Skip to main content
Top
Published in: Critical Care 1/2015

Open Access 01-12-2015 | Research

Assessment of patient-ventilator breath contribution during neurally adjusted ventilatory assist in patients with acute respiratory failure

Authors: Ling Liu, Songqiao Liu, Jianfeng Xie, Yi Yang, Arthur S Slutsky, Jennifer Beck, Christer Sinderby, Haibo Qiu

Published in: Critical Care | Issue 1/2015

Login to get access

Abstract

Introduction

We previously showed in animals that the ratio of inspired tidal volume (Vtinsp) to inspiratory peak electrical activity of the diaphragm (EAdipk) can be used to quantify the respective patient and ventilator breath contributions (PVBCs) during neurally adjusted ventilatory assist (NAVA). The PVBC index has not been tested clinically.

Methods

We studied 12 intubated and mechanically ventilated patients with acute respiratory failure and measured EAdipk, airway (Paw) and inspiratory esophageal pressure (Pes) and Vtinsp. We applied 11 different NAVA levels, increasing them every 3 minutes in steps of 0.3 cm H2O/μV from 0 to 3.0 cmH2O/μV. At each NAVA level, one breath was non-assisted (NAVA level 0). PVBC indices were calculated by relating Vtinsp/EAdipk of the non-assisted breath to Vtinsp/EAdipk of the assisted breath(s) using one (N1PVBC) or the mean value of five preceding assisted breaths (X5PVBC). During assisted breaths, inspiratory changes in Pes (∆Pes) and transpulmonary (ΔPtp) pressures were used to calculate the relative contribution of patient to total inspiratory lung-distending pressures (ΔPes/ΔPtp). Matching of respiratory drive indices and squaring of the PVBC was evaluated for their effect on the correlation between PVBC and ΔPes/ΔPtp. Linear regression analysis and Bland-Altman analysis were applied to compare indices.

Results

Using an average of five assisted breaths prior to the non-assisted breath and squaring the PVBC (X5PVBC2) improved determination coefficients (P <0.05), adjusted the regression slope and intercept between PVBC and ΔPes/ΔPtp toward identity (P <0.05) and reduced bias (P <0.05). Matching EAdipk between non-assisted and assisted breaths within the range of 0.77 to 1.30 improved the relationship between X5PVBC2 and ΔPes/ΔPtp (P <0.05) and abolished the need for EAdi normalization in the PVBC calculation (R2 = 0.96; bias = 0.16 ± 0.06; precision = 0.33 ± 0.08 (mean and 95% confidence interval)).

Conclusions

This clinical study confirms previous experimental results showing that the PVBC2 predicts the contribution of the inspiratory muscles versus that of the ventilator during NAVA, when differences in effort (EAdi) between non-assisted and assisted breaths are limited. PVBC could help to quantify and standardize the adjustment of the level of assist, and hence reduce the risks of excessive ventilatory assist in patients.

Trial registration

ClinicalTrials.gov NCT01663480. Registered 9 August 2012.
Literature
1.
go back to reference Piquilloud L, Vignaux L, Bialais E, Roeseler J, Sottiaux T, Laterre PF, et al. Neurally adjusted ventilatory assist improves patient–ventilator interaction. Intensive Care Med. 2011;37:263–71.CrossRef Piquilloud L, Vignaux L, Bialais E, Roeseler J, Sottiaux T, Laterre PF, et al. Neurally adjusted ventilatory assist improves patient–ventilator interaction. Intensive Care Med. 2011;37:263–71.CrossRef
2.
go back to reference Spahija J, de Marchie M, Albert M, Bellemare P, Delisle S, Beck J, et al. Patient-ventilator interaction during pressure support ventilation and neurally adjusted ventilatory assist. Crit Care Med. 2010;38:518–26.CrossRef Spahija J, de Marchie M, Albert M, Bellemare P, Delisle S, Beck J, et al. Patient-ventilator interaction during pressure support ventilation and neurally adjusted ventilatory assist. Crit Care Med. 2010;38:518–26.CrossRef
3.
go back to reference Colombo D, Cammarota G, Alemani M, Carenzo L, Barra FL, Vaschetto R, et al. Efficacy of ventilator waveforms observation in detecting patient-ventilator asynchrony. Crit Care Med. 2011;39:2452–7.CrossRef Colombo D, Cammarota G, Alemani M, Carenzo L, Barra FL, Vaschetto R, et al. Efficacy of ventilator waveforms observation in detecting patient-ventilator asynchrony. Crit Care Med. 2011;39:2452–7.CrossRef
4.
go back to reference Colombo D, Cammarota G, Bergamaschi V, De Lucia M, Corte FD, Navalesi P. Physiologic response to varying levels of pressure support and neurally adjusted ventilatory assist in patients with acute respiratory failure. Intensive Care Med. 2008;34:2010–8.CrossRef Colombo D, Cammarota G, Bergamaschi V, De Lucia M, Corte FD, Navalesi P. Physiologic response to varying levels of pressure support and neurally adjusted ventilatory assist in patients with acute respiratory failure. Intensive Care Med. 2008;34:2010–8.CrossRef
5.
go back to reference Terzi N, Pelieu I, Guittet L, Ramakers M, Seguin A, Daubin C, et al. Neurally adjusted ventilatory assist in patients recovering spontaneous breathing after acute respiratory distress syndrome: physiological evaluation. Crit Care Med. 2010;38:1830–7.CrossRef Terzi N, Pelieu I, Guittet L, Ramakers M, Seguin A, Daubin C, et al. Neurally adjusted ventilatory assist in patients recovering spontaneous breathing after acute respiratory distress syndrome: physiological evaluation. Crit Care Med. 2010;38:1830–7.CrossRef
6.
go back to reference Breatnach C, Conlon NP, Stack M, Healy M, O’Hare BP. A prospective crossover comparison of neurally adjusted ventilatory assist and pressure-support ventilation in a pediatric and neonatal intensive care unit population. Pediatr Crit Care Med. 2010;11:7–11.CrossRef Breatnach C, Conlon NP, Stack M, Healy M, O’Hare BP. A prospective crossover comparison of neurally adjusted ventilatory assist and pressure-support ventilation in a pediatric and neonatal intensive care unit population. Pediatr Crit Care Med. 2010;11:7–11.CrossRef
7.
go back to reference Wu XY, Huang YZ, Yang Y, Liu SQ, Liu HG, Qiu HB. Effects of neurally adjusted ventilatory assist on patient-ventilator synchrony in patients with acute respiratory distress syndrome. Zhonghua Jie He He Hu Xi Za Zhi. 2009;32:508–12. Chinese. Wu XY, Huang YZ, Yang Y, Liu SQ, Liu HG, Qiu HB. Effects of neurally adjusted ventilatory assist on patient-ventilator synchrony in patients with acute respiratory distress syndrome. Zhonghua Jie He He Hu Xi Za Zhi. 2009;32:508–12. Chinese.
8.
go back to reference Piquilloud L, Tassaux D, Bialais E, Lambermont B, Sottiaux T, Roeseler J, et al. Neurally adjusted ventilatory assist (NAVA) improves patient–ventilator interaction during non-invasive ventilation delivered by face mask. Intensive Care Med. 2012;38:1624–31.CrossRef Piquilloud L, Tassaux D, Bialais E, Lambermont B, Sottiaux T, Roeseler J, et al. Neurally adjusted ventilatory assist (NAVA) improves patient–ventilator interaction during non-invasive ventilation delivered by face mask. Intensive Care Med. 2012;38:1624–31.CrossRef
9.
go back to reference Schmidt M, Dres M, Raux M, Deslandes-Boutmy E, Kindler F, Mayaux J, et al. Neurally adjusted ventilatory assist improves patient-ventilator interaction during postextubation prophylactic noninvasive ventilation. Crit Care Med. 2012;40:1738–44.CrossRef Schmidt M, Dres M, Raux M, Deslandes-Boutmy E, Kindler F, Mayaux J, et al. Neurally adjusted ventilatory assist improves patient-ventilator interaction during postextubation prophylactic noninvasive ventilation. Crit Care Med. 2012;40:1738–44.CrossRef
10.
go back to reference Mauri T, Bellani G, Grasselli G, Confalonieri A, Rona R, Patroniti N, et al. Patient–ventilator interaction in ARDS patients with extremely low compliance undergoing ECMO: a novel approach based on diaphragm electrical activity. Intensive Care Med. 2013;39:282–91.CrossRef Mauri T, Bellani G, Grasselli G, Confalonieri A, Rona R, Patroniti N, et al. Patient–ventilator interaction in ARDS patients with extremely low compliance undergoing ECMO: a novel approach based on diaphragm electrical activity. Intensive Care Med. 2013;39:282–91.CrossRef
11.
go back to reference de la Oliva P, Schüffelmann C, Gómez-Zamora A, Villar J, Kacmarek RM. Asynchrony, neural drive, ventilatory variability and COMFORT: NAVA versus pressure support in pediatric patients. A non-randomized cross-over trial. Intensive Care Med. 2012;38:838–46.CrossRef de la Oliva P, Schüffelmann C, Gómez-Zamora A, Villar J, Kacmarek RM. Asynchrony, neural drive, ventilatory variability and COMFORT: NAVA versus pressure support in pediatric patients. A non-randomized cross-over trial. Intensive Care Med. 2012;38:838–46.CrossRef
12.
go back to reference Grasselli G, Beck J, Mirabella L, Pesenti A, Slutsky AS, Sinderby C. Assessment of patient–ventilator breathe contribution during neurally adjusted ventilatory assist. Intensive Care Med. 2012;38:1224–32.CrossRef Grasselli G, Beck J, Mirabella L, Pesenti A, Slutsky AS, Sinderby C. Assessment of patient–ventilator breathe contribution during neurally adjusted ventilatory assist. Intensive Care Med. 2012;38:1224–32.CrossRef
13.
go back to reference Baydur A, Behrakis PK, Zin WA, Jaeger M, Milic-Emili J. A simple method for assessing the validity of the esophageal balloon technique. Am Rev Respir Dis. 1982;126:788–91.PubMed Baydur A, Behrakis PK, Zin WA, Jaeger M, Milic-Emili J. A simple method for assessing the validity of the esophageal balloon technique. Am Rev Respir Dis. 1982;126:788–91.PubMed
14.
go back to reference Doorduin J, Sinderby CA, Beck J, Stegeman DF, van Hees HW, van der Hoeven JG, et al. The calcium sensitizer levosimendan improves human diaphragm function. Am J Respir Crit Care Med. 2012;185:90–5.CrossRef Doorduin J, Sinderby CA, Beck J, Stegeman DF, van Hees HW, van der Hoeven JG, et al. The calcium sensitizer levosimendan improves human diaphragm function. Am J Respir Crit Care Med. 2012;185:90–5.CrossRef
15.
go back to reference Beck J, Sinderby C, Lindström L, Grassino A. Effects of lung volume on diaphragm EMG signal strength during voluntary contractions. J Appl Physiol. 1998;85:1123–34.CrossRef Beck J, Sinderby C, Lindström L, Grassino A. Effects of lung volume on diaphragm EMG signal strength during voluntary contractions. J Appl Physiol. 1998;85:1123–34.CrossRef
16.
go back to reference Beck J, Gottfried SB, Navalesi P, Strobik Y, Comtois N, Rossini M, et al. Electrical activity of the diaphragm during pressure support ventilation in acute respiratory failure. Am J Respir Crit Care Med. 2001;164:419–24.CrossRef Beck J, Gottfried SB, Navalesi P, Strobik Y, Comtois N, Rossini M, et al. Electrical activity of the diaphragm during pressure support ventilation in acute respiratory failure. Am J Respir Crit Care Med. 2001;164:419–24.CrossRef
17.
go back to reference Yan S, Sinderby C, Bielen P, Beck J, Comtois N, Sliwinski P. Expiratory muscle pressure and breathing mechanics in chronic obstructive pulmonary disease. Eur Respir J. 2000;16:684–90.CrossRef Yan S, Sinderby C, Bielen P, Beck J, Comtois N, Sliwinski P. Expiratory muscle pressure and breathing mechanics in chronic obstructive pulmonary disease. Eur Respir J. 2000;16:684–90.CrossRef
18.
go back to reference Ninane V, Yernault JC, de Troyer A. Intrinsic PEEP in patients with chronic obstructive pulmonary disease: role of expiratory muscles. Am Rev Respir Dis. 1993;148:1037–42.CrossRef Ninane V, Yernault JC, de Troyer A. Intrinsic PEEP in patients with chronic obstructive pulmonary disease: role of expiratory muscles. Am Rev Respir Dis. 1993;148:1037–42.CrossRef
19.
go back to reference Lessard MR, Lofaso F, Brochard L. Expiratory muscle activity increases intrinsic positive end-expiratory pressure independently of dynamic hyperinflation in mechanically ventilated patients. Am J Respir Crit Care Med. 1995;151:562–9.CrossRef Lessard MR, Lofaso F, Brochard L. Expiratory muscle activity increases intrinsic positive end-expiratory pressure independently of dynamic hyperinflation in mechanically ventilated patients. Am J Respir Crit Care Med. 1995;151:562–9.CrossRef
20.
go back to reference Sinderby C, Beck J, Spahija J, de Marchie M, Lacroix J, Navalesi P, et al. Inspiratory muscle unloading by neurally adjusted ventilatory assist during maximal inspiratory efforts in healthy subjects. Chest. 2007;131:711–7.CrossRef Sinderby C, Beck J, Spahija J, de Marchie M, Lacroix J, Navalesi P, et al. Inspiratory muscle unloading by neurally adjusted ventilatory assist during maximal inspiratory efforts in healthy subjects. Chest. 2007;131:711–7.CrossRef
21.
go back to reference Viale JP, Duperret S, Mahul P, Delafosse B, Delpuech C, Weismann D, et al. Time course evolution of ventilatory responses to inspiratory unloading in patients. Am J Respir Crit Care Med. 1998;157:428–34.CrossRef Viale JP, Duperret S, Mahul P, Delafosse B, Delpuech C, Weismann D, et al. Time course evolution of ventilatory responses to inspiratory unloading in patients. Am J Respir Crit Care Med. 1998;157:428–34.CrossRef
22.
go back to reference Schmidt M, Demoule A, Cracco C, Gharbi A, Fiamma MN, Straus C, et al. Neurally adjusted ventilatory assist increases respiratory variability and complexity in acute respiratory failure. Anesthesiology. 2010;112:670–81.CrossRef Schmidt M, Demoule A, Cracco C, Gharbi A, Fiamma MN, Straus C, et al. Neurally adjusted ventilatory assist increases respiratory variability and complexity in acute respiratory failure. Anesthesiology. 2010;112:670–81.CrossRef
23.
go back to reference Liu L, Liu H, Yang Y, Huang Y, Liu S, Beck J, et al. Neuroventilatory efficiency and extubation readiness in critically ill patients. Crit Care. 2012;16:R143.CrossRef Liu L, Liu H, Yang Y, Huang Y, Liu S, Beck J, et al. Neuroventilatory efficiency and extubation readiness in critically ill patients. Crit Care. 2012;16:R143.CrossRef
24.
go back to reference Brander L, Leong-Poi H, Beck J, Brunet F, Hutchison SJ, Slutsky AS, et al. Titration and implementation of neurally adjusted ventilatory assist in critically ill patients. Chest. 2009;135:695–703.CrossRef Brander L, Leong-Poi H, Beck J, Brunet F, Hutchison SJ, Slutsky AS, et al. Titration and implementation of neurally adjusted ventilatory assist in critically ill patients. Chest. 2009;135:695–703.CrossRef
Metadata
Title
Assessment of patient-ventilator breath contribution during neurally adjusted ventilatory assist in patients with acute respiratory failure
Authors
Ling Liu
Songqiao Liu
Jianfeng Xie
Yi Yang
Arthur S Slutsky
Jennifer Beck
Christer Sinderby
Haibo Qiu
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2015
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-015-0775-2

Other articles of this Issue 1/2015

Critical Care 1/2015 Go to the issue