Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2019

Open Access 01-12-2019 | Prostate Cancer | Research

MAZ promotes prostate cancer bone metastasis through transcriptionally activating the KRas-dependent RalGEFs pathway

Authors: Qing Yang, Chuandong Lang, Zhengquan Wu, Yuhu Dai, Shaofu He, Wei Guo, Shuai Huang, Hong Du, Dong Ren, Xinsheng Peng

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2019

Login to get access

Abstract

Background

Clinically, prostate cancer (PCa) exhibits a high avidity to metastasize to bone. Myc-associated zinc-finger protein (MAZ) is a well-documented oncogene involved in the progression and metastasis of multiple cancer types, even in PCa. However, the clinical significance and biological roles of MAZ in bone metastasis of PCa remain unclear.

Methods

MAZ expression was examined in PCa tissues with bone metastasis, PCa tissues without bone metastasis and metastatic bone tissues by real-time PCR and immunohistochemistry (IHC), respectively. Statistical analysis was performed to evaluate the clinical correlation between MAZ expression and clinicopathological features and bone metastasis-free survival in PCa patients. Biological roles of MAZ in bone metastasis of PCa were investigated both in vitro by transwell assay, and in vivo by a mouse model of left cardiac ventricle inoculation. The bioinformatics analysis, western blot, pull-down assays, chromatin immunoprecipitation (ChIP) and luciferase reporter assays were applied to demonstrate and examine the relationship between MAZ and its potential downstream signalling pathway. TaqMan copy number assay was performed to identify the underlying mechanism responsible for MAZ overexpression in PCa tissues.

Results

MAZ expression is elevated in PCa tissues with bone metastasis compared with that in PCa tissues without bone metastasis, and is further increased in metastatic bone tissues. High expression of MAZ positively correlates with poor overall and bone metastasis-free survival in PCa patients. Upregulating MAZ elevates, while silencing MAZ represses the invasion and migration abilities of PCa cells in vitro and bone metastasis ability in vivo. Our results further reveal that MAZ promotes bone metastasis of PCa dependent on KRas signalling, although MAZ transcriptionally upregulates KRas and HRas expression, where the Ral guanine nucleotide exchange factor (RalGEF) signaling is responsible for the different roles of KRas and HRas in mediating the pro-bone metastasis of MAZ in PCa. Finally, our results indicate that recurrent gains contribute to MAZ overexpression in a small portion of PCa tissues.

Conclusion

These results indicate that the MAZ/Kras/ RalGEF signalling axis plays a crucial role in promoting PCa cell bone metastasis, suggesting a potential therapeutic utility of MAZ in bone metastasis of PCa.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bubendorf L, Schopfer A, Wagner U, et al. Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum Pathol. 2000;31:578–83.CrossRefPubMed Bubendorf L, Schopfer A, Wagner U, et al. Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum Pathol. 2000;31:578–83.CrossRefPubMed
3.
go back to reference Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer. 2002;2:584–93.CrossRefPubMed Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer. 2002;2:584–93.CrossRefPubMed
4.
5.
go back to reference Fournier PG, Juarez P, Jiang G, et al. The TGF-beta signaling regulator PMEPA1 suppresses prostate Cancer metastases to bone. Cancer Cell. 2015;27:809–21.CrossRefPubMedPubMedCentral Fournier PG, Juarez P, Jiang G, et al. The TGF-beta signaling regulator PMEPA1 suppresses prostate Cancer metastases to bone. Cancer Cell. 2015;27:809–21.CrossRefPubMedPubMedCentral
6.
go back to reference Hall CL, Kang S, MacDougald OA, et al. Role of Wnts in prostate cancer bone metastases. J Cell Biochem. 2006;97:661–72.CrossRefPubMed Hall CL, Kang S, MacDougald OA, et al. Role of Wnts in prostate cancer bone metastases. J Cell Biochem. 2006;97:661–72.CrossRefPubMed
7.
go back to reference Dai Y, Ren D, Yang Q, et al. The TGF-beta signalling negative regulator PICK1 represses prostate cancer metastasis to bone. Br J Cancer. 2017;117:685–94.CrossRefPubMedPubMedCentral Dai Y, Ren D, Yang Q, et al. The TGF-beta signalling negative regulator PICK1 represses prostate cancer metastasis to bone. Br J Cancer. 2017;117:685–94.CrossRefPubMedPubMedCentral
8.
go back to reference Nandana S, Tripathi M, Duan P, et al. Bone metastasis of prostate Cancer can be therapeutically targeted at the TBX2-WNT signaling Axis. Cancer Res. 2017;77:1331–44.CrossRefPubMedPubMedCentral Nandana S, Tripathi M, Duan P, et al. Bone metastasis of prostate Cancer can be therapeutically targeted at the TBX2-WNT signaling Axis. Cancer Res. 2017;77:1331–44.CrossRefPubMedPubMedCentral
9.
go back to reference Ren D, Yang Q, Dai Y, et al. Oncogenic miR-210-3p promotes prostate cancer cell EMT and bone metastasis via NF-kappaB signaling pathway. Mol Cancer. 2017;16:117.CrossRefPubMedPubMedCentral Ren D, Yang Q, Dai Y, et al. Oncogenic miR-210-3p promotes prostate cancer cell EMT and bone metastasis via NF-kappaB signaling pathway. Mol Cancer. 2017;16:117.CrossRefPubMedPubMedCentral
10.
12.
13.
go back to reference Bittner N, Baliko Z, Sarosi V, et al. Bone metastases and the EGFR and KRAS mutation status in lung adenocarcinoma--the results of three year retrospective analysis. Pathol Oncol Res. 2015;21:1217–21.CrossRefPubMed Bittner N, Baliko Z, Sarosi V, et al. Bone metastases and the EGFR and KRAS mutation status in lung adenocarcinoma--the results of three year retrospective analysis. Pathol Oncol Res. 2015;21:1217–21.CrossRefPubMed
14.
go back to reference Reuter CW, Morgan MA, Bergmann L. Targeting the Ras signaling pathway: a rational, mechanism-based treatment for hematologic malignancies? Blood. 2000;96:1655–69.PubMed Reuter CW, Morgan MA, Bergmann L. Targeting the Ras signaling pathway: a rational, mechanism-based treatment for hematologic malignancies? Blood. 2000;96:1655–69.PubMed
15.
go back to reference Repasky GA, Chenette EJ, Der CJ. Renewing the conspiracy theory debate: does Raf function alone to mediate Ras oncogenesis? Trends Cell Biol. 2004;14:639–47.CrossRefPubMed Repasky GA, Chenette EJ, Der CJ. Renewing the conspiracy theory debate: does Raf function alone to mediate Ras oncogenesis? Trends Cell Biol. 2004;14:639–47.CrossRefPubMed
16.
go back to reference Li N, Xue W, Yuan H, et al. AKT-mediated stabilization of histone methyltransferase WHSC1 promotes prostate cancer metastasis. J Clin Invest. 2017;127:1284–302.CrossRefPubMedPubMedCentral Li N, Xue W, Yuan H, et al. AKT-mediated stabilization of histone methyltransferase WHSC1 promotes prostate cancer metastasis. J Clin Invest. 2017;127:1284–302.CrossRefPubMedPubMedCentral
17.
go back to reference Semenchenko K, Wasylyk C, Cheung H, et al. XRP44X, an inhibitor of Ras/Erk activation of the transcription factor Elk3 Inhibits Tumour Growth and Metastasis in Mice. PloS one. 2016;11:e0159531.CrossRefPubMedPubMedCentral Semenchenko K, Wasylyk C, Cheung H, et al. XRP44X, an inhibitor of Ras/Erk activation of the transcription factor Elk3 Inhibits Tumour Growth and Metastasis in Mice. PloS one. 2016;11:e0159531.CrossRefPubMedPubMedCentral
18.
go back to reference Schubbert S, Shannon K, Bollag G. Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer. 2007;7:295–308.CrossRefPubMed Schubbert S, Shannon K, Bollag G. Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer. 2007;7:295–308.CrossRefPubMed
19.
20.
go back to reference Cogoi S, Rapozzi V, Cauci S, et al. Critical role of hnRNP A1 in activating KRAS transcription in pancreatic cancer cells: a molecular mechanism involving G4 DNA. Biochim Biophys Acta. 1861;2017:1389–98. Cogoi S, Rapozzi V, Cauci S, et al. Critical role of hnRNP A1 in activating KRAS transcription in pancreatic cancer cells: a molecular mechanism involving G4 DNA. Biochim Biophys Acta. 1861;2017:1389–98.
21.
go back to reference Cogoi S, Paramasivam M, Membrino A, et al. The KRAS promoter responds to Myc-associated zinc finger and poly (ADP-ribose) polymerase 1 proteins, which recognize a critical quadruplex-forming GA-element. J Biol Chem. 2010;285:22003–16.CrossRefPubMedPubMedCentral Cogoi S, Paramasivam M, Membrino A, et al. The KRAS promoter responds to Myc-associated zinc finger and poly (ADP-ribose) polymerase 1 proteins, which recognize a critical quadruplex-forming GA-element. J Biol Chem. 2010;285:22003–16.CrossRefPubMedPubMedCentral
22.
go back to reference Ray A, Ray BK. Induction of Ras by SAF-1/MAZ through a feed-forward loop promotes angiogenesis in breast cancer. Cancer Med. 2015;4:224–34.CrossRefPubMed Ray A, Ray BK. Induction of Ras by SAF-1/MAZ through a feed-forward loop promotes angiogenesis in breast cancer. Cancer Med. 2015;4:224–34.CrossRefPubMed
23.
go back to reference DesJardins E, Hay N. Repeated CT elements bound by zinc finger proteins control the absolute and relative activities of the two principal human c-myc promoters. Mol Cell Biol. 1993;13:5710–24.CrossRefPubMedPubMedCentral DesJardins E, Hay N. Repeated CT elements bound by zinc finger proteins control the absolute and relative activities of the two principal human c-myc promoters. Mol Cell Biol. 1993;13:5710–24.CrossRefPubMedPubMedCentral
24.
go back to reference Bossone SA, Asselin C, Patel AJ, et al. MAZ, a zinc finger protein, binds to c-MYC and C2 gene sequences regulating transcriptional initiation and termination. Proc Natl Acad Sci U S A. 1992;89:7452–6.CrossRefPubMedPubMedCentral Bossone SA, Asselin C, Patel AJ, et al. MAZ, a zinc finger protein, binds to c-MYC and C2 gene sequences regulating transcriptional initiation and termination. Proc Natl Acad Sci U S A. 1992;89:7452–6.CrossRefPubMedPubMedCentral
25.
go back to reference Song J, Murakami H, Tsutsui H, et al. Genomic organization and expression of a human gene for Myc-associated zinc finger protein (MAZ). J Biol Chem. 1998;273:20603–14.CrossRefPubMed Song J, Murakami H, Tsutsui H, et al. Genomic organization and expression of a human gene for Myc-associated zinc finger protein (MAZ). J Biol Chem. 1998;273:20603–14.CrossRefPubMed
26.
go back to reference Jiao L, Li Y, Shen D, et al. The prostate cancer-up-regulated Myc-associated zinc-finger protein (MAZ) modulates proliferation and metastasis through reciprocal regulation of androgen receptor. Med Oncol. 2013;30:570.CrossRefPubMed Jiao L, Li Y, Shen D, et al. The prostate cancer-up-regulated Myc-associated zinc-finger protein (MAZ) modulates proliferation and metastasis through reciprocal regulation of androgen receptor. Med Oncol. 2013;30:570.CrossRefPubMed
27.
go back to reference Wang X, Southard RC, Allred CD, et al. MAZ drives tumor-specific expression of PPAR gamma 1 in breast cancer cells. Breast Cancer Res Treat. 2008;111:103–11.CrossRefPubMed Wang X, Southard RC, Allred CD, et al. MAZ drives tumor-specific expression of PPAR gamma 1 in breast cancer cells. Breast Cancer Res Treat. 2008;111:103–11.CrossRefPubMed
29.
go back to reference Smits M, Wurdinger T, van het Hof B, et al. Myc-associated zinc finger protein (MAZ) is regulated by miR-125b and mediates VEGF-induced angiogenesis in glioblastoma. FASEB J. 2012;26:2639–47.CrossRefPubMed Smits M, Wurdinger T, van het Hof B, et al. Myc-associated zinc finger protein (MAZ) is regulated by miR-125b and mediates VEGF-induced angiogenesis in glioblastoma. FASEB J. 2012;26:2639–47.CrossRefPubMed
30.
go back to reference Graham TJ, Box G, Tunariu N, et al. Preclinical evaluation of imaging biomarkers for prostate cancer bone metastasis and response to cabozantinib. J Natl Cancer Inst. 2014;106:dju033.CrossRefPubMed Graham TJ, Box G, Tunariu N, et al. Preclinical evaluation of imaging biomarkers for prostate cancer bone metastasis and response to cabozantinib. J Natl Cancer Inst. 2014;106:dju033.CrossRefPubMed
31.
go back to reference Kumar A, Coleman I, Morrissey C, et al. Substantial interindividual and limited intraindividual genomic diversity among tumors from men with metastatic prostate cancer. Nat Med. 2016;22:369–78.CrossRefPubMedPubMedCentral Kumar A, Coleman I, Morrissey C, et al. Substantial interindividual and limited intraindividual genomic diversity among tumors from men with metastatic prostate cancer. Nat Med. 2016;22:369–78.CrossRefPubMedPubMedCentral
32.
go back to reference Cancer Genome Atlas Research N. The molecular taxonomy of primary prostate Cancer. Cell. 2015;163:1011–25.CrossRef Cancer Genome Atlas Research N. The molecular taxonomy of primary prostate Cancer. Cell. 2015;163:1011–25.CrossRef
33.
go back to reference Nguyen DL, Staeker J, Laika B, et al. TaqMan real-time PCR quantification strategy of CYP2D6 gene copy number for the LightCycler 2.0. Clin Chim Acta. 2009;403:207–11.CrossRefPubMed Nguyen DL, Staeker J, Laika B, et al. TaqMan real-time PCR quantification strategy of CYP2D6 gene copy number for the LightCycler 2.0. Clin Chim Acta. 2009;403:207–11.CrossRefPubMed
34.
go back to reference Knobbe CB, Reifenberger J, Reifenberger G. Mutation analysis of the Ras pathway genes NRAS, HRAS, KRAS and BRAF in glioblastomas. Acta Neuropathol. 2004;108:467–70.CrossRefPubMed Knobbe CB, Reifenberger J, Reifenberger G. Mutation analysis of the Ras pathway genes NRAS, HRAS, KRAS and BRAF in glioblastomas. Acta Neuropathol. 2004;108:467–70.CrossRefPubMed
35.
go back to reference Flotho C, Valcamonica S, Mach-Pascual S, et al. RAS mutations and clonality analysis in children with juvenile myelomonocytic leukemia (JMML). Leukemia. 1999;13:32–7.CrossRefPubMed Flotho C, Valcamonica S, Mach-Pascual S, et al. RAS mutations and clonality analysis in children with juvenile myelomonocytic leukemia (JMML). Leukemia. 1999;13:32–7.CrossRefPubMed
36.
go back to reference Ezzeldin M, Borrego-Diaz E, Taha M, et al. RalA signaling pathway as a therapeutic target in hepatocellular carcinoma (HCC). Mol Oncol. 2014;8:1043–53.CrossRefPubMedPubMedCentral Ezzeldin M, Borrego-Diaz E, Taha M, et al. RalA signaling pathway as a therapeutic target in hepatocellular carcinoma (HCC). Mol Oncol. 2014;8:1043–53.CrossRefPubMedPubMedCentral
37.
go back to reference Cogoi S, Zorzet S, Rapozzi V, et al. MAZ-binding G4-decoy with locked nucleic acid and twisted intercalating nucleic acid modifications suppresses KRAS in pancreatic cancer cells and delays tumor growth in mice. Nucleic Acids Res. 2013;41:4049–64.CrossRefPubMedPubMedCentral Cogoi S, Zorzet S, Rapozzi V, et al. MAZ-binding G4-decoy with locked nucleic acid and twisted intercalating nucleic acid modifications suppresses KRAS in pancreatic cancer cells and delays tumor growth in mice. Nucleic Acids Res. 2013;41:4049–64.CrossRefPubMedPubMedCentral
38.
go back to reference Ishii S, Kadonaga JT, Tjian R, et al. Binding of the Sp1 transcription factor by the human Harvey ras1 proto-oncogene promoter. Science. 1986;232:1410–3.CrossRefPubMed Ishii S, Kadonaga JT, Tjian R, et al. Binding of the Sp1 transcription factor by the human Harvey ras1 proto-oncogene promoter. Science. 1986;232:1410–3.CrossRefPubMed
39.
go back to reference Membrino A, Cogoi S, Pedersen EB, et al. G4-DNA formation in the HRAS promoter and rational design of decoy oligonucleotides for cancer therapy. PLoS One. 2011;6:e24421.CrossRefPubMedPubMedCentral Membrino A, Cogoi S, Pedersen EB, et al. G4-DNA formation in the HRAS promoter and rational design of decoy oligonucleotides for cancer therapy. PLoS One. 2011;6:e24421.CrossRefPubMedPubMedCentral
40.
go back to reference Rodriguez-Viciana P, Sabatier C, McCormick F. Signaling specificity by Ras family GTPases is determined by the full spectrum of effectors they regulate. Mol Cell Biol. 2004;24:4943–54.CrossRefPubMedPubMedCentral Rodriguez-Viciana P, Sabatier C, McCormick F. Signaling specificity by Ras family GTPases is determined by the full spectrum of effectors they regulate. Mol Cell Biol. 2004;24:4943–54.CrossRefPubMedPubMedCentral
42.
go back to reference Dirican A, Atmaca H, Bozkurt E, et al. Novel combination of docetaxel and thymoquinone induces synergistic cytotoxicity and apoptosis in DU-145 human prostate cancer cells by modulating PI3K-AKT pathway. Clin Transl Oncol. 2015;17:145–51.CrossRefPubMed Dirican A, Atmaca H, Bozkurt E, et al. Novel combination of docetaxel and thymoquinone induces synergistic cytotoxicity and apoptosis in DU-145 human prostate cancer cells by modulating PI3K-AKT pathway. Clin Transl Oncol. 2015;17:145–51.CrossRefPubMed
43.
go back to reference Ren W, Joshi R, Mathew P. Synthetic lethality in PTEN-mutant prostate Cancer is induced by combinatorial PI3K/Akt and BCL-XL inhibition. Mol Cancer Res. 2016;14:1176–81.CrossRefPubMed Ren W, Joshi R, Mathew P. Synthetic lethality in PTEN-mutant prostate Cancer is induced by combinatorial PI3K/Akt and BCL-XL inhibition. Mol Cancer Res. 2016;14:1176–81.CrossRefPubMed
44.
go back to reference Tenbaum SP, Ordonez-Moran P, Puig I, et al. Beta-catenin confers resistance to PI3K and AKT inhibitors and subverts FOXO3a to promote metastasis in colon cancer. Nat Med. 2012;18:892–901.CrossRefPubMed Tenbaum SP, Ordonez-Moran P, Puig I, et al. Beta-catenin confers resistance to PI3K and AKT inhibitors and subverts FOXO3a to promote metastasis in colon cancer. Nat Med. 2012;18:892–901.CrossRefPubMed
45.
go back to reference Lin DL, Whitney MC, Yao Z, et al. Interleukin-6 induces androgen responsiveness in prostate cancer cells through up-regulation of androgen receptor expression. Clin Cancer Res. 2001;7:1773–81.PubMed Lin DL, Whitney MC, Yao Z, et al. Interleukin-6 induces androgen responsiveness in prostate cancer cells through up-regulation of androgen receptor expression. Clin Cancer Res. 2001;7:1773–81.PubMed
46.
go back to reference Murphy C, McGurk M, Pettigrew J, et al. Nonapical and cytoplasmic expression of interleukin-8, CXCR1, and CXCR2 correlates with cell proliferation and microvessel density in prostate cancer. Clin Cancer Res. 2005;11:4117–27.CrossRefPubMed Murphy C, McGurk M, Pettigrew J, et al. Nonapical and cytoplasmic expression of interleukin-8, CXCR1, and CXCR2 correlates with cell proliferation and microvessel density in prostate cancer. Clin Cancer Res. 2005;11:4117–27.CrossRefPubMed
47.
go back to reference Kumar R, Yoneda J, Bucana CD, et al. Regulation of distinct steps of angiogenesis by different angiogenic molecules. Int J Oncol. 1998;12:749–57.PubMed Kumar R, Yoneda J, Bucana CD, et al. Regulation of distinct steps of angiogenesis by different angiogenic molecules. Int J Oncol. 1998;12:749–57.PubMed
48.
go back to reference Moul JW, Friedrichs PA, Lance RS, et al. Infrequent RAS oncogene mutations in human prostate cancer. Prostate. 1992;20:327–38.CrossRefPubMed Moul JW, Friedrichs PA, Lance RS, et al. Infrequent RAS oncogene mutations in human prostate cancer. Prostate. 1992;20:327–38.CrossRefPubMed
49.
go back to reference Cogoi S, Shchekotikhin AE, Xodo LE. HRAS is silenced by two neighboring G-quadruplexes and activated by MAZ, a zinc-finger transcription factor with DNA unfolding property. Nucleic Acids Res. 2014;42:8379–88.CrossRefPubMedPubMedCentral Cogoi S, Shchekotikhin AE, Xodo LE. HRAS is silenced by two neighboring G-quadruplexes and activated by MAZ, a zinc-finger transcription factor with DNA unfolding property. Nucleic Acids Res. 2014;42:8379–88.CrossRefPubMedPubMedCentral
50.
go back to reference Yu ZH, Lun SM, He R, et al. Dual function of MAZ mediated by FOXF2 in basal-like breast cancer: promotion of proliferation and suppression of progression. Cancer Lett. 2017;402:142–52.CrossRefPubMed Yu ZH, Lun SM, He R, et al. Dual function of MAZ mediated by FOXF2 in basal-like breast cancer: promotion of proliferation and suppression of progression. Cancer Lett. 2017;402:142–52.CrossRefPubMed
Metadata
Title
MAZ promotes prostate cancer bone metastasis through transcriptionally activating the KRas-dependent RalGEFs pathway
Authors
Qing Yang
Chuandong Lang
Zhengquan Wu
Yuhu Dai
Shaofu He
Wei Guo
Shuai Huang
Hong Du
Dong Ren
Xinsheng Peng
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2019
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-019-1374-x

Other articles of this Issue 1/2019

Journal of Experimental & Clinical Cancer Research 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine