Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2017

Open Access 01-12-2017 | Research

p53-Dependent PUMA to DRAM antagonistic interplay as a key molecular switch in cell-fate decision in normal/high glucose conditions

Authors: Alessia Garufi, Giuseppa Pistritto, Silvia Baldari, Gabriele Toietta, Mara Cirone, Gabriella D’Orazi

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2017

Login to get access

Abstract

Background

As an important cellular stress sensor phosphoprotein p53 can trigger cell cycle arrest and apoptosis and regulate autophagy. The p53 activity mainly depends on its transactivating function, however, how p53 can select one or another biological outcome is still a matter of profound studies. Our previous findings indicate that switching cancer cells in high glucose (HG) impairs p53 apoptotic function and the transcription of target gene PUMA.

Methods and results

Here we report that, in response to drug adriamycin (ADR) in HG, p53 efficiently induced the expression of DRAM (damage-regulated autophagy modulator), a p53 target gene and a stress-induced regulator of autophagy. We found that ADR treatment of cancer cells in HG increased autophagy, as displayed by greater LC3II accumulation and p62 degradation compared to ADR-treated cells in low glucose. The increased autophagy in HG was in part dependent on p53-induced DRAM; indeed DRAM knockdown with specific siRNA reversed the expression of the autophagic markers in HG. A similar outcome was achieved by inhibiting p53 transcriptional activity with pifithrin-α. DRAM knockdown restored the ADR-induced cell death in HG to the levels obtained in low glucose. A similar outcome was achieved by inhibition of autophagy with cloroquine (CQ) or with silencing of autophagy gene ATG5. DRAM knockdown or inhibition of autophagy were both able to re-induce PUMA transcription in response to ADR, underlining a reciprocal interplay between PUMA to DRAM to unbalance p53 apoptotic activity in HG. Xenograft tumors transplanted in normoglycemic mice displayed growth delay after ADR treatment compared to those transplanted in diabetics mice and such different in vivo response correlated with PUMA to DRAM gene expression.

Conclusions

Altogether, these findings suggest that in normal/high glucose condition a mutual unbalance between p53-dependent apoptosis (PUMA) and autophagy (DRAM) gene occurred, modifying the ADR-induced cancer cell death in HG both in vitro and in vivo.
Literature
2.
go back to reference Vousden KH, Prives C. Blinded by the light: the growing complexity of p53. Cell. 2009;137:413–31.CrossRefPubMed Vousden KH, Prives C. Blinded by the light: the growing complexity of p53. Cell. 2009;137:413–31.CrossRefPubMed
4.
go back to reference Weber JD, Zambetti GP. Renewing the debate over p53 apoptotic response. Cell Death Diff. 2003;10:409–12.CrossRef Weber JD, Zambetti GP. Renewing the debate over p53 apoptotic response. Cell Death Diff. 2003;10:409–12.CrossRef
5.
go back to reference Cirone M, Di Renzo L, Lotti LV, Conte V, Trivedi P, Santarelli R, et al. Activation of dendritic cells by tumor cell death. Oncoimmunology. 2012;1:1218–9.CrossRefPubMedPubMedCentral Cirone M, Di Renzo L, Lotti LV, Conte V, Trivedi P, Santarelli R, et al. Activation of dendritic cells by tumor cell death. Oncoimmunology. 2012;1:1218–9.CrossRefPubMedPubMedCentral
6.
go back to reference Cirone M, Garufi A, Di Renzo L, Granato M, Faggioni A, D'Orazi G. Zinc supplementation is requie for the cytotoxic and immunogenic effects of chemotherapy in chemoresistant p53-functionally deficient cells. Oncoimmunology. 2013;2:e26198.CrossRefPubMedPubMedCentral Cirone M, Garufi A, Di Renzo L, Granato M, Faggioni A, D'Orazi G. Zinc supplementation is requie for the cytotoxic and immunogenic effects of chemotherapy in chemoresistant p53-functionally deficient cells. Oncoimmunology. 2013;2:e26198.CrossRefPubMedPubMedCentral
7.
go back to reference Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D’Orazi G. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging-US. 2016;8:603–19.CrossRef Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D’Orazi G. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging-US. 2016;8:603–19.CrossRef
8.
go back to reference Nakano K, Vousden KH. PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell. 2001;7:683–94.CrossRefPubMed Nakano K, Vousden KH. PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell. 2001;7:683–94.CrossRefPubMed
9.
go back to reference Yu J, Wang Z, Kinzler KW, Vogelstein B, Zhang L. PUMA mediates the apoptotic response to p53 in colorectal cancer cells. Proc Natl Acad Sci U S A. 2003;100:1931–6.CrossRefPubMedPubMedCentral Yu J, Wang Z, Kinzler KW, Vogelstein B, Zhang L. PUMA mediates the apoptotic response to p53 in colorectal cancer cells. Proc Natl Acad Sci U S A. 2003;100:1931–6.CrossRefPubMedPubMedCentral
10.
go back to reference Hikisz P, Kilianska ZM. PUMA, a critical mediator of cell death – one decade on from its discovery. Cell Mol Biol Lett. 2012;17:646–69.CrossRefPubMed Hikisz P, Kilianska ZM. PUMA, a critical mediator of cell death – one decade on from its discovery. Cell Mol Biol Lett. 2012;17:646–69.CrossRefPubMed
11.
go back to reference Yu J, Zhang L. PUMA a potent killer with or without p53. Oncogene. 2009;27:S71–83.CrossRef Yu J, Zhang L. PUMA a potent killer with or without p53. Oncogene. 2009;27:S71–83.CrossRef
12.
go back to reference Delbridge ARD, Strasser A. The BCL-2 protein family, BH3-mimetics and cancer therapy. Cell Death Diff. 2015;22:1071–80.CrossRef Delbridge ARD, Strasser A. The BCL-2 protein family, BH3-mimetics and cancer therapy. Cell Death Diff. 2015;22:1071–80.CrossRef
13.
go back to reference Rayan KM. p53 And autophagy in cancer: Guardian of the genome meets guardian of the proteasome. Eur J Cancer. 2011;47:44–50.CrossRef Rayan KM. p53 And autophagy in cancer: Guardian of the genome meets guardian of the proteasome. Eur J Cancer. 2011;47:44–50.CrossRef
14.
go back to reference Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D'Amelio M, et al. Regulation of autophagy by cytoplasmic p53. Nat Cell Biol. 2008;10:676–87.CrossRefPubMedPubMedCentral Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D'Amelio M, et al. Regulation of autophagy by cytoplasmic p53. Nat Cell Biol. 2008;10:676–87.CrossRefPubMedPubMedCentral
15.
go back to reference Scherz-Shouval R, Weidberg H, Gonen C, Wilder Z, Oren M. p53-Dependent regulation of autophagy protein LC3 supports cancer cell survival under prolonged starvation. Proc Natl Acad Sci U S A. 2010;107:18511–6.CrossRefPubMedPubMedCentral Scherz-Shouval R, Weidberg H, Gonen C, Wilder Z, Oren M. p53-Dependent regulation of autophagy protein LC3 supports cancer cell survival under prolonged starvation. Proc Natl Acad Sci U S A. 2010;107:18511–6.CrossRefPubMedPubMedCentral
16.
go back to reference Kenzelmann-Broz D, Spano Mello S, Bieging KT, Jiang D, Dusek RL, Brady CA, et al. Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Genes Dev. 2013;27:1016–31.CrossRefPubMedPubMedCentral Kenzelmann-Broz D, Spano Mello S, Bieging KT, Jiang D, Dusek RL, Brady CA, et al. Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Genes Dev. 2013;27:1016–31.CrossRefPubMedPubMedCentral
17.
go back to reference Jing K, Song KS, Shin S, Kim N, Jeong S, Oh HR, et al. Docosahexaenoic acid induces autophagy through p53/AMPK/mTOR signaling and promotes apoptosis in human cancer cells harboring wild-type p53. Autophagy. 2011;7:1348–58.CrossRefPubMedPubMedCentral Jing K, Song KS, Shin S, Kim N, Jeong S, Oh HR, et al. Docosahexaenoic acid induces autophagy through p53/AMPK/mTOR signaling and promotes apoptosis in human cancer cells harboring wild-type p53. Autophagy. 2011;7:1348–58.CrossRefPubMedPubMedCentral
18.
go back to reference Crighton D, Wilkinson S, O’Prey J, Syed N, Smith P, Harrison PR, et al. DRAM, a p53- induced modulator of autophagy, is critical for apoptosis. Cell. 2006;126:121–34.CrossRefPubMed Crighton D, Wilkinson S, O’Prey J, Syed N, Smith P, Harrison PR, et al. DRAM, a p53- induced modulator of autophagy, is critical for apoptosis. Cell. 2006;126:121–34.CrossRefPubMed
19.
go back to reference Crighton D, Wilkinson S, Ryan KM. DRAM links autophagy to p53 programmed cell death. Autophagy. 2007;3:72–4.CrossRefPubMed Crighton D, Wilkinson S, Ryan KM. DRAM links autophagy to p53 programmed cell death. Autophagy. 2007;3:72–4.CrossRefPubMed
20.
go back to reference Maiuri MC, Galluzzi L, Morselli E, Kepp O, Malik SA, Kroemer G. Autophagy regulation by p53. Curr Opin Cell Biol. 2010;22:181–5.CrossRefPubMed Maiuri MC, Galluzzi L, Morselli E, Kepp O, Malik SA, Kroemer G. Autophagy regulation by p53. Curr Opin Cell Biol. 2010;22:181–5.CrossRefPubMed
22.
go back to reference Boya P, Gonzalez-Polo RA, Casares N, Perfettini JL, Dessen P, Larochette N, et al. Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol. 2005;25:1025.1040.CrossRefPubMedCentral Boya P, Gonzalez-Polo RA, Casares N, Perfettini JL, Dessen P, Larochette N, et al. Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol. 2005;25:1025.1040.CrossRefPubMedCentral
23.
go back to reference Huang Z, Zhou L, Chen Z, Nice EC, Huang C. Stress management by autophagy: implications for chemoresistance. Int J Cancer. 2016;139:23–32.CrossRefPubMed Huang Z, Zhou L, Chen Z, Nice EC, Huang C. Stress management by autophagy: implications for chemoresistance. Int J Cancer. 2016;139:23–32.CrossRefPubMed
24.
26.
go back to reference Baldari S, Garufi A, Granato M, Pistritto G, Cirone M, D’Orazi G. Hyperglycemia triggers HIPK2 protein degradation. Oncotarget. 2017;8:1190–203.PubMed Baldari S, Garufi A, Granato M, Pistritto G, Cirone M, D’Orazi G. Hyperglycemia triggers HIPK2 protein degradation. Oncotarget. 2017;8:1190–203.PubMed
27.
go back to reference Biernacka KM, Uzoh CC, Zeng L, Persad RA, Bahl A, Gillatt D, et al. Hyperglicaemia-induced chemoresistance of prostate cancer cells due to IGFBP2. Endocr Relat Cancer. 2013;20:741–51.CrossRefPubMed Biernacka KM, Uzoh CC, Zeng L, Persad RA, Bahl A, Gillatt D, et al. Hyperglicaemia-induced chemoresistance of prostate cancer cells due to IGFBP2. Endocr Relat Cancer. 2013;20:741–51.CrossRefPubMed
28.
go back to reference Ma YS, Yang IP, Tsai HL, Huang CW, Juo SH, Wang JY. High glucose modulates antiproliferative effect and citotoxicity of 5-fluorouracil in human colon cancer cells. DNA Cell Biol. 2014;33:64–72.CrossRefPubMedPubMedCentral Ma YS, Yang IP, Tsai HL, Huang CW, Juo SH, Wang JY. High glucose modulates antiproliferative effect and citotoxicity of 5-fluorouracil in human colon cancer cells. DNA Cell Biol. 2014;33:64–72.CrossRefPubMedPubMedCentral
29.
go back to reference Michihara A, Toda K, Kubo T, Fujiwara Y, Akasaki K, Tsuji H. Disruptive effect of choroquine on lysosomes in cultured rat hepatocytes. Biol Pharm Bull. 2005;28:947–51.CrossRefPubMed Michihara A, Toda K, Kubo T, Fujiwara Y, Akasaki K, Tsuji H. Disruptive effect of choroquine on lysosomes in cultured rat hepatocytes. Biol Pharm Bull. 2005;28:947–51.CrossRefPubMed
30.
go back to reference Komarov PG, Komarova EA, Kondratov RV, Christov-Tselkov K, Coon JS, Chernov MV, et al. A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science. 1999;285:1733–7.CrossRefPubMed Komarov PG, Komarova EA, Kondratov RV, Christov-Tselkov K, Coon JS, Chernov MV, et al. A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science. 1999;285:1733–7.CrossRefPubMed
31.
go back to reference Garufi A, Trisciuoglio D, Porru M, Leonetti C, Stoppacciaro A, D’Orazi V, et al. A fluorescent curcumin-based Zn(II)-complex reactivates mutant (R175H and R273H) p53 in cancer cells. J Exp Clin Cancer Res. 2013;32:72.CrossRefPubMedPubMedCentral Garufi A, Trisciuoglio D, Porru M, Leonetti C, Stoppacciaro A, D’Orazi V, et al. A fluorescent curcumin-based Zn(II)-complex reactivates mutant (R175H and R273H) p53 in cancer cells. J Exp Clin Cancer Res. 2013;32:72.CrossRefPubMedPubMedCentral
32.
go back to reference Garufi A, Ricci A, Iorio E, Carpinelli G, Pistritto G, Cirone M, et al. Glucose restriction induces cell death in parental but not in HIPK2 depleted RKO colon cancer cells: molecular mechanisms and implications for tumor therapy. Cell Death Disease. 2013;4:e639.CrossRefPubMedPubMedCentral Garufi A, Ricci A, Iorio E, Carpinelli G, Pistritto G, Cirone M, et al. Glucose restriction induces cell death in parental but not in HIPK2 depleted RKO colon cancer cells: molecular mechanisms and implications for tumor therapy. Cell Death Disease. 2013;4:e639.CrossRefPubMedPubMedCentral
33.
go back to reference Graham ML, Janecek JL, Kittredge JA, Hering BJ, Schuurman HJ. The streptozotocin-induced diabetic nude mouse model: differences between animals from different sources. Comp Med. 2011;61:356–60.PubMedPubMedCentral Graham ML, Janecek JL, Kittredge JA, Hering BJ, Schuurman HJ. The streptozotocin-induced diabetic nude mouse model: differences between animals from different sources. Comp Med. 2011;61:356–60.PubMedPubMedCentral
34.
go back to reference Crighton D, O’Perey J, Bell HS, Ryan KM. p73 Regulates DRAM-independent autophagy that does not contribute to programmed cell death. Cell Death Diff. 2007;14:1071–9.CrossRef Crighton D, O’Perey J, Bell HS, Ryan KM. p73 Regulates DRAM-independent autophagy that does not contribute to programmed cell death. Cell Death Diff. 2007;14:1071–9.CrossRef
35.
go back to reference Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Hagai Abeliovich H, Arozena AA, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (2nd edition). Autophagy. 2016;12:1–222.CrossRefPubMedPubMedCentral Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Hagai Abeliovich H, Arozena AA, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (2nd edition). Autophagy. 2016;12:1–222.CrossRefPubMedPubMedCentral
36.
go back to reference Mizushima N, Yoshimori T, Ohsumi Y. The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol. 2011;27:107–32.CrossRefPubMed Mizushima N, Yoshimori T, Ohsumi Y. The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol. 2011;27:107–32.CrossRefPubMed
37.
go back to reference Puca R, Nardinocchi L, Gal H, Rechavi G, Amariglio N, Domany E, et al. Reversible dysfunction of wild-type p53 following homeodomain-interacting protein kinase-2 knockdown. Cancer Res. 2008;15:3707–14.CrossRef Puca R, Nardinocchi L, Gal H, Rechavi G, Amariglio N, Domany E, et al. Reversible dysfunction of wild-type p53 following homeodomain-interacting protein kinase-2 knockdown. Cancer Res. 2008;15:3707–14.CrossRef
38.
go back to reference Garufi A, Ubertini V, Mancini F, D’Orazi V, Baldari S, Moretti F, et al. The beneficial effect of zinc(II) on low-dose chemotherapeutic sensitivity involves p53 activation in wild-type p53 cancer cells. J Exp Clin Cancer Res. 2015;34:87.CrossRefPubMedPubMedCentral Garufi A, Ubertini V, Mancini F, D’Orazi V, Baldari S, Moretti F, et al. The beneficial effect of zinc(II) on low-dose chemotherapeutic sensitivity involves p53 activation in wild-type p53 cancer cells. J Exp Clin Cancer Res. 2015;34:87.CrossRefPubMedPubMedCentral
39.
go back to reference Oda K, Arakawa H, Tanaka T, Matsuda K, Tanikawa C, Mori T, et al. P53AIP1, A potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell. 2000;102:849–62.CrossRefPubMed Oda K, Arakawa H, Tanaka T, Matsuda K, Tanikawa C, Mori T, et al. P53AIP1, A potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell. 2000;102:849–62.CrossRefPubMed
40.
go back to reference Ichwan SJA, Yamada S, Sumreijkanchanakij P, Ibrahim-Auerkari E, Eto K, Ikeda MA. Defect in serine 46 phosphorylation of p53 contributes to acquisition of p53 resistance in oral squamous cell carcinoma cells. Oncogene. 2006;25:1216–24.CrossRefPubMed Ichwan SJA, Yamada S, Sumreijkanchanakij P, Ibrahim-Auerkari E, Eto K, Ikeda MA. Defect in serine 46 phosphorylation of p53 contributes to acquisition of p53 resistance in oral squamous cell carcinoma cells. Oncogene. 2006;25:1216–24.CrossRefPubMed
41.
go back to reference D’Orazi G, Cecchinelli B, Bruno T, Manni I, Higashimoto Y, Saito S, et al. Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser46 and mediates apoptosis. Nat Cell Biol. 2002;4:11–9.CrossRefPubMed D’Orazi G, Cecchinelli B, Bruno T, Manni I, Higashimoto Y, Saito S, et al. Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser46 and mediates apoptosis. Nat Cell Biol. 2002;4:11–9.CrossRefPubMed
42.
go back to reference Liu K, Shi Y, Guo XH, Ouyang YB, Wang SS, Liu DJ, et al. Phoaphorylated AKT inhibits the apoptosis induced by DRAM-mediated mitophagy in hepatocellular carcinoma by preventing the translocation of DRAM to mitochondria. Cell Death Dis. 2014;5:e1078.CrossRefPubMedPubMedCentral Liu K, Shi Y, Guo XH, Ouyang YB, Wang SS, Liu DJ, et al. Phoaphorylated AKT inhibits the apoptosis induced by DRAM-mediated mitophagy in hepatocellular carcinoma by preventing the translocation of DRAM to mitochondria. Cell Death Dis. 2014;5:e1078.CrossRefPubMedPubMedCentral
43.
go back to reference Granato M, Santarelli R, Lotti LV, Di Renzo L, Gonnella R, Garufi A, et al. JNK and macroautophagy activation by bortezomib has a pro-survival effect in primary effusion lymphoma cells. PLoS One. 2013;8:e75965.CrossRefPubMedPubMedCentral Granato M, Santarelli R, Lotti LV, Di Renzo L, Gonnella R, Garufi A, et al. JNK and macroautophagy activation by bortezomib has a pro-survival effect in primary effusion lymphoma cells. PLoS One. 2013;8:e75965.CrossRefPubMedPubMedCentral
44.
46.
go back to reference Galadari S, Rahman A, Pallichankandy S, Thayyullathil F. Reactive oxygen species and cancer paradox: to promore or to suppress? Free Radic Biol Med. 2017;104:144–64.CrossRefPubMed Galadari S, Rahman A, Pallichankandy S, Thayyullathil F. Reactive oxygen species and cancer paradox: to promore or to suppress? Free Radic Biol Med. 2017;104:144–64.CrossRefPubMed
47.
go back to reference Nardinocchi L, Puca R, Givol D, D’Orazi G. HIPK2-A therapeutical target to be (re)activated for tumor suppression: role in p53 activation and HIF-1alpha inhibition. Cell Cycle. 2010;9:1–6.CrossRef Nardinocchi L, Puca R, Givol D, D’Orazi G. HIPK2-A therapeutical target to be (re)activated for tumor suppression: role in p53 activation and HIF-1alpha inhibition. Cell Cycle. 2010;9:1–6.CrossRef
Metadata
Title
p53-Dependent PUMA to DRAM antagonistic interplay as a key molecular switch in cell-fate decision in normal/high glucose conditions
Authors
Alessia Garufi
Giuseppa Pistritto
Silvia Baldari
Gabriele Toietta
Mara Cirone
Gabriella D’Orazi
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2017
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-017-0596-z

Other articles of this Issue 1/2017

Journal of Experimental & Clinical Cancer Research 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine