Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2018

Open Access 01-12-2018 | Research

Targeted radiotherapy of pigmented melanoma with 131I-5-IPN

Authors: Xiaodong Xu, Lujie Yuan, Yongkang Gai, Qingyao Liu, Lianglan Yin, Yaqun Jiang, Yichun Wang, Yongxue Zhang, Xiaoli Lan

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2018

Login to get access

Abstract

Purpose

There has been no satisfactory treatment for advanced melanoma until now. Targeted radionuclide therapy (TRNT) may be a promising option for this heretofore lethal disease. Our goal in this study was to synthesize 131I-N-(2-(diethylamino)ethyl)-5-(iodo-131I)picolinamide (131I-5-IPN) and evaluate its therapeutic ability and toxicity as a radioiodinated melanin-targeting therapeutic agent.

Methods

The trimethylstannyl precursor was synthesized and labeled with 131I to obtain 131I-5-IPN. The pharmacokinetics of 131I-5-IPN was evaluated through SPECT imaging, and its biodistribution was assessed in B16F10 tumor models and in A375 human-to-mouse xenografts. For TRNT, B16F10 melanoma-bearing mice were randomly allocated to receive one of five treatments (n = 10 per group): group A (the control group) received 0.1 mL saline; group B was treated with an equimolar dose of unlabeled precursor; group C received 18.5 MBq of [131I]NaI; group D and E received one or two dose of 18.5 MBq 131I-5-IPN, respectively. TRNT efficacy was evaluated through tumor volume measurement and biology study. The toxic effects of 131I-5-IPN on vital organs were assessed with laboratory tests and histopathological examination. The radiation absorbed dose to vital organs was estimated based on biodistribution data.

Results

131I-5-IPN was successfully prepared with a good radiochemistry yield (55% ± 5%, n = 5), and it exhibited a high uptake ratio in melanin-positive B16F10 cells which indicating high specificity. SPECT imaging and biodistribution of 131I-5-IPN showed lasting high tumor uptake in pigmented B16F10 models for 72 h. TRNT with 131I-5-IPN led to a significant anti-tumor effect and Groups D and E displayed an extended median survival compared to groups A, B, and C. The highest absorbed dose to a vital organ was 0.25 mSv/MBq to the liver; no obvious injury to the liver or kidneys was observed during treatment. 131I-5-IPN treatment was associated with reduction of expression of proliferating cell nuclear antigen (PCNA) and Ki67 and cell cycle blockage in G2/M phase in tumor tissues. Decreased vascular endothelial growth factor and CD31 expression, implying reduced tumor growth, was noted after TRNT.

Conclusion

We successfully synthesized 131I-5-IPN, which presents long-time retention in melanotic melanoma. TRNT with 131I-5-IPN has the potential to be a safe and effective strategy for management of pigmented melanoma.
Literature
1.
go back to reference Karimkhani C, Green AC, Nijsten T, et al. The global burden of melanoma: results from the global burden of disease study 2015. Br J Dermatol. 2017;177(1):134–40.CrossRef Karimkhani C, Green AC, Nijsten T, et al. The global burden of melanoma: results from the global burden of disease study 2015. Br J Dermatol. 2017;177(1):134–40.CrossRef
2.
go back to reference Karimkhani C, Reddy BY, Dellavalle RP, et al. Novel therapies for unresectable and metastatic melanoma. BMJ. 2017;359:j5174.CrossRef Karimkhani C, Reddy BY, Dellavalle RP, et al. Novel therapies for unresectable and metastatic melanoma. BMJ. 2017;359:j5174.CrossRef
3.
go back to reference Huncharek M, Caubet JF, Mcgarry R. Single-agent DTIC versus combination chemotherapy with or without immunotherapy in metastatic melanoma: a meta-analysis of 3273 patients from 20 randomized trials. Melanoma Res. 2001;11(1):75–81.CrossRef Huncharek M, Caubet JF, Mcgarry R. Single-agent DTIC versus combination chemotherapy with or without immunotherapy in metastatic melanoma: a meta-analysis of 3273 patients from 20 randomized trials. Melanoma Res. 2001;11(1):75–81.CrossRef
4.
go back to reference Espenel S, Vallard A, Rancoule C, et al. Melanoma: last call for radiotherapy. Crit Rev Oncol Hematol. 2017;110:13.CrossRef Espenel S, Vallard A, Rancoule C, et al. Melanoma: last call for radiotherapy. Crit Rev Oncol Hematol. 2017;110:13.CrossRef
5.
go back to reference Norain A, Dadachova E. Targeted radionuclide therapy of melanoma. Semin Nucl Med. 2016;46(3):250–259.1.CrossRef Norain A, Dadachova E. Targeted radionuclide therapy of melanoma. Semin Nucl Med. 2016;46(3):250–259.1.CrossRef
6.
go back to reference Strosberg J, El-Haddad G, Wolin E, et al. Phase 3 trial of 177Lu-Dotatate for midgut neuroendocrine tumors. N Engl J Med. 2017;376(2):125.CrossRef Strosberg J, El-Haddad G, Wolin E, et al. Phase 3 trial of 177Lu-Dotatate for midgut neuroendocrine tumors. N Engl J Med. 2017;376(2):125.CrossRef
7.
go back to reference Witzig TE. Efficacy and safety of 90Y ibritumomab tiuxetan (Zevalin) radioimmunotherapy for non-Hodgkin's lymphoma. Semin Oncol. 2003;30(17):11–6.CrossRef Witzig TE. Efficacy and safety of 90Y ibritumomab tiuxetan (Zevalin) radioimmunotherapy for non-Hodgkin's lymphoma. Semin Oncol. 2003;30(17):11–6.CrossRef
8.
go back to reference Kaminski MS, Tuck M, Estes J, et al. 131I-tositumomab therapy as initial treatment for follicular lymphoma. N Engl J Med. 2005;352(5):441.CrossRef Kaminski MS, Tuck M, Estes J, et al. 131I-tositumomab therapy as initial treatment for follicular lymphoma. N Engl J Med. 2005;352(5):441.CrossRef
9.
go back to reference Scott AM, Lee FT, Hopkins W, et al. Specific targeting, biodistribution, and lack of immunogenicity of chimeric anti-GD3 monoclonal antibody KM871 in patients with metastatic melanoma: results of a phase I trial. J Clin Oncol. 2001;19(19):3976–87.CrossRef Scott AM, Lee FT, Hopkins W, et al. Specific targeting, biodistribution, and lack of immunogenicity of chimeric anti-GD3 monoclonal antibody KM871 in patients with metastatic melanoma: results of a phase I trial. J Clin Oncol. 2001;19(19):3976–87.CrossRef
10.
go back to reference Dadachova E, Revskaya E, Sesay MA, et al. Pre-clinical evaluation and efficacy studies of a melanin-binding IgM antibody labeled with 188Re against experimental human metastatic melanoma in nude mice. Cancer Biol Ther. 2008;7(7):1116–27.CrossRef Dadachova E, Revskaya E, Sesay MA, et al. Pre-clinical evaluation and efficacy studies of a melanin-binding IgM antibody labeled with 188Re against experimental human metastatic melanoma in nude mice. Cancer Biol Ther. 2008;7(7):1116–27.CrossRef
11.
go back to reference Miao Y, Owen NK, Fisher DR, et al. Therapeutic efficacy of a 188Re-labeled alpha-melanocyte-stimulating hormone peptide analog in murine and human melanoma-bearing mouse models. J Nucl Med. 2005;46(1):121.PubMed Miao Y, Owen NK, Fisher DR, et al. Therapeutic efficacy of a 188Re-labeled alpha-melanocyte-stimulating hormone peptide analog in murine and human melanoma-bearing mouse models. J Nucl Med. 2005;46(1):121.PubMed
12.
go back to reference Howell RC, Revskaya E, Pazo V, et al. Phage display library derived peptides that bind to human tumor melanin as potential vehicles for targeted radionuclide therapy of metastatic melanoma. Bioconjug Chem. 2007;18(6):1739–48.CrossRef Howell RC, Revskaya E, Pazo V, et al. Phage display library derived peptides that bind to human tumor melanin as potential vehicles for targeted radionuclide therapy of metastatic melanoma. Bioconjug Chem. 2007;18(6):1739–48.CrossRef
13.
go back to reference Beaino W, Nedrow JR, Anderson CJ. Evaluation of (68)Ga- and (177)Lu-DOTA-PEG4-LLP2A for VLA-4-targeted PET imaging and treatment of metastatic melanoma. Mol Pharm. 2015;12(6):1929.CrossRef Beaino W, Nedrow JR, Anderson CJ. Evaluation of (68)Ga- and (177)Lu-DOTA-PEG4-LLP2A for VLA-4-targeted PET imaging and treatment of metastatic melanoma. Mol Pharm. 2015;12(6):1929.CrossRef
14.
go back to reference Gai Y, Sun L, Lan X, et al. Synthesis and evaluation of new bifunctional chelators with Phosphonic acid arms for Gallium-68 based PET imaging in melanoma. Bioconjug Chem. 2018;29(10):3483–94.CrossRef Gai Y, Sun L, Lan X, et al. Synthesis and evaluation of new bifunctional chelators with Phosphonic acid arms for Gallium-68 based PET imaging in melanoma. Bioconjug Chem. 2018;29(10):3483–94.CrossRef
15.
go back to reference Denoyer D, Greguric I, Roselt P, et al. High-contrast PET of melanoma using (18)F-MEL050, a selective probe for melanin with predominantly renal clearance. J Nucl Med. 2010;51(3):441–7.CrossRef Denoyer D, Greguric I, Roselt P, et al. High-contrast PET of melanoma using (18)F-MEL050, a selective probe for melanin with predominantly renal clearance. J Nucl Med. 2010;51(3):441–7.CrossRef
16.
go back to reference Liu H, Liu S, Miao Z, et al. Development of 18F-labeled picolinamide probes for PET imaging of malignant melanoma. J Med Chem. 2013;56(3):895–901.CrossRef Liu H, Liu S, Miao Z, et al. Development of 18F-labeled picolinamide probes for PET imaging of malignant melanoma. J Med Chem. 2013;56(3):895–901.CrossRef
17.
go back to reference Rbah-Vidal L, Vidal A, Billaud EM, et al. Theranostic approach for metastatic pigmented melanoma using ICF15002, a multimodal radiotracer for both PET imaging and targeted radionuclide therapy. Neoplasia. 2017;19(1):17–27.CrossRef Rbah-Vidal L, Vidal A, Billaud EM, et al. Theranostic approach for metastatic pigmented melanoma using ICF15002, a multimodal radiotracer for both PET imaging and targeted radionuclide therapy. Neoplasia. 2017;19(1):17–27.CrossRef
18.
go back to reference Garg PK, Nazih R, Wu Y, et al. 4-11C-Methoxy N-(2-Diethylaminoethyl) Benzamide: a novel probe to selectively target melanoma. J Nucl Med. 2017;58(5):827–32.CrossRef Garg PK, Nazih R, Wu Y, et al. 4-11C-Methoxy N-(2-Diethylaminoethyl) Benzamide: a novel probe to selectively target melanoma. J Nucl Med. 2017;58(5):827–32.CrossRef
19.
go back to reference Bonnet-Duquennoy M, Papon J, Mishellany F, et al. Targeted radionuclide therapy of melanoma: anti-tumoural efficacy studies of a new 131I labelled potential agent. Int J Cancer. 2009;125(3):708–16.CrossRef Bonnet-Duquennoy M, Papon J, Mishellany F, et al. Targeted radionuclide therapy of melanoma: anti-tumoural efficacy studies of a new 131I labelled potential agent. Int J Cancer. 2009;125(3):708–16.CrossRef
20.
go back to reference Joyal JL, Barrett JA, Marquis JC, et al. Preclinical evaluation of an 131I-labeled benzamide for targeted radiotherapy of metastatic melanoma. Cancer Re. 2010;70(70):4045–53.CrossRef Joyal JL, Barrett JA, Marquis JC, et al. Preclinical evaluation of an 131I-labeled benzamide for targeted radiotherapy of metastatic melanoma. Cancer Re. 2010;70(70):4045–53.CrossRef
21.
go back to reference Mier W, Kratochwil C, Hassel JC, et al. Radiopharmaceutical therapy of patients with metastasized melanoma with the melanin-binding benzamide 131I-BA52. J Nucl Med. 2014;55(1):9–14.CrossRef Mier W, Kratochwil C, Hassel JC, et al. Radiopharmaceutical therapy of patients with metastasized melanoma with the melanin-binding benzamide 131I-BA52. J Nucl Med. 2014;55(1):9–14.CrossRef
22.
go back to reference Feng H, Xia X, Li C, et al. Imaging malignant melanoma with 18F-5-FPN. Eur J Nucl Med Mol Imaging. 2016;43(1):113–22.CrossRef Feng H, Xia X, Li C, et al. Imaging malignant melanoma with 18F-5-FPN. Eur J Nucl Med Mol Imaging. 2016;43(1):113–22.CrossRef
23.
go back to reference Xu X, Yuan L, Yin L, et al. Synthesis and preclinical evaluation of 18F-PEG3-FPN for the detection of metastatic pigmented melanoma. Mol Pharm. 2017;14(11):3896–905.CrossRef Xu X, Yuan L, Yin L, et al. Synthesis and preclinical evaluation of 18F-PEG3-FPN for the detection of metastatic pigmented melanoma. Mol Pharm. 2017;14(11):3896–905.CrossRef
24.
go back to reference Chen K, He P, Zhang S, et al. Synthesis of aryl trimethylstannanes from aryl halides: an efficient photochemical method. Chem Commun (Camb). 2016;52(58):9125.CrossRef Chen K, He P, Zhang S, et al. Synthesis of aryl trimethylstannanes from aryl halides: an efficient photochemical method. Chem Commun (Camb). 2016;52(58):9125.CrossRef
25.
go back to reference Koch SE, Lange JR. Amelanotic melanoma: the great masquerader. J Am Acad Dermatol. 2000;42(5):731–4.CrossRef Koch SE, Lange JR. Amelanotic melanoma: the great masquerader. J Am Acad Dermatol. 2000;42(5):731–4.CrossRef
26.
go back to reference Ikkola J, Vihinen P, Vlaykova T, et al. High expression levels of collagenase-1 and stromelysin-1 correlate with shorter disease-free survival in human metastatic melanoma. Int J Cancer. 2002;97(4):432–8.CrossRef Ikkola J, Vihinen P, Vlaykova T, et al. High expression levels of collagenase-1 and stromelysin-1 correlate with shorter disease-free survival in human metastatic melanoma. Int J Cancer. 2002;97(4):432–8.CrossRef
27.
go back to reference Ghanem N, Altehoefer C, Högerle S, et al. Detectability of liver metastases in malignant melanoma: prospective comparison of magnetic resonance imaging and positron emission tomography. Eur J Radiol. 2005;54(2):264.CrossRef Ghanem N, Altehoefer C, Högerle S, et al. Detectability of liver metastases in malignant melanoma: prospective comparison of magnetic resonance imaging and positron emission tomography. Eur J Radiol. 2005;54(2):264.CrossRef
28.
go back to reference Wang Y, Li M, Zhang Y, et al. Detection of melanoma metastases with PET-comparison of 18F-5-FPN with 18F-FDG. Nucl Med Biol. 2017;50:33–8.CrossRef Wang Y, Li M, Zhang Y, et al. Detection of melanoma metastases with PET-comparison of 18F-5-FPN with 18F-FDG. Nucl Med Biol. 2017;50:33–8.CrossRef
29.
go back to reference Durairaj C, Chastain JE, Kompella UB. Intraocular distribution of melanin in human, monkey, rabbit, minipig and dog eyes. Exp Eye Res. 2012;98(1):23.CrossRef Durairaj C, Chastain JE, Kompella UB. Intraocular distribution of melanin in human, monkey, rabbit, minipig and dog eyes. Exp Eye Res. 2012;98(1):23.CrossRef
30.
go back to reference Cachin F, Miot-Noirault E, Gillet B, et al. (123)I-BZA2 as a melanin-targeted radiotracer for the identification of melanoma metastases: results and perspectives of a multicenter phase III clinical trial. J Nucl Med. 2014;55(1):15–22.CrossRef Cachin F, Miot-Noirault E, Gillet B, et al. (123)I-BZA2 as a melanin-targeted radiotracer for the identification of melanoma metastases: results and perspectives of a multicenter phase III clinical trial. J Nucl Med. 2014;55(1):15–22.CrossRef
31.
go back to reference Labarre P, Papon J, Moreau MF, et al. Evaluation in mice of some iodinated melanoma imaging agents using cryosectioning and multi-wire proportional counting. Eur J Nucl Med. 1999;26(5):494–8.CrossRef Labarre P, Papon J, Moreau MF, et al. Evaluation in mice of some iodinated melanoma imaging agents using cryosectioning and multi-wire proportional counting. Eur J Nucl Med. 1999;26(5):494–8.CrossRef
32.
go back to reference Emami B, Lyman J, Brown A, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21(1):109–22.CrossRef Emami B, Lyman J, Brown A, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21(1):109–22.CrossRef
33.
go back to reference Wolchok JD, Kluger H, Callahan MK, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369(2):122.CrossRef Wolchok JD, Kluger H, Callahan MK, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369(2):122.CrossRef
34.
go back to reference Hanna GG, Coyle VM, Prise KM. Immune modulation in advanced radiotherapies: targeting out-of-field effects. Cancer Lett. 2015;368(2):246–51.CrossRef Hanna GG, Coyle VM, Prise KM. Immune modulation in advanced radiotherapies: targeting out-of-field effects. Cancer Lett. 2015;368(2):246–51.CrossRef
35.
go back to reference Tang C, Wang X, Soh H, et al. Combining radiation and immunotherapy: a new systemic therapy for solid tumors? Cancer Immunol Res. 2014;2(9):831.CrossRef Tang C, Wang X, Soh H, et al. Combining radiation and immunotherapy: a new systemic therapy for solid tumors? Cancer Immunol Res. 2014;2(9):831.CrossRef
Metadata
Title
Targeted radiotherapy of pigmented melanoma with 131I-5-IPN
Authors
Xiaodong Xu
Lujie Yuan
Yongkang Gai
Qingyao Liu
Lianglan Yin
Yaqun Jiang
Yichun Wang
Yongxue Zhang
Xiaoli Lan
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2018
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-018-0983-0

Other articles of this Issue 1/2018

Journal of Experimental & Clinical Cancer Research 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine