Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2019

Open Access 01-12-2019 | Vaccination | Review

Cancer DNA vaccines: current preclinical and clinical developments and future perspectives

Authors: Alessandra Lopes, Gaëlle Vandermeulen, Véronique Préat

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2019

Login to get access

Abstract

The recent developments in immuno-oncology have opened an unprecedented avenue for the emergence of vaccine strategies. Therapeutic DNA cancer vaccines are now considered a very promising strategy to activate the immune system against cancer. In the past, several clinical trials using plasmid DNA vaccines demonstrated a good safety profile and the activation of a broad and specific immune response. However, these vaccines often demonstrated only modest therapeutic effects in clinical trials due to the immunosuppressive mechanisms developed by the tumor. To enhance the vaccine-induced immune response and the treatment efficacy, DNA vaccines could be improved by using two different strategies. The first is to increase their immunogenicity by selecting and optimizing the best antigen(s) to be inserted into the plasmid DNA. The second strategy is to combine DNA vaccines with other complementary therapies that could improve their activity by attenuating immunosuppression in the tumor microenvironment or by increasing the activity/number of immune cells. A growing number of preclinical and clinical studies are adopting these two strategies to better exploit the potential of DNA vaccination. In this review, we analyze the last 5-year preclinical studies and 10-year clinical trials using plasmid DNA vaccines for cancer therapy. We also investigate the strategies that are being developed to overcome the limitations in cancer DNA vaccination, revisiting the rationale for different combinations of therapy and the different possibilities in antigen choice. Finally, we highlight the most promising developments and critical points that need to be addressed to move towards the approval of therapeutic cancer DNA vaccines as part of the standard of cancer care in the future.
Literature
1.
go back to reference Tiptiri-Kourpeti A, Spyridopoulou K, Pappa A, Chlichlia K. DNA vaccines to attack cancer: strategies for improving immunogenicity and efficacy. Pharmacol Ther. 2016;165:32–49.PubMedCrossRef Tiptiri-Kourpeti A, Spyridopoulou K, Pappa A, Chlichlia K. DNA vaccines to attack cancer: strategies for improving immunogenicity and efficacy. Pharmacol Ther. 2016;165:32–49.PubMedCrossRef
2.
go back to reference Gasser M, Waaga-Gasser AM. Therapeutic antibodies in Cancer therapy. In: Böldicke T, editor. Protein targeting compounds: prediction, selection and activity of specific inhibitors. Cham: Springer International Publishing; 2016. p. 95–120. Gasser M, Waaga-Gasser AM. Therapeutic antibodies in Cancer therapy. In: Böldicke T, editor. Protein targeting compounds: prediction, selection and activity of specific inhibitors. Cham: Springer International Publishing; 2016. p. 95–120.
3.
go back to reference Clarke JM, George DJ, Lisi S, Salama AKS. Immune checkpoint blockade: the new frontier in Cancer treatment. Target Oncol. 2018;13(1):1–20.PubMedCrossRef Clarke JM, George DJ, Lisi S, Salama AKS. Immune checkpoint blockade: the new frontier in Cancer treatment. Target Oncol. 2018;13(1):1–20.PubMedCrossRef
4.
go back to reference Hargadon KM, Johnson CE, Williams CJ. Immune checkpoint blockade therapy for cancer: an overview of FDA-approved immune checkpoint inhibitors. Int Immunopharmacol. 2018;62:29–39.PubMedCrossRef Hargadon KM, Johnson CE, Williams CJ. Immune checkpoint blockade therapy for cancer: an overview of FDA-approved immune checkpoint inhibitors. Int Immunopharmacol. 2018;62:29–39.PubMedCrossRef
5.
go back to reference Fry TJ, Mackall CL. T-cell adoptive immunotherapy for acute lymphoblastic leukemia. Hematology American Society of Hematology Education Program. 2013;2013:348–53.PubMedCrossRef Fry TJ, Mackall CL. T-cell adoptive immunotherapy for acute lymphoblastic leukemia. Hematology American Society of Hematology Education Program. 2013;2013:348–53.PubMedCrossRef
7.
go back to reference Gatti-Mays ME, Redman JM, Collins JM, Bilusic M. Cancer vaccines: enhanced immunogenic modulation through therapeutic combinations. Human vaccines & immunotherapeutics. 2017;13(11):2561–74.CrossRef Gatti-Mays ME, Redman JM, Collins JM, Bilusic M. Cancer vaccines: enhanced immunogenic modulation through therapeutic combinations. Human vaccines & immunotherapeutics. 2017;13(11):2561–74.CrossRef
8.
go back to reference Cebon J. Perspective: cancer vaccines in the era of immune checkpoint blockade. Mammalian genome : official journal of the International Mammalian Genome Society. 2018;29(11–12):703–13.CrossRef Cebon J. Perspective: cancer vaccines in the era of immune checkpoint blockade. Mammalian genome : official journal of the International Mammalian Genome Society. 2018;29(11–12):703–13.CrossRef
10.
go back to reference Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer. 2014;14:135.PubMedCrossRef Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer. 2014;14:135.PubMedCrossRef
11.
go back to reference Boon T, van der Bruggen P. Human tumor antigens recognized by T lymphocytes. J Exp Med. 1996;183(3):725–9.PubMedCrossRef Boon T, van der Bruggen P. Human tumor antigens recognized by T lymphocytes. J Exp Med. 1996;183(3):725–9.PubMedCrossRef
13.
go back to reference Strioga MM, Darinskas A, Pasukoniene V, Mlynska A, Ostapenko V, Schijns V. Xenogeneic therapeutic cancer vaccines as breakers of immune tolerance for clinical application: to use or not to use? Vaccine. 2014;32(32):4015–24.PubMedCrossRef Strioga MM, Darinskas A, Pasukoniene V, Mlynska A, Ostapenko V, Schijns V. Xenogeneic therapeutic cancer vaccines as breakers of immune tolerance for clinical application: to use or not to use? Vaccine. 2014;32(32):4015–24.PubMedCrossRef
14.
15.
go back to reference Alibek K, Baiken Y, Kakpenova A, Mussabekova A, Zhussupbekova S, Akan M, et al. Implication of human herpesviruses in oncogenesis through immune evasion and supression. Infectious agents and cancer. 2014;9(1):3.PubMedPubMedCentralCrossRef Alibek K, Baiken Y, Kakpenova A, Mussabekova A, Zhussupbekova S, Akan M, et al. Implication of human herpesviruses in oncogenesis through immune evasion and supression. Infectious agents and cancer. 2014;9(1):3.PubMedPubMedCentralCrossRef
16.
go back to reference Martin-Liberal J, Ochoa de Olza M, Hierro C, Gros A, Rodon J, Tabernero J. The expanding role of immunotherapy. Cancer Treat Rev. 2017;54:74–86.PubMedCrossRef Martin-Liberal J, Ochoa de Olza M, Hierro C, Gros A, Rodon J, Tabernero J. The expanding role of immunotherapy. Cancer Treat Rev. 2017;54:74–86.PubMedCrossRef
17.
go back to reference Shang N, Figini M, Shangguan J, Wang B, Sun C, Pan L, et al. Dendritic cells based immunotherapy. Am J Cancer Res. 2017;7(10):2091–102.PubMedPubMedCentral Shang N, Figini M, Shangguan J, Wang B, Sun C, Pan L, et al. Dendritic cells based immunotherapy. Am J Cancer Res. 2017;7(10):2091–102.PubMedPubMedCentral
18.
go back to reference Obara W, Kanehira M, Katagiri T, Kato R, Kato Y, Takata R. Present status and future perspective of peptide-based vaccine therapy for urological cancer. Cancer Sci. 2018;109(3):550–9.PubMedPubMedCentralCrossRef Obara W, Kanehira M, Katagiri T, Kato R, Kato Y, Takata R. Present status and future perspective of peptide-based vaccine therapy for urological cancer. Cancer Sci. 2018;109(3):550–9.PubMedPubMedCentralCrossRef
19.
go back to reference Chauchet X, Wang Y, Polack B, Gouëllec AL. Live-attenuated bacteria as a cancer vaccine vector AU - Toussaint, Bertrand. Expert review of vaccines. 2013;12(10):1139–54.PubMedCrossRef Chauchet X, Wang Y, Polack B, Gouëllec AL. Live-attenuated bacteria as a cancer vaccine vector AU - Toussaint, Bertrand. Expert review of vaccines. 2013;12(10):1139–54.PubMedCrossRef
22.
go back to reference Herrada AA, Rojas-Colonelli N, Gonzalez-Figueroa P, Roco J, Oyarce C, Ligtenberg MA, et al. Harnessing DNA-induced immune responses for improving cancer vaccines. Human vaccines & immunotherapeutics. 2012;8(11):1682–93.CrossRef Herrada AA, Rojas-Colonelli N, Gonzalez-Figueroa P, Roco J, Oyarce C, Ligtenberg MA, et al. Harnessing DNA-induced immune responses for improving cancer vaccines. Human vaccines & immunotherapeutics. 2012;8(11):1682–93.CrossRef
23.
go back to reference Yankauckas MA, Morrow JE, Parker SE, Abai A, Rhodes GH, Dwarki VJ, et al. Long-term anti-nucleoprotein cellular and humoral immunity is induced by intramuscular injection of plasmid DNA containing NP gene. DNA Cell Biol. 1993;12(9):771–6.PubMedCrossRef Yankauckas MA, Morrow JE, Parker SE, Abai A, Rhodes GH, Dwarki VJ, et al. Long-term anti-nucleoprotein cellular and humoral immunity is induced by intramuscular injection of plasmid DNA containing NP gene. DNA Cell Biol. 1993;12(9):771–6.PubMedCrossRef
24.
go back to reference Lambricht L, Lopes A, Kos S, Sersa G, Preat V, Vandermeulen G. Clinical potential of electroporation for gene therapy and DNA vaccine delivery. Expert opinion on drug delivery. 2016;13(2):295–310.PubMedCrossRef Lambricht L, Lopes A, Kos S, Sersa G, Preat V, Vandermeulen G. Clinical potential of electroporation for gene therapy and DNA vaccine delivery. Expert opinion on drug delivery. 2016;13(2):295–310.PubMedCrossRef
25.
go back to reference Liu Y, Yan J, Santangelo PJ, Prausnitz MR. DNA uptake, intracellular trafficking and gene transfection after ultrasound exposure. Journal of controlled release : official journal of the Controlled Release Society. 2016;234:1–9.CrossRef Liu Y, Yan J, Santangelo PJ, Prausnitz MR. DNA uptake, intracellular trafficking and gene transfection after ultrasound exposure. Journal of controlled release : official journal of the Controlled Release Society. 2016;234:1–9.CrossRef
26.
go back to reference Miller DL, Pislaru SV, Greenleaf JE. Sonoporation: mechanical DNA delivery by ultrasonic cavitation. Somat Cell Mol Genet. 2002;27(1–6):115–34.PubMedCrossRef Miller DL, Pislaru SV, Greenleaf JE. Sonoporation: mechanical DNA delivery by ultrasonic cavitation. Somat Cell Mol Genet. 2002;27(1–6):115–34.PubMedCrossRef
27.
go back to reference van den Berg JH, Oosterhuis K, Schumacher TN, Haanen JB, Bins AD. Intradermal vaccination by DNA tattooing. Methods Mol Biol. 2014;1143:131–40.PubMedCrossRef van den Berg JH, Oosterhuis K, Schumacher TN, Haanen JB, Bins AD. Intradermal vaccination by DNA tattooing. Methods Mol Biol. 2014;1143:131–40.PubMedCrossRef
28.
go back to reference Bergmann-Leitner ES, Leitner WW. Vaccination using Gene-gun Technology. In: Vaughan A, editor. Malaria vaccines: methods and protocols. New York: Springer New York; 2015. p. 289–302.CrossRef Bergmann-Leitner ES, Leitner WW. Vaccination using Gene-gun Technology. In: Vaughan A, editor. Malaria vaccines: methods and protocols. New York: Springer New York; 2015. p. 289–302.CrossRef
29.
go back to reference Li L, Petrovsky N. Molecular mechanisms for enhanced DNA vaccine immunogenicity. Expert review of vaccines. 2016;15(3):313–29.PubMedCrossRef Li L, Petrovsky N. Molecular mechanisms for enhanced DNA vaccine immunogenicity. Expert review of vaccines. 2016;15(3):313–29.PubMedCrossRef
30.
go back to reference Ori D, Murase M, Kawai T. Cytosolic nucleic acid sensors and innate immune regulation. Int Rev Immunol. 2017;36(2):74–88.PubMedCrossRef Ori D, Murase M, Kawai T. Cytosolic nucleic acid sensors and innate immune regulation. Int Rev Immunol. 2017;36(2):74–88.PubMedCrossRef
31.
go back to reference Tang CK, Pietersz GA. Intracellular detection and immune signaling pathways of DNA vaccines. Expert review of vaccines. 2009;8(9):1161–70.PubMedCrossRef Tang CK, Pietersz GA. Intracellular detection and immune signaling pathways of DNA vaccines. Expert review of vaccines. 2009;8(9):1161–70.PubMedCrossRef
32.
go back to reference Boyer J, Ugen K, Wang B, Chattergoon M, Tsai A, Merva M, et al. Induction of a TH1 type cellular immune response to the human immunodeficiency type 1 virus by in vivo DNA inoculation. Dev Biol Stand. 1998;92:169–74.PubMed Boyer J, Ugen K, Wang B, Chattergoon M, Tsai A, Merva M, et al. Induction of a TH1 type cellular immune response to the human immunodeficiency type 1 virus by in vivo DNA inoculation. Dev Biol Stand. 1998;92:169–74.PubMed
33.
go back to reference Schirmbeck R, Bohm W, Ando K, Chisari FV, Reimann J. Nucleic acid vaccination primes hepatitis B virus surface antigen-specific cytotoxic T lymphocytes in nonresponder mice. J Virol. 1995;69(10):5929–34.PubMedPubMedCentral Schirmbeck R, Bohm W, Ando K, Chisari FV, Reimann J. Nucleic acid vaccination primes hepatitis B virus surface antigen-specific cytotoxic T lymphocytes in nonresponder mice. J Virol. 1995;69(10):5929–34.PubMedPubMedCentral
34.
go back to reference Baghban Rahimi S, Mohebbi A, Vakilzadeh G, Biglari P, Razeghi Jahromi S, Mohebi SR, et al. Enhancement of therapeutic DNA vaccine potency by melatonin through inhibiting VEGF expression and induction of antitumor immunity mediated by CD8+ T cells. Arch Virol. 2018;163(3):587–97.PubMedCrossRef Baghban Rahimi S, Mohebbi A, Vakilzadeh G, Biglari P, Razeghi Jahromi S, Mohebi SR, et al. Enhancement of therapeutic DNA vaccine potency by melatonin through inhibiting VEGF expression and induction of antitumor immunity mediated by CD8+ T cells. Arch Virol. 2018;163(3):587–97.PubMedCrossRef
35.
go back to reference Ahrends T, Bąbała N, Xiao Y, Yagita H, van Eenennaam H, Borst J. CD27 Agonism Plus PD-1 Blockade Recapitulates CD4<sup>+</sup> T-cell Help in Therapeutic Anticancer Vaccination. Cancer Res. 2016;76(10):2921.PubMedCrossRef Ahrends T, Bąbała N, Xiao Y, Yagita H, van Eenennaam H, Borst J. CD27 Agonism Plus PD-1 Blockade Recapitulates CD4<sup>+</sup> T-cell Help in Therapeutic Anticancer Vaccination. Cancer Res. 2016;76(10):2921.PubMedCrossRef
36.
go back to reference Denies S, Cicchelero L, Polis I, Sanders NN. Immunogenicity and safety of xenogeneic vascular endothelial growth factor receptor-2 DNA vaccination in mice and dogs. Oncotarget. 2016;7(10):10905–16.PubMedPubMedCentralCrossRef Denies S, Cicchelero L, Polis I, Sanders NN. Immunogenicity and safety of xenogeneic vascular endothelial growth factor receptor-2 DNA vaccination in mice and dogs. Oncotarget. 2016;7(10):10905–16.PubMedPubMedCentralCrossRef
37.
go back to reference Lopes A, Vanvarenberg K, Preat V, Vandermeulen G. Codon-optimized P1A-encoding DNA vaccine: toward a therapeutic vaccination against P815 Mastocytoma. Molecular therapy Nucleic acids. 2017;8:404–15.PubMedPubMedCentralCrossRef Lopes A, Vanvarenberg K, Preat V, Vandermeulen G. Codon-optimized P1A-encoding DNA vaccine: toward a therapeutic vaccination against P815 Mastocytoma. Molecular therapy Nucleic acids. 2017;8:404–15.PubMedPubMedCentralCrossRef
38.
go back to reference Suschak JJ, Williams JA, Schmaljohn CS. Advancements in DNA vaccine vectors, non-mechanical delivery methods, and molecular adjuvants to increase immunogenicity. Human vaccines & immunotherapeutics. 2017;13(12):2837–48.CrossRef Suschak JJ, Williams JA, Schmaljohn CS. Advancements in DNA vaccine vectors, non-mechanical delivery methods, and molecular adjuvants to increase immunogenicity. Human vaccines & immunotherapeutics. 2017;13(12):2837–48.CrossRef
39.
go back to reference Jorritsma SHT, Gowans EJ, Grubor-Bauk B, Wijesundara DK. Delivery methods to increase cellular uptake and immunogenicity of DNA vaccines. Vaccine. 2016;34(46):5488–94.PubMedCrossRef Jorritsma SHT, Gowans EJ, Grubor-Bauk B, Wijesundara DK. Delivery methods to increase cellular uptake and immunogenicity of DNA vaccines. Vaccine. 2016;34(46):5488–94.PubMedCrossRef
40.
go back to reference Lambricht L, Vanvarenberg K, De Beuckelaer A, Van Hoecke L, Grooten J, Ucakar B, et al. Coadministration of a plasmid encoding HIV-1 gag enhances the efficacy of Cancer DNA vaccines. Molecular therapy : the journal of the American Society of Gene Therapy. 2016;24(9):1686–96.CrossRef Lambricht L, Vanvarenberg K, De Beuckelaer A, Van Hoecke L, Grooten J, Ucakar B, et al. Coadministration of a plasmid encoding HIV-1 gag enhances the efficacy of Cancer DNA vaccines. Molecular therapy : the journal of the American Society of Gene Therapy. 2016;24(9):1686–96.CrossRef
41.
go back to reference Aldous AR, Dong JZ. Personalized neoantigen vaccines: a new approach to cancer immunotherapy. Bioorg Med Chem. 2018;26(10):2842–9.PubMedCrossRef Aldous AR, Dong JZ. Personalized neoantigen vaccines: a new approach to cancer immunotherapy. Bioorg Med Chem. 2018;26(10):2842–9.PubMedCrossRef
42.
43.
go back to reference Riccardo F, Bolli E, Macagno M, Arigoni M, Cavallo F, Quaglino E. Chimeric DNA vaccines: an effective way to overcome immune tolerance. Curr Top Microbiol Immunol. 2017;405:99–122.PubMed Riccardo F, Bolli E, Macagno M, Arigoni M, Cavallo F, Quaglino E. Chimeric DNA vaccines: an effective way to overcome immune tolerance. Curr Top Microbiol Immunol. 2017;405:99–122.PubMed
44.
go back to reference Soong RS, Trieu J, Lee SY, He L, Tsai YC, Wu TC, et al. Xenogeneic human p53 DNA vaccination by electroporation breaks immune tolerance to control murine tumors expressing mouse p53. PLoS One. 2013;8(2):e56912.PubMedPubMedCentralCrossRef Soong RS, Trieu J, Lee SY, He L, Tsai YC, Wu TC, et al. Xenogeneic human p53 DNA vaccination by electroporation breaks immune tolerance to control murine tumors expressing mouse p53. PLoS One. 2013;8(2):e56912.PubMedPubMedCentralCrossRef
45.
go back to reference Sioud M, Sørensen D. Generation of an effective anti-tumor immunity after immunization with xenogeneic antigens. Eur J Immunol. 2003;33(1):38–45.PubMedCrossRef Sioud M, Sørensen D. Generation of an effective anti-tumor immunity after immunization with xenogeneic antigens. Eur J Immunol. 2003;33(1):38–45.PubMedCrossRef
46.
go back to reference Wei Y, Sun Y, Song C, Li H, Li Y, Zhang K, et al. Enhancement of DNA vaccine efficacy by targeting the xenogeneic human chorionic gonadotropin, survivin and vascular endothelial growth factor receptor 2 combined tumor antigen to the major histocompatibility complex class II pathway. The journal of gene medicine. 2012;14(5):353–62.PubMedCrossRef Wei Y, Sun Y, Song C, Li H, Li Y, Zhang K, et al. Enhancement of DNA vaccine efficacy by targeting the xenogeneic human chorionic gonadotropin, survivin and vascular endothelial growth factor receptor 2 combined tumor antigen to the major histocompatibility complex class II pathway. The journal of gene medicine. 2012;14(5):353–62.PubMedCrossRef
47.
go back to reference Grosenbaugh DA, Leard AT, Bergman PJ, Klein MK, Meleo K, Susaneck S, et al. Safety and efficacy of a xenogeneic DNA vaccine encoding for human tyrosinase as adjunctive treatment for oral malignant melanoma in dogs following surgical excision of the primary tumor. Am J Vet Res. 2011;72(12):1631–8.PubMedCrossRef Grosenbaugh DA, Leard AT, Bergman PJ, Klein MK, Meleo K, Susaneck S, et al. Safety and efficacy of a xenogeneic DNA vaccine encoding for human tyrosinase as adjunctive treatment for oral malignant melanoma in dogs following surgical excision of the primary tumor. Am J Vet Res. 2011;72(12):1631–8.PubMedCrossRef
48.
go back to reference Quaglino E, Riccardo F, Macagno M, Bandini S, Cojoca R, Ercole E, et al. Chimeric DNA vaccines against ErbB2+ carcinomas: from mice to humans. Cancers. 2011;3(3):3225–41.PubMedPubMedCentralCrossRef Quaglino E, Riccardo F, Macagno M, Bandini S, Cojoca R, Ercole E, et al. Chimeric DNA vaccines against ErbB2+ carcinomas: from mice to humans. Cancers. 2011;3(3):3225–41.PubMedPubMedCentralCrossRef
49.
go back to reference Almajhdi FN, Senger T, Amer HM, Gissmann L, Ohlschlager P. Design of a highly effective therapeutic HPV16 E6/E7-specific DNA vaccine: optimization by different ways of sequence rearrangements (shuffling). PLoS One. 2014;9(11):e113461.PubMedPubMedCentralCrossRef Almajhdi FN, Senger T, Amer HM, Gissmann L, Ohlschlager P. Design of a highly effective therapeutic HPV16 E6/E7-specific DNA vaccine: optimization by different ways of sequence rearrangements (shuffling). PLoS One. 2014;9(11):e113461.PubMedPubMedCentralCrossRef
50.
go back to reference Aurisicchio L, Roscilli G, Marra E, Luberto L, Mancini R, La Monica N, et al. Superior immunologic and therapeutic efficacy of a xenogeneic genetic Cancer vaccine targeting carcinoembryonic human antigen. Hum Gene Ther. 2015;26(6):386–98.PubMedPubMedCentralCrossRef Aurisicchio L, Roscilli G, Marra E, Luberto L, Mancini R, La Monica N, et al. Superior immunologic and therapeutic efficacy of a xenogeneic genetic Cancer vaccine targeting carcinoembryonic human antigen. Hum Gene Ther. 2015;26(6):386–98.PubMedPubMedCentralCrossRef
51.
go back to reference Occhipinti S, Sponton L, Rolla S, Caorsi C, Novarino A, Donadio M, et al. Chimeric rat/human HER2 efficiently circumvents HER2 tolerance in cancer patients. Clinical cancer research : an official journal of the American Association for Cancer Research. 2014;20(11):2910–21.CrossRef Occhipinti S, Sponton L, Rolla S, Caorsi C, Novarino A, Donadio M, et al. Chimeric rat/human HER2 efficiently circumvents HER2 tolerance in cancer patients. Clinical cancer research : an official journal of the American Association for Cancer Research. 2014;20(11):2910–21.CrossRef
52.
go back to reference Ruffini PA, Os A, Dolcetti R, Tjonnfjord GE, Munthe LA, Bogen B. Targeted DNA vaccines eliciting crossreactive anti-idiotypic antibody responses against human B cell malignancies in mice. J Transl Med. 2014;12:207.PubMedPubMedCentralCrossRef Ruffini PA, Os A, Dolcetti R, Tjonnfjord GE, Munthe LA, Bogen B. Targeted DNA vaccines eliciting crossreactive anti-idiotypic antibody responses against human B cell malignancies in mice. J Transl Med. 2014;12:207.PubMedPubMedCentralCrossRef
53.
go back to reference Yuan J, Ku GY, Gallardo HF, Orlandi F, Manukian G, Rasalan TS, et al. Safety and immunogenicity of a human and mouse gp100 DNA vaccine in a phase I trial of patients with melanoma. Cancer Immun. 2009;9:5.PubMedPubMedCentral Yuan J, Ku GY, Gallardo HF, Orlandi F, Manukian G, Rasalan TS, et al. Safety and immunogenicity of a human and mouse gp100 DNA vaccine in a phase I trial of patients with melanoma. Cancer Immun. 2009;9:5.PubMedPubMedCentral
54.
go back to reference Yuan J, Ku GY, Adamow M, Mu Z, Tandon S, Hannaman D, et al. Immunologic responses to xenogeneic tyrosinase DNA vaccine administered by electroporation in patients with malignant melanoma. Journal for immunotherapy of cancer. 2013;1:20.PubMedPubMedCentralCrossRef Yuan J, Ku GY, Adamow M, Mu Z, Tandon S, Hannaman D, et al. Immunologic responses to xenogeneic tyrosinase DNA vaccine administered by electroporation in patients with malignant melanoma. Journal for immunotherapy of cancer. 2013;1:20.PubMedPubMedCentralCrossRef
55.
go back to reference Brennick CA, George MM, Corwin WL, Srivastava PK, Ebrahimi-Nik H. Neoepitopes as cancer immunotherapy targets: key challenges and opportunities. Immunotherapy. 2017;9(4):361–71.PubMedCrossRef Brennick CA, George MM, Corwin WL, Srivastava PK, Ebrahimi-Nik H. Neoepitopes as cancer immunotherapy targets: key challenges and opportunities. Immunotherapy. 2017;9(4):361–71.PubMedCrossRef
56.
go back to reference Aurisicchio L, Pallocca M, Ciliberto G, Palombo F. The perfect personalized cancer therapy: cancer vaccines against neoantigens. Journal of experimental & clinical cancer research : CR. 2018;37(1):86.CrossRefPubMedCentral Aurisicchio L, Pallocca M, Ciliberto G, Palombo F. The perfect personalized cancer therapy: cancer vaccines against neoantigens. Journal of experimental & clinical cancer research : CR. 2018;37(1):86.CrossRefPubMedCentral
57.
go back to reference Keskin DB, Anandappa AJ, Sun J, Tirosh I, Mathewson ND, Li S, et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature. 2019;565(7738):234–9.PubMedCrossRef Keskin DB, Anandappa AJ, Sun J, Tirosh I, Mathewson ND, Li S, et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature. 2019;565(7738):234–9.PubMedCrossRef
58.
go back to reference Sahin U, Tureci O. Personalized vaccines for cancer immunotherapy. Science. 2018;359(6382):1355–60.PubMedCrossRef Sahin U, Tureci O. Personalized vaccines for cancer immunotherapy. Science. 2018;359(6382):1355–60.PubMedCrossRef
59.
60.
go back to reference Duperret EK, Perales-Puchalt A, Stoltz R, Hiranjith GH, Mandloi N, Barlow J, et al. A Synthetic DNA, Multi-Neoantigen Vaccine Drives Predominately MHC Class I CD8<sup>+</sup> T-cell Responses, Impacting Tumor Challenge. Cancer Immunology Research. 2019;7(2):174.PubMedCrossRefPubMedCentral Duperret EK, Perales-Puchalt A, Stoltz R, Hiranjith GH, Mandloi N, Barlow J, et al. A Synthetic DNA, Multi-Neoantigen Vaccine Drives Predominately MHC Class I CD8<sup>+</sup> T-cell Responses, Impacting Tumor Challenge. Cancer Immunology Research. 2019;7(2):174.PubMedCrossRefPubMedCentral
62.
go back to reference Kreiter S, Vormehr M, van de Roemer N, Diken M, Lower M, Diekmann J, et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature. 2015;520(7549):692–6.PubMedPubMedCentralCrossRef Kreiter S, Vormehr M, van de Roemer N, Diken M, Lower M, Diekmann J, et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature. 2015;520(7549):692–6.PubMedPubMedCentralCrossRef
63.
go back to reference Lee CH, Yelensky R, Jooss K, Chan TA. Update on tumor Neoantigens and their utility: why it is good to be different. Trends Immunol. 2018;39(7):536–48.PubMedCrossRefPubMedCentral Lee CH, Yelensky R, Jooss K, Chan TA. Update on tumor Neoantigens and their utility: why it is good to be different. Trends Immunol. 2018;39(7):536–48.PubMedCrossRefPubMedCentral
64.
go back to reference Hundal J, Carreno BM, Petti AA, Linette GP, Griffith OL, Mardis ER, et al. pVAC-Seq: a genome-guided in silico approach to identifying tumor neoantigens. Genome medicine. 2016;8(1):11.PubMedPubMedCentralCrossRef Hundal J, Carreno BM, Petti AA, Linette GP, Griffith OL, Mardis ER, et al. pVAC-Seq: a genome-guided in silico approach to identifying tumor neoantigens. Genome medicine. 2016;8(1):11.PubMedPubMedCentralCrossRef
65.
go back to reference Hellmann MD, Snyder A. Making it personal: Neoantigen vaccines in metastatic melanoma. Immunity. 2017;47(2):221–3.PubMedCrossRef Hellmann MD, Snyder A. Making it personal: Neoantigen vaccines in metastatic melanoma. Immunity. 2017;47(2):221–3.PubMedCrossRef
66.
go back to reference Sahin U, Derhovanessian E, Miller M, Kloke B-P, Simon P, Löwer M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature. 2017;547:222.PubMedCrossRef Sahin U, Derhovanessian E, Miller M, Kloke B-P, Simon P, Löwer M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature. 2017;547:222.PubMedCrossRef
67.
go back to reference Marusyk A, Almendro V, Polyak K. Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer. 2012;12:323.PubMedCrossRef Marusyk A, Almendro V, Polyak K. Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer. 2012;12:323.PubMedCrossRef
68.
go back to reference Duperret EK, Perales-Puchalt A, Stoltz R. G HH, Mandloi N, Barlow J, et al. a synthetic DNA, multi-Neoantigen vaccine drives predominately MHC class I CD8(+) T-cell responses, impacting tumor challenge. Cancer immunology research. 2019;7(2):174–82.PubMedCrossRefPubMedCentral Duperret EK, Perales-Puchalt A, Stoltz R. G HH, Mandloi N, Barlow J, et al. a synthetic DNA, multi-Neoantigen vaccine drives predominately MHC class I CD8(+) T-cell responses, impacting tumor challenge. Cancer immunology research. 2019;7(2):174–82.PubMedCrossRefPubMedCentral
69.
go back to reference Bae J, Prabhala R, Voskertchian A, Brown A, Maguire C, Richardson P, et al. A multiepitope of XBP1, CD138 and CS1 peptides induces myeloma-specific cytotoxic T lymphocytes in T cells of smoldering myeloma patients. Leukemia. 2015;29(1):218–29.PubMedCrossRef Bae J, Prabhala R, Voskertchian A, Brown A, Maguire C, Richardson P, et al. A multiepitope of XBP1, CD138 and CS1 peptides induces myeloma-specific cytotoxic T lymphocytes in T cells of smoldering myeloma patients. Leukemia. 2015;29(1):218–29.PubMedCrossRef
71.
go back to reference Tan AC, La Gruta NL, Zeng W, Jackson DC. Precursor frequency and competition dictate the HLA-A2-restricted CD8+ T cell responses to influenza a infection and vaccination in HLA-A2.1 transgenic mice. J Immunol. 2011;187(4):1895–902.PubMedCrossRef Tan AC, La Gruta NL, Zeng W, Jackson DC. Precursor frequency and competition dictate the HLA-A2-restricted CD8+ T cell responses to influenza a infection and vaccination in HLA-A2.1 transgenic mice. J Immunol. 2011;187(4):1895–902.PubMedCrossRef
72.
go back to reference Palmowski M, Salio M, Dunbar RP, Cerundolo V. The use of HLA class I tetramers to design a vaccination strategy for melanoma patients. Immunol Rev. 2002;188:155–63.PubMedCrossRef Palmowski M, Salio M, Dunbar RP, Cerundolo V. The use of HLA class I tetramers to design a vaccination strategy for melanoma patients. Immunol Rev. 2002;188:155–63.PubMedCrossRef
73.
go back to reference Durantez M, Lopez-Vazquez AB, de Cerio AL, Huarte E, Casares N, Prieto J, et al. Induction of multiepitopic and long-lasting immune responses against tumour antigens by immunization with peptides, DNA and recombinant adenoviruses expressing minigenes. Scand J Immunol. 2009;69(2):80–9.PubMedCrossRef Durantez M, Lopez-Vazquez AB, de Cerio AL, Huarte E, Casares N, Prieto J, et al. Induction of multiepitopic and long-lasting immune responses against tumour antigens by immunization with peptides, DNA and recombinant adenoviruses expressing minigenes. Scand J Immunol. 2009;69(2):80–9.PubMedCrossRef
74.
go back to reference Galaine J, Borg C, Godet Y, Adotevi O. Interest of tumor-specific CD4 T helper 1 cells for therapeutic anticancer vaccine. Vaccines. 2015;3(3):490–502.PubMedPubMedCentralCrossRef Galaine J, Borg C, Godet Y, Adotevi O. Interest of tumor-specific CD4 T helper 1 cells for therapeutic anticancer vaccine. Vaccines. 2015;3(3):490–502.PubMedPubMedCentralCrossRef
75.
go back to reference Protti MP, Monte LD, Lullo GD. Tumor antigen-specific CD4+ T cells in cancer immunity: from antigen identification to tumor prognosis and development of therapeutic strategies. Tissue Antigens. 2014;83(4):237–46.PubMedCrossRef Protti MP, Monte LD, Lullo GD. Tumor antigen-specific CD4+ T cells in cancer immunity: from antigen identification to tumor prognosis and development of therapeutic strategies. Tissue Antigens. 2014;83(4):237–46.PubMedCrossRef
76.
go back to reference Efremova M, Finotello F, Rieder D, Trajanoski Z. Neoantigens generated by individual mutations and their role in Cancer immunity and immunotherapy. Front Immunol. 2017;8:1679.PubMedPubMedCentralCrossRef Efremova M, Finotello F, Rieder D, Trajanoski Z. Neoantigens generated by individual mutations and their role in Cancer immunity and immunotherapy. Front Immunol. 2017;8:1679.PubMedPubMedCentralCrossRef
77.
go back to reference Doan T, Herd K, Ramshaw I, Thomson S, Tindle RW. A polytope DNA vaccine elicits multiple effector and memory CTL responses and protects against human papillomavirus 16 E7-expressing tumour. Cancer immunology, immunotherapy : CII. 2005;54(2):157–71.PubMedCrossRef Doan T, Herd K, Ramshaw I, Thomson S, Tindle RW. A polytope DNA vaccine elicits multiple effector and memory CTL responses and protects against human papillomavirus 16 E7-expressing tumour. Cancer immunology, immunotherapy : CII. 2005;54(2):157–71.PubMedCrossRef
78.
go back to reference Lund LH, Andersson K, Zuber B, Karlsson A, Engstrom G, Hinkula J, et al. Signal sequence deletion and fusion to tetanus toxoid epitope augment antitumor immune responses to a human carcinoembryonic antigen (CEA) plasmid DNA vaccine in a murine test system. Cancer Gene Ther. 2003;10(5):365–76.PubMedCrossRef Lund LH, Andersson K, Zuber B, Karlsson A, Engstrom G, Hinkula J, et al. Signal sequence deletion and fusion to tetanus toxoid epitope augment antitumor immune responses to a human carcinoembryonic antigen (CEA) plasmid DNA vaccine in a murine test system. Cancer Gene Ther. 2003;10(5):365–76.PubMedCrossRef
79.
go back to reference Lu Y, Ouyang K, Fang J, Zhang H, Wu G, Ma Y, et al. Improved efficacy of DNA vaccination against prostate carcinoma by boosting with recombinant protein vaccine and by introduction of a novel adjuvant epitope. Vaccine. 2009;27(39):5411–8.PubMedCrossRef Lu Y, Ouyang K, Fang J, Zhang H, Wu G, Ma Y, et al. Improved efficacy of DNA vaccination against prostate carcinoma by boosting with recombinant protein vaccine and by introduction of a novel adjuvant epitope. Vaccine. 2009;27(39):5411–8.PubMedCrossRef
80.
go back to reference Scardino A, Alimandi M, Correale P, Smith SG, Bei R, Firat H, et al. A polyepitope DNA vaccine targeted to her-2/ErbB-2 elicits a broad range of human and murine CTL effectors to protect against tumor challenge. Cancer Res. 2007;67(14):7028–36.PubMedCrossRef Scardino A, Alimandi M, Correale P, Smith SG, Bei R, Firat H, et al. A polyepitope DNA vaccine targeted to her-2/ErbB-2 elicits a broad range of human and murine CTL effectors to protect against tumor challenge. Cancer Res. 2007;67(14):7028–36.PubMedCrossRef
81.
go back to reference Wu A, Zeng Q, Kang TH, Peng S, Roosinovich E, Pai SI, et al. Innovative DNA vaccine for human papillomavirus (HPV)-associated head and neck cancer. Gene Ther. 2011;18(3):304–12.PubMedCrossRef Wu A, Zeng Q, Kang TH, Peng S, Roosinovich E, Pai SI, et al. Innovative DNA vaccine for human papillomavirus (HPV)-associated head and neck cancer. Gene Ther. 2011;18(3):304–12.PubMedCrossRef
82.
go back to reference Cho HI, Celis E. Design of immunogenic and effective multi-epitope DNA vaccines for melanoma. Cancer immunology, immunotherapy : CII. 2012;61(3):343–51.PubMedCrossRef Cho HI, Celis E. Design of immunogenic and effective multi-epitope DNA vaccines for melanoma. Cancer immunology, immunotherapy : CII. 2012;61(3):343–51.PubMedCrossRef
83.
go back to reference Hung CF, Tsai YC, He L, Wu TC. DNA vaccines encoding ii-PADRE generates potent PADRE-specific CD4+ T-cell immune responses and enhances vaccine potency. Molecular therapy : the journal of the American Society of Gene Therapy. 2007;15(6):1211–9.CrossRef Hung CF, Tsai YC, He L, Wu TC. DNA vaccines encoding ii-PADRE generates potent PADRE-specific CD4+ T-cell immune responses and enhances vaccine potency. Molecular therapy : the journal of the American Society of Gene Therapy. 2007;15(6):1211–9.CrossRef
84.
go back to reference Park JY, Jin DH, Lee CM, Jang MJ, Lee SY, Shin HS, et al. CD4+ TH1 cells generated by ii-PADRE DNA at prime phase are important to induce effectors and memory CD8+ T cells. J Immunother. 2010;33(5):510–22.PubMedCrossRef Park JY, Jin DH, Lee CM, Jang MJ, Lee SY, Shin HS, et al. CD4+ TH1 cells generated by ii-PADRE DNA at prime phase are important to induce effectors and memory CD8+ T cells. J Immunother. 2010;33(5):510–22.PubMedCrossRef
85.
go back to reference Vigneron N, Stroobant V, Van den Eynde BJ, van der Bruggen P. Database of T cell-defined human tumor antigens: the 2013 update. Cancer Immun. 2013;13:15.PubMedPubMedCentral Vigneron N, Stroobant V, Van den Eynde BJ, van der Bruggen P. Database of T cell-defined human tumor antigens: the 2013 update. Cancer Immun. 2013;13:15.PubMedPubMedCentral
86.
go back to reference Khalili S, Rahbar MR, Dezfulian MH, Jahangiri A. In silico analyses of Wilms′ tumor protein to designing a novel multi-epitope DNA vaccine against cancer. J Theor Biol. 2015;379:66–78.PubMedCrossRef Khalili S, Rahbar MR, Dezfulian MH, Jahangiri A. In silico analyses of Wilms′ tumor protein to designing a novel multi-epitope DNA vaccine against cancer. J Theor Biol. 2015;379:66–78.PubMedCrossRef
87.
go back to reference Wu Y, Zhai W, Sun M, Zou Z, Zhou X, Li G, et al. A novel recombinant multi-epitope vaccine could induce specific cytotoxic T lymphocyte response in vitro and in vivo. Protein and peptide letters. 2017;24(6):573–80.PubMedCrossRef Wu Y, Zhai W, Sun M, Zou Z, Zhou X, Li G, et al. A novel recombinant multi-epitope vaccine could induce specific cytotoxic T lymphocyte response in vitro and in vivo. Protein and peptide letters. 2017;24(6):573–80.PubMedCrossRef
88.
go back to reference Ahrends T, Babala N, Xiao Y, Yagita H, van Eenennaam H, Borst J. CD27 Agonism plus PD-1 blockade recapitulates CD4+ T-cell help in therapeutic anticancer vaccination. Cancer Res. 2016;76(10):2921–31.PubMedCrossRef Ahrends T, Babala N, Xiao Y, Yagita H, van Eenennaam H, Borst J. CD27 Agonism plus PD-1 blockade recapitulates CD4+ T-cell help in therapeutic anticancer vaccination. Cancer Res. 2016;76(10):2921–31.PubMedCrossRef
89.
go back to reference Chen R, Wang S, Yao Y, Zhou Y, Zhang C, Fang J, et al. Anti-metastatic effects of DNA vaccine encoding single-chain trimer composed of MHC I and vascular endothelial growth factor receptor 2 peptide. Oncol Rep. 2015;33(5):2269–76.PubMedCrossRef Chen R, Wang S, Yao Y, Zhou Y, Zhang C, Fang J, et al. Anti-metastatic effects of DNA vaccine encoding single-chain trimer composed of MHC I and vascular endothelial growth factor receptor 2 peptide. Oncol Rep. 2015;33(5):2269–76.PubMedCrossRef
90.
go back to reference Villarreal DO, Wise MC, Siefert RJ, Yan J, Wood LM, Weiner DB. Ubiquitin-like molecule ISG15 acts as an immune adjuvant to enhance antigen-specific CD8 T-cell tumor immunity. Mol Ther. 2015;23(10):1653–62.PubMedPubMedCentralCrossRef Villarreal DO, Wise MC, Siefert RJ, Yan J, Wood LM, Weiner DB. Ubiquitin-like molecule ISG15 acts as an immune adjuvant to enhance antigen-specific CD8 T-cell tumor immunity. Mol Ther. 2015;23(10):1653–62.PubMedPubMedCentralCrossRef
91.
go back to reference Vandermeulen G, Vanvarenberg K, De Beuckelaer A, De Koker S, Lambricht L, Uyttenhove C, et al. The site of administration influences both the type and the magnitude of the immune response induced by DNA vaccine electroporation. Vaccine. 2015;33(28):3179–85.PubMedCrossRef Vandermeulen G, Vanvarenberg K, De Beuckelaer A, De Koker S, Lambricht L, Uyttenhove C, et al. The site of administration influences both the type and the magnitude of the immune response induced by DNA vaccine electroporation. Vaccine. 2015;33(28):3179–85.PubMedCrossRef
92.
go back to reference Melero I, Berman DM, Aznar MA, Korman AJ, Perez Gracia JL, Haanen J. Evolving synergistic combinations of targeted immunotherapies to combat cancer. Nat Rev Cancer. 2015;15(8):457–72.PubMedCrossRef Melero I, Berman DM, Aznar MA, Korman AJ, Perez Gracia JL, Haanen J. Evolving synergistic combinations of targeted immunotherapies to combat cancer. Nat Rev Cancer. 2015;15(8):457–72.PubMedCrossRef
93.
go back to reference McDermott DF, Regan MM, Clark JI, Flaherty LE, Weiss GR, Logan TF, et al. Randomized phase III trial of high-dose interleukin-2 versus subcutaneous interleukin-2 and interferon in patients with metastatic renal cell carcinoma. J Clin Oncol. 2005;23(1):133–41.PubMedCrossRef McDermott DF, Regan MM, Clark JI, Flaherty LE, Weiss GR, Logan TF, et al. Randomized phase III trial of high-dose interleukin-2 versus subcutaneous interleukin-2 and interferon in patients with metastatic renal cell carcinoma. J Clin Oncol. 2005;23(1):133–41.PubMedCrossRef
94.
go back to reference Gupta S, Termini JM, Rivas Y, Otero M, Raffa FN, Bhat V, et al. A multi-trimeric fusion of CD40L and gp100 tumor antigen activates dendritic cells and enhances survival in a B16-F10 melanoma DNA vaccine model. Vaccine. 2015;33(38):4798–806.PubMedPubMedCentralCrossRef Gupta S, Termini JM, Rivas Y, Otero M, Raffa FN, Bhat V, et al. A multi-trimeric fusion of CD40L and gp100 tumor antigen activates dendritic cells and enhances survival in a B16-F10 melanoma DNA vaccine model. Vaccine. 2015;33(38):4798–806.PubMedPubMedCentralCrossRef
95.
go back to reference Diniz MO, Sales NS, Silva JR, Ferreira LC. Protection against HPV-16-associated tumors requires the activation of CD8+ effector memory T cells and the control of myeloid-derived suppressor cells. Mol Cancer Ther. 2016;15(8):1920–30.PubMedCrossRef Diniz MO, Sales NS, Silva JR, Ferreira LC. Protection against HPV-16-associated tumors requires the activation of CD8+ effector memory T cells and the control of myeloid-derived suppressor cells. Mol Cancer Ther. 2016;15(8):1920–30.PubMedCrossRef
96.
go back to reference Cunha LL, Marcello MA, Rocha-Santos V, Ward LS. Immunotherapy against endocrine malignancies: immune checkpoint inhibitors lead the way. Endocr Relat Cancer. 2017;24(12):T261–T81.PubMedCrossRef Cunha LL, Marcello MA, Rocha-Santos V, Ward LS. Immunotherapy against endocrine malignancies: immune checkpoint inhibitors lead the way. Endocr Relat Cancer. 2017;24(12):T261–T81.PubMedCrossRef
98.
go back to reference Puzanov I, Milhem MM, Andtbacka RHI, Minor DR, Hamid O, Li A, et al. Primary analysis of a phase 1b multicenter trial to evaluate safety and efficacy of talimogene laherparepvec (T-VEC) and ipilimumab (ipi) in previously untreated, unresected stage IIIB-IV melanoma. J Clin Oncol. 2014;32(15_suppl):9029.CrossRef Puzanov I, Milhem MM, Andtbacka RHI, Minor DR, Hamid O, Li A, et al. Primary analysis of a phase 1b multicenter trial to evaluate safety and efficacy of talimogene laherparepvec (T-VEC) and ipilimumab (ipi) in previously untreated, unresected stage IIIB-IV melanoma. J Clin Oncol. 2014;32(15_suppl):9029.CrossRef
99.
go back to reference Sandin LC, Eriksson F, Ellmark P, Loskog AS, Totterman TH, Mangsbo SM. Local CTLA4 blockade effectively restrains experimental pancreatic adenocarcinoma growth in vivo. Oncoimmunology. 2014;3(1):e27614.PubMedPubMedCentralCrossRef Sandin LC, Eriksson F, Ellmark P, Loskog AS, Totterman TH, Mangsbo SM. Local CTLA4 blockade effectively restrains experimental pancreatic adenocarcinoma growth in vivo. Oncoimmunology. 2014;3(1):e27614.PubMedPubMedCentralCrossRef
100.
go back to reference Gao Y, Whitaker-Dowling P, Griffin JA, Barmada MA, Bergman I. Recombinant vesicular stomatitis virus targeted to Her2/neu combined with anti-CTLA4 antibody eliminates implanted mammary tumors. Cancer Gene Ther. 2009;16(1):44–52.PubMedCrossRef Gao Y, Whitaker-Dowling P, Griffin JA, Barmada MA, Bergman I. Recombinant vesicular stomatitis virus targeted to Her2/neu combined with anti-CTLA4 antibody eliminates implanted mammary tumors. Cancer Gene Ther. 2009;16(1):44–52.PubMedCrossRef
101.
go back to reference Furness AJ, Quezada SA, Peggs KS. Neoantigen heterogeneity: a key driver of immune response and sensitivity to immune checkpoint blockade? Immunotherapy. 2016;8(7):763–6.PubMedCrossRef Furness AJ, Quezada SA, Peggs KS. Neoantigen heterogeneity: a key driver of immune response and sensitivity to immune checkpoint blockade? Immunotherapy. 2016;8(7):763–6.PubMedCrossRef
102.
go back to reference Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014;371(23):2189–99.PubMedPubMedCentralCrossRef Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014;371(23):2189–99.PubMedPubMedCentralCrossRef
103.
go back to reference Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124–8.PubMedPubMedCentralCrossRef Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124–8.PubMedPubMedCentralCrossRef
104.
go back to reference Maleki VS. High and low mutational burden tumors versus immunologically hot and cold tumors and response to immune checkpoint inhibitors. J Immunotherapy Cancer. 2018;6(1):157.CrossRef Maleki VS. High and low mutational burden tumors versus immunologically hot and cold tumors and response to immune checkpoint inhibitors. J Immunotherapy Cancer. 2018;6(1):157.CrossRef
105.
go back to reference Hu ZI, Ho AY, McArthur HL. Combined radiation therapy and immune checkpoint blockade therapy for breast Cancer. Int J Radiat Oncol Biol Phys. 2017;99(1):153–64.PubMedCrossRef Hu ZI, Ho AY, McArthur HL. Combined radiation therapy and immune checkpoint blockade therapy for breast Cancer. Int J Radiat Oncol Biol Phys. 2017;99(1):153–64.PubMedCrossRef
106.
go back to reference Messenheimer DJ, Jensen SM, Afentoulis ME, Wegmann KW, Feng Z, Friedman DJ, et al. Timing of PD-1 blockade is critical to effective combination immunotherapy with anti-OX40. Clinical cancer research : an official journal of the American Association for Cancer Research. 2017;23(20):6165–77.CrossRef Messenheimer DJ, Jensen SM, Afentoulis ME, Wegmann KW, Feng Z, Friedman DJ, et al. Timing of PD-1 blockade is critical to effective combination immunotherapy with anti-OX40. Clinical cancer research : an official journal of the American Association for Cancer Research. 2017;23(20):6165–77.CrossRef
107.
go back to reference Kleinovink JW, Fransen MF, Lowik CW, Ossendorp F. Photodynamic-immune checkpoint therapy eradicates local and distant tumors by CD8(+) T cells. Cancer immunology research. 2017;5(10):832–8.PubMedCrossRef Kleinovink JW, Fransen MF, Lowik CW, Ossendorp F. Photodynamic-immune checkpoint therapy eradicates local and distant tumors by CD8(+) T cells. Cancer immunology research. 2017;5(10):832–8.PubMedCrossRef
108.
go back to reference Xue W, Metheringham RL, Brentville VA, Gunn B, Symonds P, Yagita H, et al. SCIB2, an antibody DNA vaccine encoding NY-ESO-1 epitopes, induces potent antitumor immunity which is further enhanced by checkpoint blockade. Oncoimmunology. 2016;5(6):e1169353.PubMedPubMedCentralCrossRef Xue W, Metheringham RL, Brentville VA, Gunn B, Symonds P, Yagita H, et al. SCIB2, an antibody DNA vaccine encoding NY-ESO-1 epitopes, induces potent antitumor immunity which is further enhanced by checkpoint blockade. Oncoimmunology. 2016;5(6):e1169353.PubMedPubMedCentralCrossRef
109.
go back to reference Lopes A, Vanvarenberg K, Kos S, Lucas S, Colau D, Van den Eynde B, et al. Combination of immune checkpoint blockade with DNA cancer vaccine induces potent antitumor immunity against P815 mastocytoma. Sci Rep. 2018;8(1):15732.PubMedPubMedCentralCrossRef Lopes A, Vanvarenberg K, Kos S, Lucas S, Colau D, Van den Eynde B, et al. Combination of immune checkpoint blockade with DNA cancer vaccine induces potent antitumor immunity against P815 mastocytoma. Sci Rep. 2018;8(1):15732.PubMedPubMedCentralCrossRef
110.
go back to reference Masucci GV, Cesano A, Hawtin R, Janetzki S, Zhang J, Kirsch I, et al. Validation of biomarkers to predict response to immunotherapy in cancer: volume I - pre-analytical and analytical validation. Journal for immunotherapy of cancer. 2016;4:76.PubMedPubMedCentralCrossRef Masucci GV, Cesano A, Hawtin R, Janetzki S, Zhang J, Kirsch I, et al. Validation of biomarkers to predict response to immunotherapy in cancer: volume I - pre-analytical and analytical validation. Journal for immunotherapy of cancer. 2016;4:76.PubMedPubMedCentralCrossRef
111.
go back to reference Chabanon RM, Pedrero M, Lefebvre C, Marabelle A, Soria JC, Postel-Vinay S. Mutational landscape and sensitivity to immune checkpoint blockers. Clinical cancer research : an official journal of the American Association for Cancer Research. 2016;22(17):4309–21.CrossRef Chabanon RM, Pedrero M, Lefebvre C, Marabelle A, Soria JC, Postel-Vinay S. Mutational landscape and sensitivity to immune checkpoint blockers. Clinical cancer research : an official journal of the American Association for Cancer Research. 2016;22(17):4309–21.CrossRef
112.
go back to reference Sasso MS, Lollo G, Pitorre M, Solito S, Pinton L, Valpione S, et al. Low dose gemcitabine-loaded lipid nanocapsules target monocytic myeloid-derived suppressor cells and potentiate cancer immunotherapy. Biomaterials. 2016;96:47–62.PubMedCrossRef Sasso MS, Lollo G, Pitorre M, Solito S, Pinton L, Valpione S, et al. Low dose gemcitabine-loaded lipid nanocapsules target monocytic myeloid-derived suppressor cells and potentiate cancer immunotherapy. Biomaterials. 2016;96:47–62.PubMedCrossRef
113.
go back to reference Sevko A, Kremer V, Falk C, Umansky L, Shurin MR, Shurin GV, et al. Application of paclitaxel in low non-cytotoxic doses supports vaccination with melanoma antigens in normal mice. J Immunotoxicol. 2012;9(3):275–81.PubMedCrossRef Sevko A, Kremer V, Falk C, Umansky L, Shurin MR, Shurin GV, et al. Application of paclitaxel in low non-cytotoxic doses supports vaccination with melanoma antigens in normal mice. J Immunotoxicol. 2012;9(3):275–81.PubMedCrossRef
114.
go back to reference Wu J, Waxman DJ. Metronomic cyclophosphamide eradicates large implanted GL261 gliomas by activating antitumor Cd8(+) T-cell responses and immune memory. Oncoimmunology. 2015;4(4):e1005521.PubMedPubMedCentralCrossRef Wu J, Waxman DJ. Metronomic cyclophosphamide eradicates large implanted GL261 gliomas by activating antitumor Cd8(+) T-cell responses and immune memory. Oncoimmunology. 2015;4(4):e1005521.PubMedPubMedCentralCrossRef
115.
go back to reference Xia Q, Geng F, Zhang FF, Liu CL, Xu P, Lu ZZ, et al. Cyclophosphamide enhances anti-tumor effects of a fibroblast activation protein alpha-based DNA vaccine in tumor-bearing mice with murine breast carcinoma. Immunopharmacol Immunotoxicol. 2017;39(1):37–44.PubMedCrossRef Xia Q, Geng F, Zhang FF, Liu CL, Xu P, Lu ZZ, et al. Cyclophosphamide enhances anti-tumor effects of a fibroblast activation protein alpha-based DNA vaccine in tumor-bearing mice with murine breast carcinoma. Immunopharmacol Immunotoxicol. 2017;39(1):37–44.PubMedCrossRef
116.
go back to reference Pfirschke C, Engblom C, Rickelt S, Cortez-Retamozo V, Garris C, Pucci F, et al. Immunogenic chemotherapy sensitizes tumors to checkpoint blockade therapy. Immunity. 2016;44(2):343–54.PubMedPubMedCentralCrossRef Pfirschke C, Engblom C, Rickelt S, Cortez-Retamozo V, Garris C, Pucci F, et al. Immunogenic chemotherapy sensitizes tumors to checkpoint blockade therapy. Immunity. 2016;44(2):343–54.PubMedPubMedCentralCrossRef
117.
go back to reference Finke JH, Rini B, Ireland J, Rayman P, Richmond A, Golshayan A, et al. Sunitinib reverses type-1 immune suppression and decreases T-regulatory cells in renal cell carcinoma patients. Clinical cancer research : an official journal of the American Association for Cancer Research. 2008;14(20):6674–82.CrossRef Finke JH, Rini B, Ireland J, Rayman P, Richmond A, Golshayan A, et al. Sunitinib reverses type-1 immune suppression and decreases T-regulatory cells in renal cell carcinoma patients. Clinical cancer research : an official journal of the American Association for Cancer Research. 2008;14(20):6674–82.CrossRef
119.
go back to reference Generali D, Bates G, Berruti A, Brizzi MP, Campo L, Bonardi S, et al. Immunomodulation of FOXP3+ regulatory T cells by the aromatase inhibitor letrozole in breast cancer patients. Clinical cancer research : an official journal of the American Association for Cancer Research. 2009;15(3):1046–51.CrossRef Generali D, Bates G, Berruti A, Brizzi MP, Campo L, Bonardi S, et al. Immunomodulation of FOXP3+ regulatory T cells by the aromatase inhibitor letrozole in breast cancer patients. Clinical cancer research : an official journal of the American Association for Cancer Research. 2009;15(3):1046–51.CrossRef
120.
go back to reference Ferrara TA, Hodge JW, Gulley JL. Combining radiation and immunotherapy for synergistic antitumor therapy. Curr Opin Mol Ther. 2009;11(1):37–42.PubMedPubMedCentral Ferrara TA, Hodge JW, Gulley JL. Combining radiation and immunotherapy for synergistic antitumor therapy. Curr Opin Mol Ther. 2009;11(1):37–42.PubMedPubMedCentral
121.
go back to reference Chakraborty M, Abrams SI, Coleman CN, Camphausen K, Schlom J, Hodge JW. External beam radiation of tumors alters phenotype of tumor cells to render them susceptible to vaccine-mediated T-cell killing. Cancer Res. 2004;64(12):4328–37.PubMedCrossRef Chakraborty M, Abrams SI, Coleman CN, Camphausen K, Schlom J, Hodge JW. External beam radiation of tumors alters phenotype of tumor cells to render them susceptible to vaccine-mediated T-cell killing. Cancer Res. 2004;64(12):4328–37.PubMedCrossRef
123.
go back to reference Trimble CL, Morrow MP, Kraynyak KA, Shen X, Dallas M, Yan J, et al. Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: a randomised, double-blind, placebo-controlled phase 2b trial. Lancet. 2015;386(10008):2078–88.PubMedPubMedCentralCrossRef Trimble CL, Morrow MP, Kraynyak KA, Shen X, Dallas M, Yan J, et al. Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: a randomised, double-blind, placebo-controlled phase 2b trial. Lancet. 2015;386(10008):2078–88.PubMedPubMedCentralCrossRef
124.
go back to reference Kim TJ, Jin HT, Hur SY, Yang HG, Seo YB, Hong SR, et al. Clearance of persistent HPV infection and cervical lesion by therapeutic DNA vaccine in CIN3 patients. Nat Commun. 2014;5:5317.PubMedCrossRef Kim TJ, Jin HT, Hur SY, Yang HG, Seo YB, Hong SR, et al. Clearance of persistent HPV infection and cervical lesion by therapeutic DNA vaccine in CIN3 patients. Nat Commun. 2014;5:5317.PubMedCrossRef
125.
go back to reference Tiriveedhi V, Tucker N, Herndon J, Li L, Sturmoski M, Ellis M, et al. Safety and preliminary evidence of biologic efficacy of a mammaglobin-a DNA vaccine in patients with stable metastatic breast cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 2014;20(23):5964–75.CrossRef Tiriveedhi V, Tucker N, Herndon J, Li L, Sturmoski M, Ellis M, et al. Safety and preliminary evidence of biologic efficacy of a mammaglobin-a DNA vaccine in patients with stable metastatic breast cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 2014;20(23):5964–75.CrossRef
126.
go back to reference Tiriveedhi V, Fleming TP, Goedegebuure PS, Naughton M, Ma C, Lockhart C, et al. Mammaglobin-a cDNA vaccination of breast cancer patients induces antigen-specific cytotoxic CD4+ICOShi T cells. Breast Cancer Res Treat. 2013;138(1):109–18.PubMedCrossRef Tiriveedhi V, Fleming TP, Goedegebuure PS, Naughton M, Ma C, Lockhart C, et al. Mammaglobin-a cDNA vaccination of breast cancer patients induces antigen-specific cytotoxic CD4+ICOShi T cells. Breast Cancer Res Treat. 2013;138(1):109–18.PubMedCrossRef
127.
go back to reference Soysal SD, Muenst S, Kan-Mitchell J, Huarte E, Zhang X, Wilkinson-Ryan I, et al. Identification and translational validation of novel mammaglobin-a CD8 T cell epitopes. Breast Cancer Res Treat. 2014;147(3):527–37.PubMedPubMedCentralCrossRef Soysal SD, Muenst S, Kan-Mitchell J, Huarte E, Zhang X, Wilkinson-Ryan I, et al. Identification and translational validation of novel mammaglobin-a CD8 T cell epitopes. Breast Cancer Res Treat. 2014;147(3):527–37.PubMedPubMedCentralCrossRef
128.
go back to reference Eriksson F, Totterman T, Maltais AK, Pisa P, Yachnin J. DNA vaccine coding for the rhesus prostate specific antigen delivered by intradermal electroporation in patients with relapsed prostate cancer. Vaccine. 2013;31(37):3843–8.PubMedCrossRef Eriksson F, Totterman T, Maltais AK, Pisa P, Yachnin J. DNA vaccine coding for the rhesus prostate specific antigen delivered by intradermal electroporation in patients with relapsed prostate cancer. Vaccine. 2013;31(37):3843–8.PubMedCrossRef
129.
go back to reference McCann KJ, Godeseth R, Chudley L, Mander A, Di Genova G, Lloyd-Evans P, et al. Idiotypic DNA vaccination for the treatment of multiple myeloma: safety and immunogenicity in a phase I clinical study. Cancer Immunol Immunother. 2015;64(8):1021–32.PubMedPubMedCentralCrossRef McCann KJ, Godeseth R, Chudley L, Mander A, Di Genova G, Lloyd-Evans P, et al. Idiotypic DNA vaccination for the treatment of multiple myeloma: safety and immunogenicity in a phase I clinical study. Cancer Immunol Immunother. 2015;64(8):1021–32.PubMedPubMedCentralCrossRef
130.
go back to reference Ottensmeier C, Bowers M, Hamid D, Maishman T, Regan S, Wood W, et al. Wilms’ tumour antigen 1 immunity via DNA fusion gene vaccination in haematological malignancies by intramuscular injection followed by intramuscular electroporation: a phase II non-randomised clinical trial (WIN). Efficacy and mechanism evaluation. Southampton: NIHR Journals Library; 2016. Ottensmeier C, Bowers M, Hamid D, Maishman T, Regan S, Wood W, et al. Wilms’ tumour antigen 1 immunity via DNA fusion gene vaccination in haematological malignancies by intramuscular injection followed by intramuscular electroporation: a phase II non-randomised clinical trial (WIN). Efficacy and mechanism evaluation. Southampton: NIHR Journals Library; 2016.
131.
go back to reference Niethammer AG, Lubenau H, Mikus G, Knebel P, Hohmann N, Leowardi C, et al. Double-blind, placebo-controlled first in human study to investigate an oral vaccine aimed to elicit an immune reaction against the VEGF-receptor 2 in patients with stage IV and locally advanced pancreatic cancer. BMC Cancer. 2012;12:361.PubMedPubMedCentralCrossRef Niethammer AG, Lubenau H, Mikus G, Knebel P, Hohmann N, Leowardi C, et al. Double-blind, placebo-controlled first in human study to investigate an oral vaccine aimed to elicit an immune reaction against the VEGF-receptor 2 in patients with stage IV and locally advanced pancreatic cancer. BMC Cancer. 2012;12:361.PubMedPubMedCentralCrossRef
132.
go back to reference Diaz CM, Chiappori A, Aurisicchio L, Bagchi A, Clark J, Dubey S, et al. Phase 1 studies of the safety and immunogenicity of electroporated HER2/CEA DNA vaccine followed by adenoviral boost immunization in patients with solid tumors. J Transl Med. 2013;11:62.PubMedPubMedCentralCrossRef Diaz CM, Chiappori A, Aurisicchio L, Bagchi A, Clark J, Dubey S, et al. Phase 1 studies of the safety and immunogenicity of electroporated HER2/CEA DNA vaccine followed by adenoviral boost immunization in patients with solid tumors. J Transl Med. 2013;11:62.PubMedPubMedCentralCrossRef
133.
go back to reference Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT, et al. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res. 2009;15(17):5323–37.PubMedPubMedCentralCrossRef Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT, et al. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res. 2009;15(17):5323–37.PubMedPubMedCentralCrossRef
134.
go back to reference Aurisicchio L, Salvatori E, Lione L, Bandini S, Pallocca M, Maggio R, et al. Poly-specific neoantigen-targeted cancer vaccines delay patient derived tumor growth. Journal of experimental & clinical cancer research : CR. 2019;38(1):78.CrossRefPubMedCentral Aurisicchio L, Salvatori E, Lione L, Bandini S, Pallocca M, Maggio R, et al. Poly-specific neoantigen-targeted cancer vaccines delay patient derived tumor growth. Journal of experimental & clinical cancer research : CR. 2019;38(1):78.CrossRefPubMedCentral
135.
go back to reference Overgaard NH, Fan TM, Schachtschneider KM, Principe DR, Schook LB, Jungersen G. Of mice, dogs, pigs, and men: choosing the appropriate model for Immuno-oncology research. ILAR J. 2018. Overgaard NH, Fan TM, Schachtschneider KM, Principe DR, Schook LB, Jungersen G. Of mice, dogs, pigs, and men: choosing the appropriate model for Immuno-oncology research. ILAR J. 2018.
136.
go back to reference Gableh F, Saeidi M, Hemati S, Hamdi K, Soleimanjahi H, Gorji A, et al. Combination of the toll like receptor agonist and alpha-Galactosylceramide as an efficient adjuvant for cancer vaccine. J Biomed Sci. 2016;23:16.PubMedPubMedCentralCrossRef Gableh F, Saeidi M, Hemati S, Hamdi K, Soleimanjahi H, Gorji A, et al. Combination of the toll like receptor agonist and alpha-Galactosylceramide as an efficient adjuvant for cancer vaccine. J Biomed Sci. 2016;23:16.PubMedPubMedCentralCrossRef
137.
go back to reference Allen A, Wang C, Caproni LJ, Sugiyarto G, Harden E, Douglas LR, et al. Linear doggybone DNA vaccine induces similar immunological responses to conventional plasmid DNA independently of immune recognition by TLR9 in a pre-clinical model. Cancer immunology, immunotherapy : CII. 2018;67(4):627–38.PubMedCrossRef Allen A, Wang C, Caproni LJ, Sugiyarto G, Harden E, Douglas LR, et al. Linear doggybone DNA vaccine induces similar immunological responses to conventional plasmid DNA independently of immune recognition by TLR9 in a pre-clinical model. Cancer immunology, immunotherapy : CII. 2018;67(4):627–38.PubMedCrossRef
138.
go back to reference Jiang W, Wang S, Chen H, Ren H, Huang X, Wang G, et al. A bivalent heterologous DNA virus-like-particle prime-boost vaccine elicits broad protection against both group 1 and 2 influenza a viruses. J Virol. 2017;91(9):e02052–16.PubMedPubMedCentralCrossRef Jiang W, Wang S, Chen H, Ren H, Huang X, Wang G, et al. A bivalent heterologous DNA virus-like-particle prime-boost vaccine elicits broad protection against both group 1 and 2 influenza a viruses. J Virol. 2017;91(9):e02052–16.PubMedPubMedCentralCrossRef
139.
go back to reference Longo DL, Dastru W, Consolino L, Espak M, Arigoni M, Cavallo F, et al. Cluster analysis of quantitative parametric maps from DCE-MRI: application in evaluating heterogeneity of tumor response to antiangiogenic treatment. Magn Reson Imaging. 2015;33(6):725–36.PubMedCrossRef Longo DL, Dastru W, Consolino L, Espak M, Arigoni M, Cavallo F, et al. Cluster analysis of quantitative parametric maps from DCE-MRI: application in evaluating heterogeneity of tumor response to antiangiogenic treatment. Magn Reson Imaging. 2015;33(6):725–36.PubMedCrossRef
140.
go back to reference Nguyen-Hoai T, Pham-Duc M, Gries M, Dorken B, Pezzutto A, Westermann J. CCL4 as an adjuvant for DNA vaccination in a Her2/neu mouse tumor model. Cancer Gene Ther. 2016;23(6):162–7.PubMedCrossRef Nguyen-Hoai T, Pham-Duc M, Gries M, Dorken B, Pezzutto A, Westermann J. CCL4 as an adjuvant for DNA vaccination in a Her2/neu mouse tumor model. Cancer Gene Ther. 2016;23(6):162–7.PubMedCrossRef
141.
go back to reference Xia Q, Zhang FF, Geng F, Liu CL, Xu P, Lu ZZ, et al. Anti-tumor effects of DNA vaccine targeting human fibroblast activation protein alpha by producing specific immune responses and altering tumor microenvironment in the 4T1 murine breast cancer model. Cancer immunology, immunotherapy. 2016;65(5):613–24.PubMedCrossRef Xia Q, Zhang FF, Geng F, Liu CL, Xu P, Lu ZZ, et al. Anti-tumor effects of DNA vaccine targeting human fibroblast activation protein alpha by producing specific immune responses and altering tumor microenvironment in the 4T1 murine breast cancer model. Cancer immunology, immunotherapy. 2016;65(5):613–24.PubMedCrossRef
143.
go back to reference Zhong B, Ma G, Sato A, Shimozato O, Liu H, Li Q, et al. Fas ligand DNA enhances a vaccination effect by coadministered DNA encoding a tumor antigen through augmenting production of antibody against the tumor antigen. J Immunol Res. 2015;2015:743828.PubMedPubMedCentralCrossRef Zhong B, Ma G, Sato A, Shimozato O, Liu H, Li Q, et al. Fas ligand DNA enhances a vaccination effect by coadministered DNA encoding a tumor antigen through augmenting production of antibody against the tumor antigen. J Immunol Res. 2015;2015:743828.PubMedPubMedCentralCrossRef
144.
go back to reference Danishmalik SN, Sin JI. Therapeutic tumor control of HER2 DNA vaccines is achieved by an alteration of tumor cells and tumor microenvironment by gemcitabine and anti-gr-1 ab treatment in a HER2-expressing tumor model. DNA Cell Biol. 2017;36(9):801–11.PubMedCrossRef Danishmalik SN, Sin JI. Therapeutic tumor control of HER2 DNA vaccines is achieved by an alteration of tumor cells and tumor microenvironment by gemcitabine and anti-gr-1 ab treatment in a HER2-expressing tumor model. DNA Cell Biol. 2017;36(9):801–11.PubMedCrossRef
145.
go back to reference Liu C, Xie Y, Sun B, Geng F, Zhang F, Guo Q, et al. MUC1- and Survivin-based DNA vaccine combining Immunoadjuvants CpG and interleukin-2 in a Bicistronic expression plasmid generates specific immune responses and antitumour effects in a murine colorectal carcinoma model. Scand J Immunol. 2018;87(2):63–72.PubMedCrossRef Liu C, Xie Y, Sun B, Geng F, Zhang F, Guo Q, et al. MUC1- and Survivin-based DNA vaccine combining Immunoadjuvants CpG and interleukin-2 in a Bicistronic expression plasmid generates specific immune responses and antitumour effects in a murine colorectal carcinoma model. Scand J Immunol. 2018;87(2):63–72.PubMedCrossRef
146.
go back to reference Son HY, Apostolopoulos V, Chung JK, Kim CW, Park JU. Protective efficacy of a plasmid DNA vaccine against transgene-specific tumors by Th1 cellular immune responses after intradermal injection. Cell Immunol. 2018;329:17–26.PubMedCrossRef Son HY, Apostolopoulos V, Chung JK, Kim CW, Park JU. Protective efficacy of a plasmid DNA vaccine against transgene-specific tumors by Th1 cellular immune responses after intradermal injection. Cell Immunol. 2018;329:17–26.PubMedCrossRef
147.
go back to reference Yin X, Wang W, Zhu X, Wang Y, Wu S, Wang Z, et al. Synergistic antitumor efficacy of combined DNA vaccines targeting tumor cells and angiogenesis. Biochem Biophys Res Commun. 2015;465(2):239–44.PubMedCrossRef Yin X, Wang W, Zhu X, Wang Y, Wu S, Wang Z, et al. Synergistic antitumor efficacy of combined DNA vaccines targeting tumor cells and angiogenesis. Biochem Biophys Res Commun. 2015;465(2):239–44.PubMedCrossRef
148.
go back to reference Gao FS, Zhan YT, Wang XD, Zhang C. Enhancement of anti-tumor effect of plasmid DNA-carrying MUC1 by the adjuvanticity of FLT3L in mouse model. Immunopharmacol Immunotoxicol. 2018;40(4):353–7.PubMedCrossRef Gao FS, Zhan YT, Wang XD, Zhang C. Enhancement of anti-tumor effect of plasmid DNA-carrying MUC1 by the adjuvanticity of FLT3L in mouse model. Immunopharmacol Immunotoxicol. 2018;40(4):353–7.PubMedCrossRef
149.
go back to reference Yu S, Wang F, Fan L, Wei Y, Li H, Sun Y, et al. BAP31, a promising target for the immunotherapy of malignant melanomas. J Exp Clin Cancer Res. 2015;34:36.PubMedPubMedCentralCrossRef Yu S, Wang F, Fan L, Wei Y, Li H, Sun Y, et al. BAP31, a promising target for the immunotherapy of malignant melanomas. J Exp Clin Cancer Res. 2015;34:36.PubMedPubMedCentralCrossRef
150.
go back to reference Mahlmann K, Feige K, Juhls C, Endmann A, Schuberth HJ, Oswald D, et al. Local and systemic effect of transfection-reagent formulated DNA vectors on equine melanoma. BMC Vet Res. 2015;11:132.PubMedPubMedCentralCrossRef Mahlmann K, Feige K, Juhls C, Endmann A, Schuberth HJ, Oswald D, et al. Local and systemic effect of transfection-reagent formulated DNA vectors on equine melanoma. BMC Vet Res. 2015;11:132.PubMedPubMedCentralCrossRef
151.
go back to reference Ahn E, Kim H, Han KT, Sin JI. A loss of antitumor therapeutic activity of CEA DNA vaccines is associated with the lack of tumor cells' antigen presentation to Ag-specific CTLs in a colon cancer model. Cancer letters. 2015;356(2 Pt B):676–85.PubMedCrossRef Ahn E, Kim H, Han KT, Sin JI. A loss of antitumor therapeutic activity of CEA DNA vaccines is associated with the lack of tumor cells' antigen presentation to Ag-specific CTLs in a colon cancer model. Cancer letters. 2015;356(2 Pt B):676–85.PubMedCrossRef
152.
go back to reference Rekoske BT, Smith HA, Olson BM, Maricque BB, McNeel DG. PD-1 or PD-L1 blockade restores antitumor efficacy following SSX2 epitope-modified DNA vaccine immunization. Cancer Immunology Research. 2015;3(8):946–55.PubMedPubMedCentralCrossRef Rekoske BT, Smith HA, Olson BM, Maricque BB, McNeel DG. PD-1 or PD-L1 blockade restores antitumor efficacy following SSX2 epitope-modified DNA vaccine immunization. Cancer Immunology Research. 2015;3(8):946–55.PubMedPubMedCentralCrossRef
153.
go back to reference Zhao Y, Wei Z, Yang H, Li X, Wang Q, Wang L, et al. Enhance the anti-renca carcinoma effect of a DNA vaccine targeting G250 gene by co-expression with cytotoxic T-lymphocyte associated antigen-4(CTLA-4). Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2017;90:147–52.CrossRef Zhao Y, Wei Z, Yang H, Li X, Wang Q, Wang L, et al. Enhance the anti-renca carcinoma effect of a DNA vaccine targeting G250 gene by co-expression with cytotoxic T-lymphocyte associated antigen-4(CTLA-4). Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2017;90:147–52.CrossRef
Metadata
Title
Cancer DNA vaccines: current preclinical and clinical developments and future perspectives
Authors
Alessandra Lopes
Gaëlle Vandermeulen
Véronique Préat
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Vaccination
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2019
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-019-1154-7

Other articles of this Issue 1/2019

Journal of Experimental & Clinical Cancer Research 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine