Skip to main content
Top
Published in: Critical Care 1/2016

Open Access 01-12-2016 | Research

Effect of hemoadsorption during cardiopulmonary bypass surgery – a blinded, randomized, controlled pilot study using a novel adsorbent

Authors: Martin H. Bernardi, Harald Rinoesl, Klaus Dragosits, Robin Ristl, Friedrich Hoffelner, Philipp Opfermann, Christian Lamm, Falk Preißing, Dominik Wiedemann, Michael J. Hiesmayr, Andreas Spittler

Published in: Critical Care | Issue 1/2016

Login to get access

Abstract

Background

Cardiopulmonary bypass (CPB) surgery initiates a systemic inflammatory response, which is associated with postoperative morbidity and mortality. Hemoadsorption (HA) of cytokines may suppress inflammatory responses and improve outcomes. We tested a new sorbent used for HA (CytoSorb™; CytoSorbents Europe GmbH, Berlin, Germany) installed in the CPB circuit on changes of pro- and anti-inflammatory cytokines levels, inflammation markers, and differences in patients’ perioperative course.

Methods

In this first pilot trial, 37 blinded patients were undergoing elective CPB surgery at the Medical University of Vienna and were randomly assigned to HA (n = 19) or control group (n = 18). The primary outcome was differences of cytokine levels (IL-1β, IL-6, IL-18, TNF-α, and IL-10) within the first five postoperative days. We also analyzed whether we can observe any differences in ex vivo lipopolysaccharide (LPS)-induced TNF-α production, a reduction of high-mobility box group 1 (HMGB1), or other inflammatory markers. Additionally, measurements for fluid components, blood products, catecholamine treatment, bioelectrical impedance analysis (BIA), and 30-day mortality were analyzed.

Results

We did not find differences in our primary outcome immediately following the HA treatment, although we observed differences for IL-10 24 hours after CPB (HA: median 0.3, interquartile range (IQR) 0–4.5; control: not traceable, P = 0.0347) and 48 hours after CPB (median 0, IQR 0–1.2 versus not traceable, P = 0.0185). We did not find any differences for IL-6 between both groups, and other cytokines were rarely expressed. We found differences in pretreatment levels of HMGB1 (HA: median 0, IQR 0–28.1; control: median 48.6, IQR 12.7–597.3, P = 0.02083) but no significant changes to post-treatment levels. No differences in inflammatory markers, fluid administration, blood substitution, catecholamines, BIA, or 30-day mortality were found.

Conclusions

We did not find any reduction of the pro-inflammatory response in our patients and therefore no changes in their perioperative course. However, IL-10 showed a longer-lasting anti-inflammatory effect. The clinical impact of prolonged IL-10 needs further evaluation. We also observed strong inter-individual differences in cytokine levels; therefore, patients with an exaggerated inflammatory response to CPB need to be identified. The implementation of HA during CPB was feasible.

Trial registration

ClinicalTrials.gov: NCT01879176, registration date: June 7, 2013.
Literature
1.
go back to reference Tomic V, Russwurm S, Moller E, Claus RA, Blaess M, Brunkhorst F, et al. Transcriptomic and proteomic patterns of systemic inflammation in on-pump and off-pump coronary artery bypass grafting. Circulation. 2005;112:2912–20.PubMed Tomic V, Russwurm S, Moller E, Claus RA, Blaess M, Brunkhorst F, et al. Transcriptomic and proteomic patterns of systemic inflammation in on-pump and off-pump coronary artery bypass grafting. Circulation. 2005;112:2912–20.PubMed
2.
go back to reference Diegeler A, Doll N, Rauch T, Haberer D, Walther T, Falk V, et al. Humoral immune response during coronary artery bypass grafting: A comparison of limited approach, “off-pump” technique, and conventional cardiopulmonary bypass. Circulation. 2000;102(19 Suppl 3):III95–III100.PubMed Diegeler A, Doll N, Rauch T, Haberer D, Walther T, Falk V, et al. Humoral immune response during coronary artery bypass grafting: A comparison of limited approach, “off-pump” technique, and conventional cardiopulmonary bypass. Circulation. 2000;102(19 Suppl 3):III95–III100.PubMed
3.
go back to reference Chew MS, Brandslund I, Brix-Christensen V, Ravn HB, Hjortdal VE, Pedersen J, et al. Tissue injury and the inflammatory response to pediatric cardiac surgery with cardiopulmonary bypass: a descriptive study. Anesthesiology. 2001;94:745–53. discussion 5A.CrossRefPubMed Chew MS, Brandslund I, Brix-Christensen V, Ravn HB, Hjortdal VE, Pedersen J, et al. Tissue injury and the inflammatory response to pediatric cardiac surgery with cardiopulmonary bypass: a descriptive study. Anesthesiology. 2001;94:745–53. discussion 5A.CrossRefPubMed
4.
go back to reference de Jong PR, Schadenberg AW, van den Broek T, Beekman JM, van Wijk F, Coffer PJ, et al. STAT3 regulates monocyte TNF-alpha production in systemic inflammation caused by cardiac surgery with cardiopulmonary bypass. PLoS One. 2012;7:e35070.CrossRefPubMedPubMedCentral de Jong PR, Schadenberg AW, van den Broek T, Beekman JM, van Wijk F, Coffer PJ, et al. STAT3 regulates monocyte TNF-alpha production in systemic inflammation caused by cardiac surgery with cardiopulmonary bypass. PLoS One. 2012;7:e35070.CrossRefPubMedPubMedCentral
6.
go back to reference Seghaye M, Duchateau J, Bruniaux J, Demontoux S, Bosson C, Serraf A, et al. Interleukin-10 release related to cardiopulmonary bypass in infants undergoing cardiac operations. J Thorac Cardiovasc Surg. 1996;111:545–53.CrossRefPubMed Seghaye M, Duchateau J, Bruniaux J, Demontoux S, Bosson C, Serraf A, et al. Interleukin-10 release related to cardiopulmonary bypass in infants undergoing cardiac operations. J Thorac Cardiovasc Surg. 1996;111:545–53.CrossRefPubMed
7.
go back to reference Sablotzki A, Welters I, Lehmann N, Menges T, Gorlach G, Dehne M, et al. Plasma levels of immunoinhibitory cytokines interleukin-10 and transforming growth factor-beta in patients undergoing coronary artery bypass grafting. Eur J Cardiothorac Surg. 1997;11:763–8.CrossRefPubMed Sablotzki A, Welters I, Lehmann N, Menges T, Gorlach G, Dehne M, et al. Plasma levels of immunoinhibitory cytokines interleukin-10 and transforming growth factor-beta in patients undergoing coronary artery bypass grafting. Eur J Cardiothorac Surg. 1997;11:763–8.CrossRefPubMed
8.
go back to reference Tarnok A, Schneider P. Pediatric cardiac surgery with cardiopulmonary bypass: pathways contributing to transient systemic immune suppression. Shock. 2001;16 Suppl 1:24–32.CrossRefPubMed Tarnok A, Schneider P. Pediatric cardiac surgery with cardiopulmonary bypass: pathways contributing to transient systemic immune suppression. Shock. 2001;16 Suppl 1:24–32.CrossRefPubMed
9.
go back to reference Franke A, Lante W, Fackeldey V, Becker HP, Thode C, Kuhlmann WD, et al. Proinflammatory and antiinflammatory cytokines after cardiac operation: different cellular sources at different times. Ann Thorac Surg. 2002;74:363–70. discussion 70-1.CrossRefPubMed Franke A, Lante W, Fackeldey V, Becker HP, Thode C, Kuhlmann WD, et al. Proinflammatory and antiinflammatory cytokines after cardiac operation: different cellular sources at different times. Ann Thorac Surg. 2002;74:363–70. discussion 70-1.CrossRefPubMed
10.
go back to reference Exner R, Tamandl D, Goetzinger P, Mittlboeck M, Fuegger R, Sautner T, et al. Perioperative GLY-GLN infusion diminishes the surgery-induced period of immunosuppression: accelerated restoration of the lipopolysaccharide-stimulated tumor necrosis factor-alpha response. Ann Surg. 2003;237:110–5.CrossRefPubMedPubMedCentral Exner R, Tamandl D, Goetzinger P, Mittlboeck M, Fuegger R, Sautner T, et al. Perioperative GLY-GLN infusion diminishes the surgery-induced period of immunosuppression: accelerated restoration of the lipopolysaccharide-stimulated tumor necrosis factor-alpha response. Ann Surg. 2003;237:110–5.CrossRefPubMedPubMedCentral
11.
go back to reference Whitlock RP, Devereaux PJ, Teoh KH, Lamy A, Vincent J, Pogue J, et al. Methylprednisolone in patients undergoing cardiopulmonary bypass (SIRS): a randomised, double-blind, placebo-controlled trial. Lancet. 2015;386:1243–53.CrossRefPubMed Whitlock RP, Devereaux PJ, Teoh KH, Lamy A, Vincent J, Pogue J, et al. Methylprednisolone in patients undergoing cardiopulmonary bypass (SIRS): a randomised, double-blind, placebo-controlled trial. Lancet. 2015;386:1243–53.CrossRefPubMed
12.
go back to reference Basu R, Pathak S, Goyal J, Chaudhry R, Goel RB, Barwal A. Use of a novel hemoadsorption device for cytokine removal as adjuvant therapy in a patient with septic shock with multi-organ dysfunction: a case study. Indian J Crit Care Med. 2014;18:822–4.CrossRefPubMedPubMedCentral Basu R, Pathak S, Goyal J, Chaudhry R, Goel RB, Barwal A. Use of a novel hemoadsorption device for cytokine removal as adjuvant therapy in a patient with septic shock with multi-organ dysfunction: a case study. Indian J Crit Care Med. 2014;18:822–4.CrossRefPubMedPubMedCentral
13.
go back to reference Society of Thoracic Surgeons Blood Conservation Guideline Task F, Ferraris VA, Brown JR, Despotis GJ, Hammon JW, Reece TB, et al. 2011 update to the Society of Thoracic Surgeons and the Society of Cardiovascular Anesthesiologists blood conservation clinical practice guidelines. Ann Thorac Surg. 2011;91:944–82.CrossRef Society of Thoracic Surgeons Blood Conservation Guideline Task F, Ferraris VA, Brown JR, Despotis GJ, Hammon JW, Reece TB, et al. 2011 update to the Society of Thoracic Surgeons and the Society of Cardiovascular Anesthesiologists blood conservation clinical practice guidelines. Ann Thorac Surg. 2011;91:944–82.CrossRef
14.
go back to reference Society of Thoracic Surgeons Blood Conservation Guideline Task F, Ferraris VA, Ferraris SP, Saha SP, Hessel 2nd EA, Haan CK, et al. Perioperative blood transfusion and blood conservation in cardiac surgery: the Society of Thoracic Surgeons and The Society of Cardiovascular Anesthesiologists clinical practice guideline. Ann Thorac Surg. 2007;83(5):S27–86.CrossRef Society of Thoracic Surgeons Blood Conservation Guideline Task F, Ferraris VA, Ferraris SP, Saha SP, Hessel 2nd EA, Haan CK, et al. Perioperative blood transfusion and blood conservation in cardiac surgery: the Society of Thoracic Surgeons and The Society of Cardiovascular Anesthesiologists clinical practice guideline. Ann Thorac Surg. 2007;83(5):S27–86.CrossRef
15.
go back to reference Kushner RF, Schoeller DA. Estimation of total body water by bioelectrical impedance analysis. Am J Clin Nutr. 1986;44:417–24.PubMed Kushner RF, Schoeller DA. Estimation of total body water by bioelectrical impedance analysis. Am J Clin Nutr. 1986;44:417–24.PubMed
16.
go back to reference Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gomez JM, et al. Bioelectrical impedance analysis--part I: review of principles and methods. Clin Nutr. 2004;23:1226–43.CrossRefPubMed Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gomez JM, et al. Bioelectrical impedance analysis--part I: review of principles and methods. Clin Nutr. 2004;23:1226–43.CrossRefPubMed
17.
go back to reference Nebelsiek T, Beiras-Fernandez A, Kilger E, Mohnle P, Weis F. Routine use of corticosteroids to prevent inflammation response in cardiac surgery. Recent Pat Cardiovasc Drug Discov. 2012;7:170–4.CrossRefPubMed Nebelsiek T, Beiras-Fernandez A, Kilger E, Mohnle P, Weis F. Routine use of corticosteroids to prevent inflammation response in cardiac surgery. Recent Pat Cardiovasc Drug Discov. 2012;7:170–4.CrossRefPubMed
18.
go back to reference Day JR, Taylor KM. The systemic inflammatory response syndrome and cardiopulmonary bypass. Int J Surg. 2005;3:129–40.CrossRefPubMed Day JR, Taylor KM. The systemic inflammatory response syndrome and cardiopulmonary bypass. Int J Surg. 2005;3:129–40.CrossRefPubMed
19.
go back to reference Kellum JA, Venkataraman R, Powner D, Elder M, Hergenroeder G, Carter M. Feasibility study of cytokine removal by hemoadsorption in brain-dead humans. Crit Care Med. 2008;36:268–72.CrossRefPubMed Kellum JA, Venkataraman R, Powner D, Elder M, Hergenroeder G, Carter M. Feasibility study of cytokine removal by hemoadsorption in brain-dead humans. Crit Care Med. 2008;36:268–72.CrossRefPubMed
20.
go back to reference Song M, Winchester J, Albright RL, Capponi VJ, Choquette MD, Kellum JA. Cytokine removal with a novel adsorbent polymer. Blood Purif. 2004;22:428–34.CrossRefPubMed Song M, Winchester J, Albright RL, Capponi VJ, Choquette MD, Kellum JA. Cytokine removal with a novel adsorbent polymer. Blood Purif. 2004;22:428–34.CrossRefPubMed
21.
go back to reference Kellum JA, Song M, Venkataraman R. Hemoadsorption removes tumor necrosis factor, interleukin-6, and interleukin-10, reduces nuclear factor-kappaB DNA binding, and improves short-term survival in lethal endotoxemia. Crit Care Med. 2004;32:801–5.CrossRefPubMed Kellum JA, Song M, Venkataraman R. Hemoadsorption removes tumor necrosis factor, interleukin-6, and interleukin-10, reduces nuclear factor-kappaB DNA binding, and improves short-term survival in lethal endotoxemia. Crit Care Med. 2004;32:801–5.CrossRefPubMed
23.
go back to reference Bruenger F, Kizner L, Weile J, Morshuis M, Gummert JF. First successful combination of ECMO with cytokine removal therapy in cardiogenic septic shock: a case report. Int J Artif Organs. 2015;38:113–6.CrossRefPubMed Bruenger F, Kizner L, Weile J, Morshuis M, Gummert JF. First successful combination of ECMO with cytokine removal therapy in cardiogenic septic shock: a case report. Int J Artif Organs. 2015;38:113–6.CrossRefPubMed
24.
go back to reference Vocelka CR, Jones KM, Mikhova KM, Ebisu RM, Shar A, Kellum JA, et al. Role of cytokine hemoadsorption in cardiopulmonary bypass-induced ventricular dysfunction in a porcine model. J Extra Corpor Technol. 2013;45:220–7.PubMedPubMedCentral Vocelka CR, Jones KM, Mikhova KM, Ebisu RM, Shar A, Kellum JA, et al. Role of cytokine hemoadsorption in cardiopulmonary bypass-induced ventricular dysfunction in a porcine model. J Extra Corpor Technol. 2013;45:220–7.PubMedPubMedCentral
25.
go back to reference Bernardi MH, Schmidlin D, Schiferer A, Ristl R, Neugebauer T, Hiesmayr M, et al. Impact of preoperative serum creatinine on short- and long-term mortality after cardiac surgery: a cohort study. Br J Anaesth. 2015;114:53–62.CrossRefPubMed Bernardi MH, Schmidlin D, Schiferer A, Ristl R, Neugebauer T, Hiesmayr M, et al. Impact of preoperative serum creatinine on short- and long-term mortality after cardiac surgery: a cohort study. Br J Anaesth. 2015;114:53–62.CrossRefPubMed
26.
go back to reference Warren OJ, Smith AJ, Alexiou C, Rogers PL, Jawad N, Vincent C, et al. The inflammatory response to cardiopulmonary bypass: part 1--mechanisms of pathogenesis. J Cardiothorac Vasc Anesth. 2009;23:223–31.CrossRefPubMed Warren OJ, Smith AJ, Alexiou C, Rogers PL, Jawad N, Vincent C, et al. The inflammatory response to cardiopulmonary bypass: part 1--mechanisms of pathogenesis. J Cardiothorac Vasc Anesth. 2009;23:223–31.CrossRefPubMed
27.
go back to reference Clark MA, Plank LD, Connolly AB, Streat SJ, Hill AA, Gupta R, et al. Effect of a chimeric antibody to tumor necrosis factor-alpha on cytokine and physiologic responses in patients with severe sepsis--a randomized, clinical trial. Crit Care Med. 1998;26:1650–9.CrossRefPubMed Clark MA, Plank LD, Connolly AB, Streat SJ, Hill AA, Gupta R, et al. Effect of a chimeric antibody to tumor necrosis factor-alpha on cytokine and physiologic responses in patients with severe sepsis--a randomized, clinical trial. Crit Care Med. 1998;26:1650–9.CrossRefPubMed
28.
go back to reference Zhang WR, Garg AX, Coca SG, Devereaux PJ, Eikelboom J, Kavsak P, et al. Plasma IL-6 and IL-10 Concentrations Predict AKI and Long-Term Mortality in Adults after Cardiac Surgery. J Am Soc Nephrol. 2015;26:3123–32.CrossRefPubMed Zhang WR, Garg AX, Coca SG, Devereaux PJ, Eikelboom J, Kavsak P, et al. Plasma IL-6 and IL-10 Concentrations Predict AKI and Long-Term Mortality in Adults after Cardiac Surgery. J Am Soc Nephrol. 2015;26:3123–32.CrossRefPubMed
29.
go back to reference Frasnelli SC, de Medeiros MC, Bastos Ade S, Costa DL, Orrico SR, Rossa JC. Modulation of immune response by RAGE and TLR4 signalling in PBMCs of diabetic and non-diabetic patients. Scand J Immunol. 2015;81:66–71.CrossRefPubMed Frasnelli SC, de Medeiros MC, Bastos Ade S, Costa DL, Orrico SR, Rossa JC. Modulation of immune response by RAGE and TLR4 signalling in PBMCs of diabetic and non-diabetic patients. Scand J Immunol. 2015;81:66–71.CrossRefPubMed
30.
go back to reference Tanaka Y. Immunosuppressive mechanisms in diabetes mellitus. Nippon Rinsho. 2008;66:2233–7.PubMed Tanaka Y. Immunosuppressive mechanisms in diabetes mellitus. Nippon Rinsho. 2008;66:2233–7.PubMed
31.
go back to reference Koh GC, Peacock SJ, van der Poll T, Wiersinga WJ. The impact of diabetes on the pathogenesis of sepsis. Eur J Clin Microbiol Infect Dis. 2012;31:379–88.CrossRefPubMedPubMedCentral Koh GC, Peacock SJ, van der Poll T, Wiersinga WJ. The impact of diabetes on the pathogenesis of sepsis. Eur J Clin Microbiol Infect Dis. 2012;31:379–88.CrossRefPubMedPubMedCentral
32.
go back to reference Wang N, Min X, Li D, He P, Zhao L. Geranylgeranylacetone protects against myocardial ischemia and reperfusion injury by inhibiting high-mobility group box 1 protein in rats. Mol Med Rep. 2012;5:521–4.PubMed Wang N, Min X, Li D, He P, Zhao L. Geranylgeranylacetone protects against myocardial ischemia and reperfusion injury by inhibiting high-mobility group box 1 protein in rats. Mol Med Rep. 2012;5:521–4.PubMed
33.
go back to reference Gratia S, Kay L, Potenza L, Seffouh A, Novel-Chate V, Schnebelen C, et al. Inhibition of AMPK signalling by doxorubicin: at the crossroads of the cardiac responses to energetic, oxidative, and genotoxic stress. Cardiovasc Res. 2012;95:290–9.CrossRefPubMed Gratia S, Kay L, Potenza L, Seffouh A, Novel-Chate V, Schnebelen C, et al. Inhibition of AMPK signalling by doxorubicin: at the crossroads of the cardiac responses to energetic, oxidative, and genotoxic stress. Cardiovasc Res. 2012;95:290–9.CrossRefPubMed
34.
go back to reference Bangert A, Andrassy M, Muller AM, Bockstahler M, Fischer A, Volz CH, et al. Critical role of RAGE and HMGB1 in inflammatory heart disease. Proc Natl Acad Sci U S A. 2016;113:E155–64.CrossRefPubMedPubMedCentral Bangert A, Andrassy M, Muller AM, Bockstahler M, Fischer A, Volz CH, et al. Critical role of RAGE and HMGB1 in inflammatory heart disease. Proc Natl Acad Sci U S A. 2016;113:E155–64.CrossRefPubMedPubMedCentral
35.
go back to reference Asavarut P, Zhao H, Gu J, Ma D. The role of HMGB1 in inflammation-mediated organ injury. Acta Anaesthesiol Taiwan. 2013;51:28–33.CrossRefPubMed Asavarut P, Zhao H, Gu J, Ma D. The role of HMGB1 in inflammation-mediated organ injury. Acta Anaesthesiol Taiwan. 2013;51:28–33.CrossRefPubMed
36.
go back to reference O’Neal Jr HR, Koyama T, Koehler EA, Siew E, Curtis BR, Fremont RD, et al. Prehospital statin and aspirin use and the prevalence of severe sepsis and acute lung injury/acute respiratory distress syndrome. Crit Care Med. 2011;39:1343–50.CrossRefPubMedPubMedCentral O’Neal Jr HR, Koyama T, Koehler EA, Siew E, Curtis BR, Fremont RD, et al. Prehospital statin and aspirin use and the prevalence of severe sepsis and acute lung injury/acute respiratory distress syndrome. Crit Care Med. 2011;39:1343–50.CrossRefPubMedPubMedCentral
37.
go back to reference Landis RC, Brown JR, Fitzgerald D, Likosky DS, Shore-Lesserson L, Baker RA, et al. Attenuating the Systemic Inflammatory Response to Adult Cardiopulmonary Bypass: A Critical Review of the Evidence Base. J Extra Corpor Technol. 2014;46:197–211.PubMedPubMedCentral Landis RC, Brown JR, Fitzgerald D, Likosky DS, Shore-Lesserson L, Baker RA, et al. Attenuating the Systemic Inflammatory Response to Adult Cardiopulmonary Bypass: A Critical Review of the Evidence Base. J Extra Corpor Technol. 2014;46:197–211.PubMedPubMedCentral
38.
go back to reference Paparella D, Micelli M, Favoino B, D’Alo M, Fiore T, de Luca Tupputi Schinosa L. Anti-heparin-platelet factor 4 antibodies after cardiopulmonary bypass: role of HLA expression. Haematologica. 2001;86:326–7.PubMed Paparella D, Micelli M, Favoino B, D’Alo M, Fiore T, de Luca Tupputi Schinosa L. Anti-heparin-platelet factor 4 antibodies after cardiopulmonary bypass: role of HLA expression. Haematologica. 2001;86:326–7.PubMed
Metadata
Title
Effect of hemoadsorption during cardiopulmonary bypass surgery – a blinded, randomized, controlled pilot study using a novel adsorbent
Authors
Martin H. Bernardi
Harald Rinoesl
Klaus Dragosits
Robin Ristl
Friedrich Hoffelner
Philipp Opfermann
Christian Lamm
Falk Preißing
Dominik Wiedemann
Michael J. Hiesmayr
Andreas Spittler
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2016
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-016-1270-0

Other articles of this Issue 1/2016

Critical Care 1/2016 Go to the issue