Skip to main content
Top
Published in: Journal of Ovarian Research 1/2017

Open Access 01-12-2017 | Research

Dynamic modeling of folliculogenesis signaling pathways in the presence of miRNAs expression

Authors: Abolfazl Bahrami, Seyed Reza Miraie-Ashtiani, Mostafa Sadeghi, Ali Najafi, Reza Ranjbar

Published in: Journal of Ovarian Research | Issue 1/2017

Login to get access

Abstract

Background

TEK signaling plays a very important role in folliculogenesis. It activates Ras/ERK/MYC, PI3K/AKT/mTORC1 and ovarian steroidogenesis activation pathways. These are the main pathways for cell growth, differentiation, migration, adhesion, proliferation, survival and protein synthesis.

Results

TEK signaling on each of the two important pathways where levels of pERK, pMYC, pAkt, pMCL1 and pEIF4EBP1 are increased in dominant follicles and pMYC is decreased in dominant follicles. Over activation of ERK and MYC which are the main cell growth and proliferation and over activation of Akt, MCl1, mTORC1 and EIF4EBP1 which are the main cell survival and protein synthesis factors act as promoting factors for folliculogenesis. In case of over expression of hsa-miR-30d-3p and hsa-miR-451a, MYC activity level is considerably increased in subordinate follicles. Our simulation results show that in the presence of has-miR-548v and bta-miR-22-3p, downstream factors of pathways are inhibited.

Conclusions

Our work offers insight into the design of natural biological procedures and makes predictions that can guide further experimental studies on folliculogenesis pathways. Moreover, it defines a simple signal processing unit that may be useful for engineering synthetic biology and genes circuits to carry out cell-based computation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bahrami A, Miraie-Ashtiani SR, Sadeghi M, Najafi A. miRNA-mRNA network involved in folliculogenesis interactome: systems biology approach. Reproduction. 2017;154:51–65.CrossRefPubMed Bahrami A, Miraie-Ashtiani SR, Sadeghi M, Najafi A. miRNA-mRNA network involved in folliculogenesis interactome: systems biology approach. Reproduction. 2017;154:51–65.CrossRefPubMed
2.
go back to reference Rodgers RJ, Irving-Rodgers HF. Morphological classification of bovine ovarian follicles. Reproduction. 2010;139:309–18.CrossRefPubMed Rodgers RJ, Irving-Rodgers HF. Morphological classification of bovine ovarian follicles. Reproduction. 2010;139:309–18.CrossRefPubMed
3.
4.
go back to reference Perkinton MS, Ip J, Wood GL, Crossthwaite AJ, Williams RJ. Phosphatidylinositol 3-kinase is a central mediator of NMDA receptor signalling to MAP kinase (Erk1/2), Akt/PKB and CREB in striatal neurones. J Neurochem. 2002;80:239–54.CrossRefPubMed Perkinton MS, Ip J, Wood GL, Crossthwaite AJ, Williams RJ. Phosphatidylinositol 3-kinase is a central mediator of NMDA receptor signalling to MAP kinase (Erk1/2), Akt/PKB and CREB in striatal neurones. J Neurochem. 2002;80:239–54.CrossRefPubMed
5.
go back to reference York RD, Molliver DC, Grewal SS, Stenberg PE, McCleskey EW, Stork PJS. Role of phosphoinositide 3-kinase and endocytosis in nerve growth factor-induced extracellular signal-regulated kinase activation via Ras and Rap1. Mol Cell Biol. 2000;20:8069–83.CrossRefPubMedPubMedCentral York RD, Molliver DC, Grewal SS, Stenberg PE, McCleskey EW, Stork PJS. Role of phosphoinositide 3-kinase and endocytosis in nerve growth factor-induced extracellular signal-regulated kinase activation via Ras and Rap1. Mol Cell Biol. 2000;20:8069–83.CrossRefPubMedPubMedCentral
6.
go back to reference Zhuang ZY, Xu H, Clapham DE, Ji RR. Phosphatidylinositol 3-kinase activates ERK in primary sensory neurons and mediates inflammatory heat hyperalgesia through TRPV1 sensitization. J Neurosc. 2004;24:8300–9.CrossRef Zhuang ZY, Xu H, Clapham DE, Ji RR. Phosphatidylinositol 3-kinase activates ERK in primary sensory neurons and mediates inflammatory heat hyperalgesia through TRPV1 sensitization. J Neurosc. 2004;24:8300–9.CrossRef
7.
go back to reference Gullo F, van der Garde M, Russo G, Pennisi M, Motta S, Pappalardo F, et al. Computational modeling of the expansion of human cord blood CD133+ hematopoietic stem/progenitor cells with different cytokine combinations. Bioinformatics. 2015;31:2514–22.CrossRefPubMed Gullo F, van der Garde M, Russo G, Pennisi M, Motta S, Pappalardo F, et al. Computational modeling of the expansion of human cord blood CD133+ hematopoietic stem/progenitor cells with different cytokine combinations. Bioinformatics. 2015;31:2514–22.CrossRefPubMed
8.
go back to reference Endo T, Nadal-Ginard B. Transcriptional and posttranscriptional control of c-myc during myogenesis: its mRNA remains inducible in differentiated cells and does not suppress the differentiated phenotype. Mol Cell Biol. 1986;6:1412–21.CrossRefPubMedPubMedCentral Endo T, Nadal-Ginard B. Transcriptional and posttranscriptional control of c-myc during myogenesis: its mRNA remains inducible in differentiated cells and does not suppress the differentiated phenotype. Mol Cell Biol. 1986;6:1412–21.CrossRefPubMedPubMedCentral
9.
go back to reference Levine RA, McCormack JE, Buckler A, Sonenshein GE. Transcriptional and posttranscriptional control of c-myc gene expression in WEHI 231 cells. Mol Cell Biol. 1986;6:4112–6.CrossRefPubMedPubMedCentral Levine RA, McCormack JE, Buckler A, Sonenshein GE. Transcriptional and posttranscriptional control of c-myc gene expression in WEHI 231 cells. Mol Cell Biol. 1986;6:4112–6.CrossRefPubMedPubMedCentral
10.
11.
go back to reference Sears R, Leone G, DeGregori J, Nevins JR. Ras enhances Myc protein stability. Mol Cell. 1999;3:169–79.CrossRefPubMed Sears R, Leone G, DeGregori J, Nevins JR. Ras enhances Myc protein stability. Mol Cell. 1999;3:169–79.CrossRefPubMed
12.
go back to reference Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, et al. Multiple Rasdependent phosphorylation pathways regulate Myc protein stability. Genes Dev. 2000;14:2501–14.CrossRefPubMedPubMedCentral Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, et al. Multiple Rasdependent phosphorylation pathways regulate Myc protein stability. Genes Dev. 2000;14:2501–14.CrossRefPubMedPubMedCentral
13.
go back to reference Yeh E, Cunningham M, Arnold H, Chasse D, Monteith T, et al. A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nat Cell Biol. 2004;6:308–18.CrossRefPubMed Yeh E, Cunningham M, Arnold H, Chasse D, Monteith T, et al. A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nat Cell Biol. 2004;6:308–18.CrossRefPubMed
14.
go back to reference Escamilla-Powers JR, Sears RC. A conserved pathway that controls c-Myc protein stability through opposing phosphorylation events occurs in yeast. J Biol Chem. 2007;282:5432–42.CrossRefPubMed Escamilla-Powers JR, Sears RC. A conserved pathway that controls c-Myc protein stability through opposing phosphorylation events occurs in yeast. J Biol Chem. 2007;282:5432–42.CrossRefPubMed
15.
go back to reference Vojtek AB, Der CJ. Increasing complexity of the Ras signaling pathway. J Biol Chem. 1998;273:19925–8.CrossRefPubMed Vojtek AB, Der CJ. Increasing complexity of the Ras signaling pathway. J Biol Chem. 1998;273:19925–8.CrossRefPubMed
16.
go back to reference Ebisuya M, Kondoh K, Nishida E. The duration, magnitude and compartmentalization of ERK MAP kinase activity: mechanisms for providing signaling specificity. J Cell Sci. 2005;118:2997–3002.CrossRefPubMed Ebisuya M, Kondoh K, Nishida E. The duration, magnitude and compartmentalization of ERK MAP kinase activity: mechanisms for providing signaling specificity. J Cell Sci. 2005;118:2997–3002.CrossRefPubMed
17.
go back to reference Rameh LE, Cantley LC. The role of phosphoinositide 3-kinase lipid products in cell function. J Biol Chem. 1999;274:8347–50.CrossRefPubMed Rameh LE, Cantley LC. The role of phosphoinositide 3-kinase lipid products in cell function. J Biol Chem. 1999;274:8347–50.CrossRefPubMed
18.
19.
go back to reference Appuhamy JADRN, Hanigan MD. Modeling the effects of insulin and amino acids on the phosphorylation of mTOR, Akt, and 4EBP1 in mammary cells. In: Modelling nutrient digestion and utilisation in farm animals; 2011. p. 225–32.CrossRef Appuhamy JADRN, Hanigan MD. Modeling the effects of insulin and amino acids on the phosphorylation of mTOR, Akt, and 4EBP1 in mammary cells. In: Modelling nutrient digestion and utilisation in farm animals; 2011. p. 225–32.CrossRef
20.
go back to reference Dalle Pezze P, Nelson G, Otten EG, Korolchuk VI, Kirkwood TB, von Zglinicki T, Shanley DP. Dynamic modelling of pathways to cellular senescence reveals strategies for targeted interventions. PLoS Comput Biol. 2014;10(8):e1003728.CrossRefPubMedPubMedCentral Dalle Pezze P, Nelson G, Otten EG, Korolchuk VI, Kirkwood TB, von Zglinicki T, Shanley DP. Dynamic modelling of pathways to cellular senescence reveals strategies for targeted interventions. PLoS Comput Biol. 2014;10(8):e1003728.CrossRefPubMedPubMedCentral
21.
go back to reference Engin H, Üstünda Y, Tekin IO, Gökmen A, Ertop Ş, Ilikhan SU. Plasma concentrations of angiopoietin-1, angiopoietin-2 and Tie-2 in colon cancer. Eur Cytokine Netw. 2012;23:68–71.PubMed Engin H, Üstünda Y, Tekin IO, Gökmen A, Ertop Ş, Ilikhan SU. Plasma concentrations of angiopoietin-1, angiopoietin-2 and Tie-2 in colon cancer. Eur Cytokine Netw. 2012;23:68–71.PubMed
23.
go back to reference Bidkhori G, Moeini A, Masoudi-Nejad A. Modeling of tumor progression in NSCLC and intrinsic resistance to TKI in loss of PTEN expression. PLoS One. 2012;7(10):e48004.CrossRefPubMedPubMedCentral Bidkhori G, Moeini A, Masoudi-Nejad A. Modeling of tumor progression in NSCLC and intrinsic resistance to TKI in loss of PTEN expression. PLoS One. 2012;7(10):e48004.CrossRefPubMedPubMedCentral
24.
go back to reference Kholodenko BN, et al. Quantification of short term signaling by the epidermal growth factor receptor. J Biol Chem. 1999;274:30169–81.CrossRefPubMed Kholodenko BN, et al. Quantification of short term signaling by the epidermal growth factor receptor. J Biol Chem. 1999;274:30169–81.CrossRefPubMed
25.
go back to reference Kim SY, Herbst A, Tworkowski KA, Salghetti SE, Tansey WP. Skp2 regulates Myc protein stability and activity. Mol Cell. 2003;11:1177–88.CrossRefPubMed Kim SY, Herbst A, Tworkowski KA, Salghetti SE, Tansey WP. Skp2 regulates Myc protein stability and activity. Mol Cell. 2003;11:1177–88.CrossRefPubMed
26.
go back to reference Kiyatkin A, et al. Scaffolding protein Grb2-associated binder 1 sustains epidermal growth factor-induced mitogenic and survival signaling by multiple positive feedback loops. J Biol Chem. 2006;281:19925–38.CrossRefPubMedPubMedCentral Kiyatkin A, et al. Scaffolding protein Grb2-associated binder 1 sustains epidermal growth factor-induced mitogenic and survival signaling by multiple positive feedback loops. J Biol Chem. 2006;281:19925–38.CrossRefPubMedPubMedCentral
27.
go back to reference Lepique AP, Moraes MS, Rocha KM, Eichler CB, Hajj GNM, et al. c-Myc protein is stabilized by fibroblast growth factor 2 and destabilized by ACTH to control cell cycle in mouse Y1 adrenocortical cells. J Mol Endocrinol. 2004;33:623–38.CrossRefPubMed Lepique AP, Moraes MS, Rocha KM, Eichler CB, Hajj GNM, et al. c-Myc protein is stabilized by fibroblast growth factor 2 and destabilized by ACTH to control cell cycle in mouse Y1 adrenocortical cells. J Mol Endocrinol. 2004;33:623–38.CrossRefPubMed
28.
go back to reference Rabinowits G, Gerçel-Taylor C, Day JD, Taylor DD, Kloecker GH. Exosomal MicroRNA: a diagnostic marker for lung cancer. Clin Lung Cancer. 2009;10:42–6.CrossRefPubMed Rabinowits G, Gerçel-Taylor C, Day JD, Taylor DD, Kloecker GH. Exosomal MicroRNA: a diagnostic marker for lung cancer. Clin Lung Cancer. 2009;10:42–6.CrossRefPubMed
29.
go back to reference Salghetti SE, Kim SY, Tansey WP. Destruction of Myc by ubiquitin-mediated proteolysis: cancer-associated and transforming mutations stabilize Myc. EMBO J. 1999;18:717–26.CrossRefPubMedPubMedCentral Salghetti SE, Kim SY, Tansey WP. Destruction of Myc by ubiquitin-mediated proteolysis: cancer-associated and transforming mutations stabilize Myc. EMBO J. 1999;18:717–26.CrossRefPubMedPubMedCentral
30.
go back to reference Sasagawa S, et al. Prediction and validation of the distinct dynamics of transient and sustained ERK activation. Nat Cell Biol. 2005;7:365–73.CrossRefPubMed Sasagawa S, et al. Prediction and validation of the distinct dynamics of transient and sustained ERK activation. Nat Cell Biol. 2005;7:365–73.CrossRefPubMed
31.
go back to reference Sedaghat AR, Sherman A, Quon MJ. Amathematicalmodelofmetabolic insulin signaling pathways. Am J Physiol Endocrinol Metab. 2002;283:E1084–101.CrossRefPubMed Sedaghat AR, Sherman A, Quon MJ. Amathematicalmodelofmetabolic insulin signaling pathways. Am J Physiol Endocrinol Metab. 2002;283:E1084–101.CrossRefPubMed
32.
go back to reference Schoeberl B, et al. Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat Biotechnol. 2002;20:370–5.CrossRefPubMed Schoeberl B, et al. Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat Biotechnol. 2002;20:370–5.CrossRefPubMed
33.
go back to reference Sonntag AG, Dalle Pezze P, Shanley DP, Thedieck K. A modelling-experimental approach reveals insulin receptor substrate (IRS)-dependent regulation of adenosine monosphosphate-dependent kinase (AMPK) by insulin. FEBS J. 2012;279:3314–28.CrossRefPubMed Sonntag AG, Dalle Pezze P, Shanley DP, Thedieck K. A modelling-experimental approach reveals insulin receptor substrate (IRS)-dependent regulation of adenosine monosphosphate-dependent kinase (AMPK) by insulin. FEBS J. 2012;279:3314–28.CrossRefPubMed
34.
go back to reference Taylor DD, Taylor CG. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 2008;110:13–21.CrossRefPubMed Taylor DD, Taylor CG. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 2008;110:13–21.CrossRefPubMed
35.
go back to reference Ung CY, et al. Simulation of the regulation of EGFR endocytosis and EGFR-ERK signaling by endophilin-mediated RhoA-EGFR crosstalk. FEBS Lett. 2008;582:2283–90.CrossRefPubMed Ung CY, et al. Simulation of the regulation of EGFR endocytosis and EGFR-ERK signaling by endophilin-mediated RhoA-EGFR crosstalk. FEBS Lett. 2008;582:2283–90.CrossRefPubMed
36.
go back to reference Yamada S, Taketomi T, Yoshimura A. Model analysis of difference between EGF pathway and FGF pathway. Biochem Biophys Res Commun. 2004;314:1113–20.CrossRefPubMed Yamada S, Taketomi T, Yoshimura A. Model analysis of difference between EGF pathway and FGF pathway. Biochem Biophys Res Commun. 2004;314:1113–20.CrossRefPubMed
37.
go back to reference Yamada S, et al. Control mechanism of JAK/STAT signal transduction pathway. FEBS Lett. 2003;534:190–6.CrossRefPubMed Yamada S, et al. Control mechanism of JAK/STAT signal transduction pathway. FEBS Lett. 2003;534:190–6.CrossRefPubMed
38.
39.
go back to reference Cetin Z, Ozbilim G, Erdogan A, Luleci G, Karauzum SB. Evaluation of PTEN and Mcl-1 expressions in NSCLC expressing wild-type or mutated EGFR. Med Oncol. 2010;27:853–60.CrossRefPubMed Cetin Z, Ozbilim G, Erdogan A, Luleci G, Karauzum SB. Evaluation of PTEN and Mcl-1 expressions in NSCLC expressing wild-type or mutated EGFR. Med Oncol. 2010;27:853–60.CrossRefPubMed
40.
go back to reference Li X, Huang Y, Jiang J, Frank SJ. Synergy in ERK activation by cytokine receptors and tyrosine kinase growth factor receptors. Cell Signal. 2011;23:417–24.CrossRefPubMedPubMedCentral Li X, Huang Y, Jiang J, Frank SJ. Synergy in ERK activation by cytokine receptors and tyrosine kinase growth factor receptors. Cell Signal. 2011;23:417–24.CrossRefPubMedPubMedCentral
41.
go back to reference Martelli AM, Evangelisti C, Chiarini F, Grimaldi C, Cappellini A, et al. The emerging role of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling network in normal myelopoiesis and leukemogenesis. Biochim Biophys Acta. 2010;1803:991–1002.CrossRefPubMed Martelli AM, Evangelisti C, Chiarini F, Grimaldi C, Cappellini A, et al. The emerging role of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling network in normal myelopoiesis and leukemogenesis. Biochim Biophys Acta. 2010;1803:991–1002.CrossRefPubMed
42.
go back to reference Carpenter G, Cohen S. Epidermal growth factor. J Biol Chem. 1990;265:7709–12.PubMed Carpenter G, Cohen S. Epidermal growth factor. J Biol Chem. 1990;265:7709–12.PubMed
43.
go back to reference Wiley HS, Shvartsman SY, Lauffenburger DA. Computational modeling of the EGF-receptor system: a paradigm for systems biology. Trends Cell Biol. 2003;13:43–50.CrossRefPubMed Wiley HS, Shvartsman SY, Lauffenburger DA. Computational modeling of the EGF-receptor system: a paradigm for systems biology. Trends Cell Biol. 2003;13:43–50.CrossRefPubMed
44.
go back to reference Marshall M. Interactions between Ras and Raf: key regulatory proteins in cellular transformation. Mol Reprod Dev. 1995;42:493–9.CrossRefPubMed Marshall M. Interactions between Ras and Raf: key regulatory proteins in cellular transformation. Mol Reprod Dev. 1995;42:493–9.CrossRefPubMed
45.
go back to reference Marais R, Light Y, Paterson HF, Marshall CJ. Ras recruits Raf-1 to the plasma membrane for activation by tyrosine phosphorylation. EMBO J. 1995;14:3136–45.PubMedPubMedCentral Marais R, Light Y, Paterson HF, Marshall CJ. Ras recruits Raf-1 to the plasma membrane for activation by tyrosine phosphorylation. EMBO J. 1995;14:3136–45.PubMedPubMedCentral
46.
go back to reference Zhao L, Vogt PK. Hot-spot mutations in p110alpha of phosphatidylinositol 3-kinase (pI3K): differential interactions with the regulatory subunit p85 and with RAS. Cell Cycle. 2010;9:596–600.CrossRefPubMedPubMedCentral Zhao L, Vogt PK. Hot-spot mutations in p110alpha of phosphatidylinositol 3-kinase (pI3K): differential interactions with the regulatory subunit p85 and with RAS. Cell Cycle. 2010;9:596–600.CrossRefPubMedPubMedCentral
47.
go back to reference Franke TF, Kaplan DR, Cantley LC, Toker A. Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science. 1997;275:665–8.CrossRefPubMed Franke TF, Kaplan DR, Cantley LC, Toker A. Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science. 1997;275:665–8.CrossRefPubMed
48.
go back to reference Silva A, Yunes JA, Cardoso BA, Martins LR, Jotta PY, et al. PTEN posttranslational inactivation and hyperactivation of the PI3K/Akt pathway sustain primary T cell leukemia viability. J Clin Invest. 2008;118:3762–74.CrossRefPubMedPubMedCentral Silva A, Yunes JA, Cardoso BA, Martins LR, Jotta PY, et al. PTEN posttranslational inactivation and hyperactivation of the PI3K/Akt pathway sustain primary T cell leukemia viability. J Clin Invest. 2008;118:3762–74.CrossRefPubMedPubMedCentral
50.
go back to reference Suresh Babu CV, Joo Song E, Yoo YS. Modeling and simulation in signal transduction pathways: a systems biology approach. Biochimie. 2006;88:277–83.CrossRefPubMed Suresh Babu CV, Joo Song E, Yoo YS. Modeling and simulation in signal transduction pathways: a systems biology approach. Biochimie. 2006;88:277–83.CrossRefPubMed
52.
go back to reference Orton RJ, Sturm OE, Vyshemirsky V, Calder M, Gilbert DR, et al. Computational modelling of the receptor-tyrosine-kinase-activated MAPK pathway. Biochem J. 2005;392:249–61.CrossRefPubMedPubMedCentral Orton RJ, Sturm OE, Vyshemirsky V, Calder M, Gilbert DR, et al. Computational modelling of the receptor-tyrosine-kinase-activated MAPK pathway. Biochem J. 2005;392:249–61.CrossRefPubMedPubMedCentral
54.
go back to reference Davis S, Aldrich TH, Jones PF, et al. Isolation of Ang-1, a ligand for the Tie2 receptor, by secretion-trap expression cloning. Cell. 1996;87:1161–9.CrossRefPubMed Davis S, Aldrich TH, Jones PF, et al. Isolation of Ang-1, a ligand for the Tie2 receptor, by secretion-trap expression cloning. Cell. 1996;87:1161–9.CrossRefPubMed
55.
go back to reference Suri C, Jones PF, Patan S, et al. Requisite role of Ang-1, a ligand for the Tie2 receptor, during embryonic angiogenesis. Cell. 1996;87:1171–80.CrossRefPubMed Suri C, Jones PF, Patan S, et al. Requisite role of Ang-1, a ligand for the Tie2 receptor, during embryonic angiogenesis. Cell. 1996;87:1171–80.CrossRefPubMed
56.
go back to reference Maisonpierre PC, Suri C, Jones PF, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science. 1997;277:55–60.CrossRefPubMed Maisonpierre PC, Suri C, Jones PF, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science. 1997;277:55–60.CrossRefPubMed
57.
go back to reference Runting AS, Stacker SA, Wilks AF. Tie2, a putative protein tyrosine kinase from a new class of cell surface receptor. Growth Factors. 1993;9:99–105.PubMed Runting AS, Stacker SA, Wilks AF. Tie2, a putative protein tyrosine kinase from a new class of cell surface receptor. Growth Factors. 1993;9:99–105.PubMed
58.
go back to reference Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol. 2005;23:1011–27.CrossRefPubMed Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol. 2005;23:1011–27.CrossRefPubMed
59.
go back to reference Gale NW, Thurston G, Hackett SF, et al. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by angiopoietin-1. Dev Cell. 2002;3:411–23.CrossRefPubMed Gale NW, Thurston G, Hackett SF, et al. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by angiopoietin-1. Dev Cell. 2002;3:411–23.CrossRefPubMed
60.
go back to reference Gioeli D, Mandell JW, Petroni GR, Frierson HF Jr, Weber MJ. Activation of mitogen-activated protein kinase associated with prostate cancer progression. Cancer Res. 1999;59:279–84.PubMed Gioeli D, Mandell JW, Petroni GR, Frierson HF Jr, Weber MJ. Activation of mitogen-activated protein kinase associated with prostate cancer progression. Cancer Res. 1999;59:279–84.PubMed
61.
go back to reference Gee JM, Robertson JF, Ellis IO, Nicholson RI. Phosphorylation of ERK1/2 mitogen-activated protein kinase is associated with poor response to anti-hormonal therapy and decreased patient survival in clinical breast cancer. Int J Cancer. 2001;95:247–54.CrossRefPubMed Gee JM, Robertson JF, Ellis IO, Nicholson RI. Phosphorylation of ERK1/2 mitogen-activated protein kinase is associated with poor response to anti-hormonal therapy and decreased patient survival in clinical breast cancer. Int J Cancer. 2001;95:247–54.CrossRefPubMed
62.
go back to reference Camarda R, Zhou AY, Kohnz RA, Balakrishnan S, Mahieu C, Anderton B, Eyob H, Kajimura S, Tward A, Krings G, Nomura DK, Goga A. Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer. Nat Med. 2016;22:427–32.CrossRefPubMedPubMedCentral Camarda R, Zhou AY, Kohnz RA, Balakrishnan S, Mahieu C, Anderton B, Eyob H, Kajimura S, Tward A, Krings G, Nomura DK, Goga A. Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer. Nat Med. 2016;22:427–32.CrossRefPubMedPubMedCentral
Metadata
Title
Dynamic modeling of folliculogenesis signaling pathways in the presence of miRNAs expression
Authors
Abolfazl Bahrami
Seyed Reza Miraie-Ashtiani
Mostafa Sadeghi
Ali Najafi
Reza Ranjbar
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Ovarian Research / Issue 1/2017
Electronic ISSN: 1757-2215
DOI
https://doi.org/10.1186/s13048-017-0371-y

Other articles of this Issue 1/2017

Journal of Ovarian Research 1/2017 Go to the issue