phrenic nerve stimulation during halothane anesthesia.Effects of atelectasis. Anesthesiology. 1994;80:751–60.CrossRefPubMed Hedenstierna G, Tokics L, Lundquist H, et al. Phrenic nerve stimulation during halothane anesthesia.Effects of atelectasis. Anesthesiology. 1994;80:751–60.CrossRefPubMed
19.
go back to reference Ling L, Songqiao L, Jianfeng X, et al. Assessment of patient-ventilator breath contribution during neurally adjusted ventilatory assist in patients with acute respiratory failure. Crit Care. 2015;19(1):43.CrossRef Ling L, Songqiao L, Jianfeng X, et al. Assessment of patient-ventilator breath contribution during neurally adjusted ventilatory assist in patients with acute respiratory failure. Crit Care. 2015;19(1):43.CrossRef
20.
go back to reference Lowhagen K, Lundin S, Stenqvist O, et al. Regional intratidal ventilation distribution in acute lung injury and acute respiratory distress syndrome—assessed by electric impedance tomography. Minerva Anestesiol. 2010;76(12):1024–35.PubMed Lowhagen K, Lundin S, Stenqvist O, et al. Regional intratidal ventilation distribution in acute lung injury and acute respiratory distress syndrome—assessed by electric impedance tomography. Minerva Anestesiol. 2010;76(12):1024–35.PubMed
21.
go back to reference Ottenheijm CA, Heunks LM, Sieck GC, et al. Diaphragm dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2005;172:200–5.CrossRefPubMedPubMedCentral Ottenheijm CA, Heunks LM, Sieck GC, et al. Diaphragm dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2005;172:200–5.CrossRefPubMedPubMedCentral
22.
go back to reference Simon BA, Kaczka DW, Bankier AA. What can computed tomography and magnetic resonance imaging tell us about ventilation? J Appl Physiol (1985). 2012;113:647–57.CrossRef Simon BA, Kaczka DW, Bankier AA. What can computed tomography and magnetic resonance imaging tell us about ventilation? J Appl Physiol (1985). 2012;113:647–57.CrossRef
23.
go back to reference Cecchini J, Schmidt M, Demoule A, et al. Increased diaphragmatic contribution to inspiratory effort during neurally adjusted ventilatory assistance versus pressure support: an electromyographic study. Anesthesiology. 2014;121(5):1028–36.CrossRefPubMed Cecchini J, Schmidt M, Demoule A, et al. Increased diaphragmatic contribution to inspiratory effort during neurally adjusted ventilatory assistance versus pressure support: an electromyographic study. Anesthesiology. 2014;121(5):1028–36.CrossRefPubMed
Metadata
Title
Effects of neurally adjusted ventilatory assist on air distribution and dead space in patients with acute exacerbation of chronic obstructive pulmonary disease
Authors
Qin Sun
Ling Liu
Chun Pan
Zhanqi Zhao
Jingyuan Xu
Airan Liu
Haibo Qiu
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2017
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-017-1714-1

Other articles of this Issue 1/2017

Critical Care 1/2017 Go to the issue