Skip to main content
Top
Published in: Breast Cancer Research and Treatment 1/2013

01-02-2013 | Clinical Trial

Mammaglobin-A cDNA vaccination of breast cancer patients induces antigen-specific cytotoxic CD4+ICOShi T cells

Authors: Venkataswarup Tiriveedhi, Timothy P. Fleming, Peter S. Goedegebuure, Michael Naughton, Cynthia Ma, Craig Lockhart, Feng Gao, William E. Gillanders, T. Mohanakumar

Published in: Breast Cancer Research and Treatment | Issue 1/2013

Login to get access

Abstract

Mammaglobin-A (Mam-A) is a 10 kDa secretory protein that is overexpressed in 80 % of primary and metastatic human breast cancers. Previous studies from our laboratory demonstrated that Mam-A cDNA vaccine can induce Mam-A-specific CD8 T cell responses and mediate regression of human breast cancer xenografts in NOD/SCID mice. In this article, we present our results on a phase I clinical trial of a Mam-A cDNA vaccination in breast cancer patients with stage-IV metastatic disease, including the impact of vaccination on the expression of the inducible co-stimulator molecule (ICOS) on CD4 T cells. Specimens from seven patients with stage-IV metastatic cancer were available for these analyses. Patients were vaccinated with a Mam-A cDNA vaccine on days 0, 28, and 56, and immune responses were assessed at serial time points following vaccination. At 6 months following the first vaccination, flow cytometric analysis demonstrated a significant increase in the frequency of CD4+ICOShi T cells from 5 ± 2 % pre-vaccination to 23 ± 4 % (p < 0.001), with a concomitant decrease in the frequency of CD4+FoxP3+ T cells (regulatory T cells [Treg]) from 19 ± 6 to 10 ± 5 % (p < 0.05). ELISpot analysis of CD4+ICOShi sorted T cells demonstrated that following vaccination the cytokines produced by Mam-A-specific T cells switched from IL-10 (78 ± 21 spm pre-vaccination to 32 ± 14 spm 5 months post-vaccine p < 0.001) to IFN-γ (12 ± 6 spm pre-vaccination to 124 ± 31 spm 5 months post-vaccine p < 0.001). The ratio of CD4+ICOShi T cells to CD4+FoxP3+ T cells increased from 0.37 ± 0.12 before vaccination to 2.3 ± 0.72 (p = 0.021) following vaccination. Further, these activated CD4+ICOShi T cells induced preferential lysis of human breast cancer cells expressing Mam-A protein. We conclude that Mam-A cDNA vaccination is associated with specific expansion and activation of CD4+ICOShi T cells, with a concomitant decrease in Treg frequency. These encouraging results strongly suggest that Mam-A cDNA vaccination can induce antitumor immunity in breast cancer patients.
Literature
1.
go back to reference Watson MA, Fleming TP (1994) Isolation of differentially expressed sequence tags from human breast cancer. Cancer Res 54(17):4598–4602PubMed Watson MA, Fleming TP (1994) Isolation of differentially expressed sequence tags from human breast cancer. Cancer Res 54(17):4598–4602PubMed
2.
go back to reference Mikhitarian K, Gillanders WE, Almeida JS, Hebert Martin R, Varela JC, Metcalf JS, Cole DJ, Mitas M (2005) An innovative microarray strategy identities informative molecular markers for the detection of micrometastatic breast cancer. Clin Cancer Res 11(10):3697–3704PubMedCrossRef Mikhitarian K, Gillanders WE, Almeida JS, Hebert Martin R, Varela JC, Metcalf JS, Cole DJ, Mitas M (2005) An innovative microarray strategy identities informative molecular markers for the detection of micrometastatic breast cancer. Clin Cancer Res 11(10):3697–3704PubMedCrossRef
3.
go back to reference Watson MA, Dintzis S, Darrow CM, Voss LE, DiPersio J, Jensen R, Fleming TP (1999) Mammaglobin expression in primary, metastatic, and occult breast cancer. Cancer Res 59(13):3028–3031PubMed Watson MA, Dintzis S, Darrow CM, Voss LE, DiPersio J, Jensen R, Fleming TP (1999) Mammaglobin expression in primary, metastatic, and occult breast cancer. Cancer Res 59(13):3028–3031PubMed
4.
go back to reference Fleming TP, Watson MA (2000) Mammaglobin, a breast-specific gene, and its utility as a marker for breast cancer. Ann N Y Acad Sci 923:78–89PubMedCrossRef Fleming TP, Watson MA (2000) Mammaglobin, a breast-specific gene, and its utility as a marker for breast cancer. Ann N Y Acad Sci 923:78–89PubMedCrossRef
5.
go back to reference Goedegebuure PS, Watson MA, Viehl CT, Fleming TP (2004) Mammaglobin-based strategies for treatment of breast cancer. Curr Cancer Drug Targets 4(6):531–542PubMedCrossRef Goedegebuure PS, Watson MA, Viehl CT, Fleming TP (2004) Mammaglobin-based strategies for treatment of breast cancer. Curr Cancer Drug Targets 4(6):531–542PubMedCrossRef
6.
go back to reference Gillanders WE, Mikhitarian K, Hebert R, Mauldin PD, Palesch Y, Walters C, Urist MM, Mann GB, Doherty G, Herrmann VM, Hill AD, Eremin O, El-Sheemy M, Orr RK, Valle AA, Henderson MA, Dewitty RL, Sugg SL, Frykberg E, Yeh K, Bell RM, Metcalf JS, Elliott BM, Brothers T, Robison J, Mitas M, Cole DJ (2004) Molecular detection of micrometastatic breast cancer in histopathology-negative axillary lymph nodes correlates with traditional predictors of prognosis: an interim analysis of a prospective multi-institutional cohort study. Ann Surg 239(6):828–837 (discussion 837–840)PubMedCrossRef Gillanders WE, Mikhitarian K, Hebert R, Mauldin PD, Palesch Y, Walters C, Urist MM, Mann GB, Doherty G, Herrmann VM, Hill AD, Eremin O, El-Sheemy M, Orr RK, Valle AA, Henderson MA, Dewitty RL, Sugg SL, Frykberg E, Yeh K, Bell RM, Metcalf JS, Elliott BM, Brothers T, Robison J, Mitas M, Cole DJ (2004) Molecular detection of micrometastatic breast cancer in histopathology-negative axillary lymph nodes correlates with traditional predictors of prognosis: an interim analysis of a prospective multi-institutional cohort study. Ann Surg 239(6):828–837 (discussion 837–840)PubMedCrossRef
7.
go back to reference Narayanan K, Jaramillo A, Benshoff ND, Campbell LG, Fleming TP, Dietz JR, Mohanakumar T (2004) Response of established human breast tumors to vaccination with mammaglobin-A cDNA. J Natl Cancer Inst 96(18):1388–1396PubMedCrossRef Narayanan K, Jaramillo A, Benshoff ND, Campbell LG, Fleming TP, Dietz JR, Mohanakumar T (2004) Response of established human breast tumors to vaccination with mammaglobin-A cDNA. J Natl Cancer Inst 96(18):1388–1396PubMedCrossRef
8.
go back to reference van den Broek ME, Kagi D, Ossendorp F, Toes R, Vamvakas S, Lutz WK, Melief CJ, Zinkernagel RM, Hengartner H (1996) Decreased tumor surveillance in perforin-deficient mice. J Exp Med 184(5):1781–1790PubMedCrossRef van den Broek ME, Kagi D, Ossendorp F, Toes R, Vamvakas S, Lutz WK, Melief CJ, Zinkernagel RM, Hengartner H (1996) Decreased tumor surveillance in perforin-deficient mice. J Exp Med 184(5):1781–1790PubMedCrossRef
9.
go back to reference Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, Schreiber RD (2001) IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410(6832):1107–1111PubMedCrossRef Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, Schreiber RD (2001) IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410(6832):1107–1111PubMedCrossRef
10.
go back to reference Street SE, Hayakawa Y, Zhan Y, Lew AM, MacGregor D, Jamieson AM, Diefenbach A, Yagita H, Godfrey DI, Smyth MJ (2004) Innate immune surveillance of spontaneous B cell lymphomas by natural killer cells and gammadelta T cells. J Exp Med 199(6):879–884PubMedCrossRef Street SE, Hayakawa Y, Zhan Y, Lew AM, MacGregor D, Jamieson AM, Diefenbach A, Yagita H, Godfrey DI, Smyth MJ (2004) Innate immune surveillance of spontaneous B cell lymphomas by natural killer cells and gammadelta T cells. J Exp Med 199(6):879–884PubMedCrossRef
11.
go back to reference Robinson HL (1999) DNA vaccines: basic mechanism and immune responses (review). Int J Mol Med 4(5):549–555PubMed Robinson HL (1999) DNA vaccines: basic mechanism and immune responses (review). Int J Mol Med 4(5):549–555PubMed
12.
go back to reference Gurunathan S, Klinman DM, Seder RA (2000) DNA vaccines: immunology, application, and optimization*. Annu Rev Immunol 18:927–974PubMedCrossRef Gurunathan S, Klinman DM, Seder RA (2000) DNA vaccines: immunology, application, and optimization*. Annu Rev Immunol 18:927–974PubMedCrossRef
13.
go back to reference Dong C, Juedes AE, Temann UA, Shresta S, Allison JP, Ruddle NH, Flavell RA (2001) ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature 409(6816):97–101PubMedCrossRef Dong C, Juedes AE, Temann UA, Shresta S, Allison JP, Ruddle NH, Flavell RA (2001) ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature 409(6816):97–101PubMedCrossRef
14.
go back to reference Yoshinaga SK, Whoriskey JS, Khare SD, Sarmiento U, Guo J, Horan T, Shih G, Zhang M, Coccia MA, Kohno T, Tafuri-Bladt A, Brankow D, Campbell P, Chang D, Chiu L, Dai T, Duncan G, Elliott GS, Hui A, McCabe SM, Scully S, Shahinian A, Shaklee CL, Van G, Mak TW, Senaldi G (1999) T-cell co-stimulation through B7RP-1 and ICOS. Nature 402(6763):827–832PubMedCrossRef Yoshinaga SK, Whoriskey JS, Khare SD, Sarmiento U, Guo J, Horan T, Shih G, Zhang M, Coccia MA, Kohno T, Tafuri-Bladt A, Brankow D, Campbell P, Chang D, Chiu L, Dai T, Duncan G, Elliott GS, Hui A, McCabe SM, Scully S, Shahinian A, Shaklee CL, Van G, Mak TW, Senaldi G (1999) T-cell co-stimulation through B7RP-1 and ICOS. Nature 402(6763):827–832PubMedCrossRef
15.
go back to reference Coyle AJ, Lehar S, Lloyd C, Tian J, Delaney T, Manning S, Nguyen T, Burwell T, Schneider H, Gonzalo JA, Gosselin M, Owen LR, Rudd CE, Gutierrez-Ramos JC (2000) The CD28-related molecule ICOS is required for effective T cell-dependent immune responses. Immunity 13(1):95–105PubMedCrossRef Coyle AJ, Lehar S, Lloyd C, Tian J, Delaney T, Manning S, Nguyen T, Burwell T, Schneider H, Gonzalo JA, Gosselin M, Owen LR, Rudd CE, Gutierrez-Ramos JC (2000) The CD28-related molecule ICOS is required for effective T cell-dependent immune responses. Immunity 13(1):95–105PubMedCrossRef
16.
go back to reference Miller AM, Lundberg K, Ozenci V, Banham AH, Hellstrom M, Egevad L, Pisa P (2006) CD4+CD25high T cells are enriched in the tumor and peripheral blood of prostate cancer patients. J Immunol 177(10):7398–7405PubMed Miller AM, Lundberg K, Ozenci V, Banham AH, Hellstrom M, Egevad L, Pisa P (2006) CD4+CD25high T cells are enriched in the tumor and peripheral blood of prostate cancer patients. J Immunol 177(10):7398–7405PubMed
17.
go back to reference Chen H, Liakou CI, Kamat A, Pettaway C, Ward JF, Tang DN, Sun J, Jungbluth AA, Troncoso P, Logothetis C, Sharma P (2009) Anti-CTLA-4 therapy results in higher CD4+ICOShi T cell frequency and IFN-gamma levels in both nonmalignant and malignant prostate tissues. Proc Natl Acad Sci USA 106(8):2729–2734PubMedCrossRef Chen H, Liakou CI, Kamat A, Pettaway C, Ward JF, Tang DN, Sun J, Jungbluth AA, Troncoso P, Logothetis C, Sharma P (2009) Anti-CTLA-4 therapy results in higher CD4+ICOShi T cell frequency and IFN-gamma levels in both nonmalignant and malignant prostate tissues. Proc Natl Acad Sci USA 106(8):2729–2734PubMedCrossRef
18.
go back to reference Bharat A, Benshoff N, Fleming TP, Dietz JR, Gillanders WE, Mohanakumar T (2008) Characterization of the role of CD8+ T cells in breast cancer immunity following mammaglobin-A DNA vaccination using HLA-class-I tetramers. Breast Cancer Res Treat 110(3):453–463PubMedCrossRef Bharat A, Benshoff N, Fleming TP, Dietz JR, Gillanders WE, Mohanakumar T (2008) Characterization of the role of CD8+ T cells in breast cancer immunity following mammaglobin-A DNA vaccination using HLA-class-I tetramers. Breast Cancer Res Treat 110(3):453–463PubMedCrossRef
19.
go back to reference Ilias Basha H, Tiriveedhi V, Fleming TP, Gillanders WE, Mohanakumar T (2011) Identification of immunodominant HLA-B7-restricted CD8+ cytotoxic T cell epitopes derived from mammaglobin-A expressed on human breast cancers. Breast Cancer Res Treat 127(1):81–89PubMedCrossRef Ilias Basha H, Tiriveedhi V, Fleming TP, Gillanders WE, Mohanakumar T (2011) Identification of immunodominant HLA-B7-restricted CD8+ cytotoxic T cell epitopes derived from mammaglobin-A expressed on human breast cancers. Breast Cancer Res Treat 127(1):81–89PubMedCrossRef
20.
go back to reference Jaramillo A, Majumder K, Manna PP, Fleming TP, Doherty G, Dipersio JF, Mohanakumar T (2002) Identification of HLA-A3-restricted CD8+ T cell epitopes derived from mammaglobin-A, a tumor-associated antigen of human breast cancer. Int J Cancer 102(5):499–506PubMedCrossRef Jaramillo A, Majumder K, Manna PP, Fleming TP, Doherty G, Dipersio JF, Mohanakumar T (2002) Identification of HLA-A3-restricted CD8+ T cell epitopes derived from mammaglobin-A, a tumor-associated antigen of human breast cancer. Int J Cancer 102(5):499–506PubMedCrossRef
21.
go back to reference Jaramillo A, Narayanan K, Campbell LG, Benshoff ND, Lybarger L, Hansen TH, Fleming TP, Dietz JR, Mohanakumar T (2004) Recognition of HLA-A2-restricted mammaglobin-A-derived epitopes by CD8+ cytotoxic T lymphocytes from breast cancer patients. Breast Cancer Res Treat 88(1):29–41PubMedCrossRef Jaramillo A, Narayanan K, Campbell LG, Benshoff ND, Lybarger L, Hansen TH, Fleming TP, Dietz JR, Mohanakumar T (2004) Recognition of HLA-A2-restricted mammaglobin-A-derived epitopes by CD8+ cytotoxic T lymphocytes from breast cancer patients. Breast Cancer Res Treat 88(1):29–41PubMedCrossRef
22.
go back to reference Bopp SK, Lettieri T (2008) Comparison of four different colorimetric and fluorometric cytotoxicity assays in a zebrafish liver cell line. BMC Pharmacol 8:8PubMedCrossRef Bopp SK, Lettieri T (2008) Comparison of four different colorimetric and fluorometric cytotoxicity assays in a zebrafish liver cell line. BMC Pharmacol 8:8PubMedCrossRef
23.
24.
go back to reference Herman AE, Freeman GJ, Mathis D, Benoist C (2004) CD4+CD25+ T regulatory cells dependent on ICOS promote regulation of effector cells in the prediabetic lesion. J Exp Med 199(11):1479–1489PubMedCrossRef Herman AE, Freeman GJ, Mathis D, Benoist C (2004) CD4+CD25+ T regulatory cells dependent on ICOS promote regulation of effector cells in the prediabetic lesion. J Exp Med 199(11):1479–1489PubMedCrossRef
25.
go back to reference Vocanson M, Rozieres A, Hennino A, Poyet G, Gaillard V, Renaudineau S, Achachi A, Benetiere J, Kaiserlian D, Dubois B, Nicolas JF (2010) Inducible costimulator (ICOS) is a marker for highly suppressive antigen-specific T cells sharing features of TH17/TH1 and regulatory T cells. J Allergy Clin Immunol 126(2):280–289, 289, e281–e287 Vocanson M, Rozieres A, Hennino A, Poyet G, Gaillard V, Renaudineau S, Achachi A, Benetiere J, Kaiserlian D, Dubois B, Nicolas JF (2010) Inducible costimulator (ICOS) is a marker for highly suppressive antigen-specific T cells sharing features of TH17/TH1 and regulatory T cells. J Allergy Clin Immunol 126(2):280–289, 289, e281–e287
26.
go back to reference Andersen MH, Schrama D, Thor Straten P, Becker JC (2006) Cytotoxic T cells. J Investig Dermatol 126(1):32–41PubMedCrossRef Andersen MH, Schrama D, Thor Straten P, Becker JC (2006) Cytotoxic T cells. J Investig Dermatol 126(1):32–41PubMedCrossRef
27.
go back to reference Hutloff A, Dittrich AM, Beier KC, Eljaschewitsch B, Kraft R, Anagnostopoulos I, Kroczek RA (1999) ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397(6716):263–266PubMedCrossRef Hutloff A, Dittrich AM, Beier KC, Eljaschewitsch B, Kraft R, Anagnostopoulos I, Kroczek RA (1999) ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397(6716):263–266PubMedCrossRef
28.
go back to reference McAdam AJ, Chang TT, Lumelsky AE, Greenfield EA, Boussiotis VA, Duke-Cohan JS, Chernova T, Malenkovich N, Jabs C, Kuchroo VK, Ling V, Collins M, Sharpe AH, Freeman GJ (2000) Mouse inducible costimulatory molecule (ICOS) expression is enhanced by CD28 costimulation and regulates differentiation of CD4+ T cells. J Immunol 165(9):5035–5040PubMed McAdam AJ, Chang TT, Lumelsky AE, Greenfield EA, Boussiotis VA, Duke-Cohan JS, Chernova T, Malenkovich N, Jabs C, Kuchroo VK, Ling V, Collins M, Sharpe AH, Freeman GJ (2000) Mouse inducible costimulatory molecule (ICOS) expression is enhanced by CD28 costimulation and regulates differentiation of CD4+ T cells. J Immunol 165(9):5035–5040PubMed
29.
go back to reference Kopf M, Coyle AJ, Schmitz N, Barner M, Oxenius A, Gallimore A, Gutierrez-Ramos JC, Bachmann MF (2000) Inducible costimulator protein (ICOS) controls T helper cell subset polarization after virus and parasite infection. J Exp Med 192(1):53–61PubMedCrossRef Kopf M, Coyle AJ, Schmitz N, Barner M, Oxenius A, Gallimore A, Gutierrez-Ramos JC, Bachmann MF (2000) Inducible costimulator protein (ICOS) controls T helper cell subset polarization after virus and parasite infection. J Exp Med 192(1):53–61PubMedCrossRef
30.
go back to reference Liakou CI, Kamat A, Tang DN, Chen H, Sun J, Troncoso P, Logothetis C, Sharma P (2008) CTLA-4 blockade increases IFNgamma-producing CD4+ICOShi cells to shift the ratio of effector to regulatory T cells in cancer patients. Proc Natl Acad Sci USA 105(39):14987–14992PubMedCrossRef Liakou CI, Kamat A, Tang DN, Chen H, Sun J, Troncoso P, Logothetis C, Sharma P (2008) CTLA-4 blockade increases IFNgamma-producing CD4+ICOShi cells to shift the ratio of effector to regulatory T cells in cancer patients. Proc Natl Acad Sci USA 105(39):14987–14992PubMedCrossRef
31.
go back to reference Gurunathan S, Wu CY, Freidag BL, Seder RA (2000) DNA vaccines: a key for inducing long-term cellular immunity. Curr Opin Immunol 12(4):442–447PubMedCrossRef Gurunathan S, Wu CY, Freidag BL, Seder RA (2000) DNA vaccines: a key for inducing long-term cellular immunity. Curr Opin Immunol 12(4):442–447PubMedCrossRef
32.
go back to reference Mahajan S, Cervera A, MacLeod M, Fillatreau S, Perona-Wright G, Meek S, Smith A, MacDonald A, Gray D (2007) The role of ICOS in the development of CD4 T cell help and the reactivation of memory T cells. Eur J Immunol 37(7):1796–1808PubMedCrossRef Mahajan S, Cervera A, MacLeod M, Fillatreau S, Perona-Wright G, Meek S, Smith A, MacDonald A, Gray D (2007) The role of ICOS in the development of CD4 T cell help and the reactivation of memory T cells. Eur J Immunol 37(7):1796–1808PubMedCrossRef
33.
go back to reference Strauss L, Bergmann C, Szczepanski MJ, Lang S, Kirkwood JM, Whiteside TL (2008) Expression of ICOS on human melanoma-infiltrating CD4+CD25highFoxp3+ T regulatory cells: implications and impact on tumor-mediated immune suppression. J Immunol 180(5):2967–2980PubMed Strauss L, Bergmann C, Szczepanski MJ, Lang S, Kirkwood JM, Whiteside TL (2008) Expression of ICOS on human melanoma-infiltrating CD4+CD25highFoxp3+ T regulatory cells: implications and impact on tumor-mediated immune suppression. J Immunol 180(5):2967–2980PubMed
34.
go back to reference Susskind B, Shornick MD, Iannotti MR, Duffy B, Mehrotra PT, Siegel JP, Mohanakumar T (1996) Cytolytic effector mechanisms of human CD4+ cytotoxic T lymphocytes. Hum Immunol 45(1):64–75PubMedCrossRef Susskind B, Shornick MD, Iannotti MR, Duffy B, Mehrotra PT, Siegel JP, Mohanakumar T (1996) Cytolytic effector mechanisms of human CD4+ cytotoxic T lymphocytes. Hum Immunol 45(1):64–75PubMedCrossRef
35.
go back to reference Wan YY, Flavell RA (2009) How diverse—CD4 effector T cells and their functions. J Mol Cell Biol 1(1):20–36PubMedCrossRef Wan YY, Flavell RA (2009) How diverse—CD4 effector T cells and their functions. J Mol Cell Biol 1(1):20–36PubMedCrossRef
36.
go back to reference Aslan N, Yurdaydin C, Wiegand J, Greten T, Ciner A, Meyer MF, Heiken H, Kuhlmann B, Kaiser T, Bozkaya H, Tillmann HL, Bozdayi AM, Manns MP, Wedemeyer H (2006) Cytotoxic CD4 T cells in viral hepatitis. J Viral Hepat 13(8):505–514PubMedCrossRef Aslan N, Yurdaydin C, Wiegand J, Greten T, Ciner A, Meyer MF, Heiken H, Kuhlmann B, Kaiser T, Bozkaya H, Tillmann HL, Bozdayi AM, Manns MP, Wedemeyer H (2006) Cytotoxic CD4 T cells in viral hepatitis. J Viral Hepat 13(8):505–514PubMedCrossRef
37.
go back to reference Quiroga MF, Pasquinelli V, Martinez GJ, Jurado JO, Zorrilla LC, Musella RM, Abbate E, Sieling PA, Garcia VE (2006) Inducible costimulator: a modulator of IFN-gamma production in human tuberculosis. J Immunol 176(10):5965–5974PubMed Quiroga MF, Pasquinelli V, Martinez GJ, Jurado JO, Zorrilla LC, Musella RM, Abbate E, Sieling PA, Garcia VE (2006) Inducible costimulator: a modulator of IFN-gamma production in human tuberculosis. J Immunol 176(10):5965–5974PubMed
Metadata
Title
Mammaglobin-A cDNA vaccination of breast cancer patients induces antigen-specific cytotoxic CD4+ICOShi T cells
Authors
Venkataswarup Tiriveedhi
Timothy P. Fleming
Peter S. Goedegebuure
Michael Naughton
Cynthia Ma
Craig Lockhart
Feng Gao
William E. Gillanders
T. Mohanakumar
Publication date
01-02-2013
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 1/2013
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-012-2110-9

Other articles of this Issue 1/2013

Breast Cancer Research and Treatment 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine