Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2013

Open Access 01-12-2013 | Research

A fluorescent curcumin-based Zn(II)-complex reactivates mutant (R175H and R273H) p53 in cancer cells

Authors: Alessia Garufi, Daniela Trisciuoglio, Manuela Porru, Carlo Leonetti, Antonella Stoppacciaro, Valerio D’Orazi, Maria Laura Avantaggiati, Alessandra Crispini, Daniela Pucci, Gabriella D’Orazi

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2013

Login to get access

Abstract

Background

Mutations of the p53 oncosuppressor gene are amongst the most frequent aberration seen in human cancer. Some mutant (mt) p53 proteins are prone to loss of Zn(II) ion that is bound to the wild-type (wt) core, promoting protein aggregation and therefore unfolding. Misfolded p53 protein conformation impairs wtp53-DNA binding and transactivation activities, favouring tumor growth and resistance to antitumor therapies. Screening studies, devoted to identify small molecules that reactivate mtp53, represent therefore an attractive anti-cancer therapeutic strategy. Here we tested a novel fluorescent curcumin-based Zn(II)-complex (Zn-curc) to evaluate its effect on mtp53 reactivation in cancer cells.

Methods

P53 protein conformation was examined after Zn-curc treatment by immunoprecipitation and immunofluorescence assays, using conformation-specific antibodies. The mtp53 reactivation was evaluated by chromatin-immunoprecipitation (ChIP) and semi-quantitative RT-PCR analyses of wild-type p53 target genes. The intratumoral Zn-curc localization was evaluated by immunofluorescence analysis of glioblastoma tissues of an ortothopic mice model.

Results

The Zn-curc complex induced conformational change in p53-R175H and -R273H mutant proteins, two of the most common p53 mutations. Zn-curc treatment restored wtp53-DNA binding and transactivation functions and induced apoptotic cell death. In vivo studies showed that the Zn-curc complex reached glioblastoma tissues of an ortothopic mice model, highlighting its ability to crossed the blood-tumor barrier.

Conclusions

Our results demonstrate that Zn-curc complex may reactivate specific mtp53 proteins and that may cross the blood-tumor barrier, becoming a promising compound for the development of drugs to halt tumor growth.
Appendix
Available only for authorised users
Literature
1.
go back to reference Vousden KH, Lane DP: P53 in health and disease. Nature Rev Mol Cell Biol. 2007, 8: 275-283. 10.1038/nrm2147.CrossRef Vousden KH, Lane DP: P53 in health and disease. Nature Rev Mol Cell Biol. 2007, 8: 275-283. 10.1038/nrm2147.CrossRef
2.
go back to reference Olivier M, Hollstein M, Hainaut P: TP53 Mutations in Human Cancers: Origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2010, 2: a001008-10.1101/cshperspect.a001008.CrossRef Olivier M, Hollstein M, Hainaut P: TP53 Mutations in Human Cancers: Origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2010, 2: a001008-10.1101/cshperspect.a001008.CrossRef
3.
go back to reference Joerger AC, Fersht AR: Structural biology of the tumor suppressor p53 and cancer-associated mutants. Adv Cancer Res. 2007, 97: 1-23.CrossRef Joerger AC, Fersht AR: Structural biology of the tumor suppressor p53 and cancer-associated mutants. Adv Cancer Res. 2007, 97: 1-23.CrossRef
4.
go back to reference Loh SN: The missing Zinc: p53 misfolding and cancer. Metallomics. 2010, 2: 442-449. 10.1039/c003915b.CrossRef Loh SN: The missing Zinc: p53 misfolding and cancer. Metallomics. 2010, 2: 442-449. 10.1039/c003915b.CrossRef
5.
go back to reference Muller PAJ, Vousden KH: P53 mutations in cancer. Nat Cell Biol. 2013, 15: 2-8. 10.1038/ncb2641.CrossRef Muller PAJ, Vousden KH: P53 mutations in cancer. Nat Cell Biol. 2013, 15: 2-8. 10.1038/ncb2641.CrossRef
6.
go back to reference Wiech M, Olszewski MB, Tracz-Gaszewska Z, Wawrzynow B, Zylicz M, Zylicz A: Molecular mechanism of mutant p53 stabilization: the role of HSP70 and MDM2. PLoS One. 2012, 7: e51426-10.1371/journal.pone.0051426.CrossRef Wiech M, Olszewski MB, Tracz-Gaszewska Z, Wawrzynow B, Zylicz M, Zylicz A: Molecular mechanism of mutant p53 stabilization: the role of HSP70 and MDM2. PLoS One. 2012, 7: e51426-10.1371/journal.pone.0051426.CrossRef
7.
go back to reference Bullock AN, Fersht AR: Rescuing the function of mutant p53. Nat Rev Cancer. 2001, 1: 68-76. 10.1038/35094077.CrossRef Bullock AN, Fersht AR: Rescuing the function of mutant p53. Nat Rev Cancer. 2001, 1: 68-76. 10.1038/35094077.CrossRef
8.
go back to reference Freed-Pastor WA, Prives C: Mutant p53: one name, many proteins. Genes Dev. 2012, 26: 1268-1286. 10.1101/gad.190678.112.CrossRef Freed-Pastor WA, Prives C: Mutant p53: one name, many proteins. Genes Dev. 2012, 26: 1268-1286. 10.1101/gad.190678.112.CrossRef
9.
go back to reference Puca R, Nardinocchi L, Gal H, Rechavi G, Amariglio N, Domany E, Notterman DA, Scarsella M, Leonetti C, Sacchi A, et al: Reversible dysfunction of wild-type p53 following homeodomain-interacting protein kinase-2 knockdown. Cancer Res. 2008, 68: 3707-3714. 10.1158/0008-5472.CAN-07-6776.CrossRef Puca R, Nardinocchi L, Gal H, Rechavi G, Amariglio N, Domany E, Notterman DA, Scarsella M, Leonetti C, Sacchi A, et al: Reversible dysfunction of wild-type p53 following homeodomain-interacting protein kinase-2 knockdown. Cancer Res. 2008, 68: 3707-3714. 10.1158/0008-5472.CAN-07-6776.CrossRef
10.
go back to reference Puca R, Nardinocchi L, Bossi G, Rechavi G, Givol D, D’Orazi G: Restoring wtp53 activity in HIPK2 depleted MCF7 cells by modulating metallothionein and zinc. Exp Cell Res. 2009, 315: 67-75. 10.1016/j.yexcr.2008.10.018.CrossRef Puca R, Nardinocchi L, Bossi G, Rechavi G, Givol D, D’Orazi G: Restoring wtp53 activity in HIPK2 depleted MCF7 cells by modulating metallothionein and zinc. Exp Cell Res. 2009, 315: 67-75. 10.1016/j.yexcr.2008.10.018.CrossRef
11.
go back to reference Puca R, Nardinocchi L, Porru M, Simon AJ, Rechavi G, Leonetti C, Givol D, D’Orazi G: Restoring p53 active conformation by zinc increases the response of mutant p53 tumor cells to anticancer drugs. Cell Cycle. 2011, 10: 1679-1689. 10.4161/cc.10.10.15642.CrossRef Puca R, Nardinocchi L, Porru M, Simon AJ, Rechavi G, Leonetti C, Givol D, D’Orazi G: Restoring p53 active conformation by zinc increases the response of mutant p53 tumor cells to anticancer drugs. Cell Cycle. 2011, 10: 1679-1689. 10.4161/cc.10.10.15642.CrossRef
12.
go back to reference Margalit O, Simon AJ, Yakubov E, Puca R, Yosepovich A, Avivi C, Jacob-Hirsch J, Gelernter I, Harmelin A, Barshack I, Rechavi G, D’Orazi G, Givol D, Amariglio N: Zinc supplementation augments in vivo antitumor effect of chemotherapy by restoring p53 function. Int J Cancer. 2012, 131: E562-E568. 10.1002/ijc.26441.CrossRef Margalit O, Simon AJ, Yakubov E, Puca R, Yosepovich A, Avivi C, Jacob-Hirsch J, Gelernter I, Harmelin A, Barshack I, Rechavi G, D’Orazi G, Givol D, Amariglio N: Zinc supplementation augments in vivo antitumor effect of chemotherapy by restoring p53 function. Int J Cancer. 2012, 131: E562-E568. 10.1002/ijc.26441.CrossRef
13.
go back to reference Pucci D, Bellini T, Crispini A, D’Agnano I, Liguori PF, Garcia-Orduña P, Pirillo S, Valentini A, Zanchetta G: DNA binding and cytotoxicity of fluorescent curcumin-based Zn(II) complexes. Med Chem Commun. 2012, 3: 462-468. 10.1039/c2md00261b.CrossRef Pucci D, Bellini T, Crispini A, D’Agnano I, Liguori PF, Garcia-Orduña P, Pirillo S, Valentini A, Zanchetta G: DNA binding and cytotoxicity of fluorescent curcumin-based Zn(II) complexes. Med Chem Commun. 2012, 3: 462-468. 10.1039/c2md00261b.CrossRef
14.
go back to reference Pucci D: Crispini A, Mendiguchía BS, Pirillo S, Ghedini M, Morelli S, Bartolo LD: Improving the bioactivity of Zn(II)-curcumin based complexes. Dalton Trans. 2013, 42: 9679-9687. 10.1039/c3dt50513h.CrossRef Pucci D: Crispini A, Mendiguchía BS, Pirillo S, Ghedini M, Morelli S, Bartolo LD: Improving the bioactivity of Zn(II)-curcumin based complexes. Dalton Trans. 2013, 42: 9679-9687. 10.1039/c3dt50513h.CrossRef
15.
go back to reference Nagpal N, Jamoona A, Gulati ND, Mohan A, Braun A, Murali R, Jhanwar-Uniyal M: Revisiting the role of p53 in primary and secondary glioblastomas. Anticancer Res. 2006, 26: 4633-4640. Nagpal N, Jamoona A, Gulati ND, Mohan A, Braun A, Murali R, Jhanwar-Uniyal M: Revisiting the role of p53 in primary and secondary glioblastomas. Anticancer Res. 2006, 26: 4633-4640.
16.
go back to reference Zhan C, Lu W: The blood–brain/tumor barriers: challenges and chances for malignant gliomas targeted drug delivery. Curr Pharm Biotechnol. 2012, 13: 2380-2387. 10.2174/138920112803341798.CrossRef Zhan C, Lu W: The blood–brain/tumor barriers: challenges and chances for malignant gliomas targeted drug delivery. Curr Pharm Biotechnol. 2012, 13: 2380-2387. 10.2174/138920112803341798.CrossRef
17.
go back to reference Pucci D, Bloise R, Bellusci A, Bernardini S, Ghedini M, Pirillo S, Valentini A, Crispini A: Curcumin and cyclopallated complexes: a recipe for bifunctional biomateriale. J Inorg Biochem. 2007, 101: 1013-1022. 10.1016/j.jinorgbio.2007.03.006.CrossRef Pucci D, Bloise R, Bellusci A, Bernardini S, Ghedini M, Pirillo S, Valentini A, Crispini A: Curcumin and cyclopallated complexes: a recipe for bifunctional biomateriale. J Inorg Biochem. 2007, 101: 1013-1022. 10.1016/j.jinorgbio.2007.03.006.CrossRef
18.
go back to reference Gannon JV, Greaves R, Iggo R, Lane DP: Activating mutations in p53 produce a common conformational effect. A monoclonal antibody specific for the mutant form. EMBO J. 1990, 9: 1595-1602. Gannon JV, Greaves R, Iggo R, Lane DP: Activating mutations in p53 produce a common conformational effect. A monoclonal antibody specific for the mutant form. EMBO J. 1990, 9: 1595-1602.
19.
go back to reference Legros Y, Meyer A, Oryt K, Soussi T: Mutations in p53 produce a common conformational effect that can be detected with a panel of monoclonal antibodies directed toward the central part of the p53 protein. Oncogene. 1994, 9: 3689-3694. Legros Y, Meyer A, Oryt K, Soussi T: Mutations in p53 produce a common conformational effect that can be detected with a panel of monoclonal antibodies directed toward the central part of the p53 protein. Oncogene. 1994, 9: 3689-3694.
20.
go back to reference Puca R, Nardinocchi L, Starace G, Rechavi G, Givol D, D’Orazi G: Nox1 is involved in p53 deacetylation and suppression of its transcriptional activity and apoptosis. Free Rad Biol Med. 2010, 48: 1338-1346. 10.1016/j.freeradbiomed.2010.02.015.CrossRef Puca R, Nardinocchi L, Starace G, Rechavi G, Givol D, D’Orazi G: Nox1 is involved in p53 deacetylation and suppression of its transcriptional activity and apoptosis. Free Rad Biol Med. 2010, 48: 1338-1346. 10.1016/j.freeradbiomed.2010.02.015.CrossRef
21.
go back to reference Nardinocchi L, Puca R, Sacchi A, Rechavi G, Givol D, D’Orazi G: Targeting hypoxia in cancer cells by restoring homeodomain interacting protein kinase 2 and p53 activity and suppressing HIF-1α. Plos One. 2009, 4: e6819-10.1371/journal.pone.0006819.CrossRef Nardinocchi L, Puca R, Sacchi A, Rechavi G, Givol D, D’Orazi G: Targeting hypoxia in cancer cells by restoring homeodomain interacting protein kinase 2 and p53 activity and suppressing HIF-1α. Plos One. 2009, 4: e6819-10.1371/journal.pone.0006819.CrossRef
22.
go back to reference Nardinocchi L, Pantisano V, Puca R, Porru M, Aiello A, Grasselli A, Leonetti C, Safran M, Rechavi G, Givol D, D’Orazi G: Zinc downregulates HIF-1α and inhibits its activity in tumor cells in vitro and in vivo. PLos One. 2010, 5: 1-11.CrossRef Nardinocchi L, Pantisano V, Puca R, Porru M, Aiello A, Grasselli A, Leonetti C, Safran M, Rechavi G, Givol D, D’Orazi G: Zinc downregulates HIF-1α and inhibits its activity in tumor cells in vitro and in vivo. PLos One. 2010, 5: 1-11.CrossRef
23.
go back to reference Sampath J, Sun D, Kidd VJ, Grenet J, Gandhi A, Shapiro LH, Wang Q, Zambetti GP, Schuetz JD: Mutant p53 cooperates with ETS and selectively up-regulates human MDR1 not MRP1. J Biol Chem. 2001, 276: 39359-39367. 10.1074/jbc.M103429200.CrossRef Sampath J, Sun D, Kidd VJ, Grenet J, Gandhi A, Shapiro LH, Wang Q, Zambetti GP, Schuetz JD: Mutant p53 cooperates with ETS and selectively up-regulates human MDR1 not MRP1. J Biol Chem. 2001, 276: 39359-39367. 10.1074/jbc.M103429200.CrossRef
24.
go back to reference Di Agostino S, Strano S, Emiliozzi V, Zerbini V, Mottolese M, Sacchi A, Blandino G, Piaggio G: Gain of function of mutant p53: The mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Cancer Cell. 2006, 10: 191-202. 10.1016/j.ccr.2006.08.013.CrossRef Di Agostino S, Strano S, Emiliozzi V, Zerbini V, Mottolese M, Sacchi A, Blandino G, Piaggio G: Gain of function of mutant p53: The mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Cancer Cell. 2006, 10: 191-202. 10.1016/j.ccr.2006.08.013.CrossRef
25.
go back to reference Di Como CJ, Gaiddon C, Prives C: p73 function is inhibited by tumor-derived p53 mutants in mammalian cells. Mol Cell Biol. 1999, 19: 1438-1449.CrossRef Di Como CJ, Gaiddon C, Prives C: p73 function is inhibited by tumor-derived p53 mutants in mammalian cells. Mol Cell Biol. 1999, 19: 1438-1449.CrossRef
26.
go back to reference Komarov PG, Komarova EA, Kondratov RV, Christov-Tselkov K, Coon JS, Chernov MV, Gudkov AV: A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science. 1999, 285: 1733-1737. 10.1126/science.285.5434.1733.CrossRef Komarov PG, Komarova EA, Kondratov RV, Christov-Tselkov K, Coon JS, Chernov MV, Gudkov AV: A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science. 1999, 285: 1733-1737. 10.1126/science.285.5434.1733.CrossRef
27.
go back to reference Soussi T, Beroud C: Assessing TP53 status in human tumors to evaluate clinical outcome. Nat Rev Cancer. 2001, 1: 233-240.CrossRef Soussi T, Beroud C: Assessing TP53 status in human tumors to evaluate clinical outcome. Nat Rev Cancer. 2001, 1: 233-240.CrossRef
28.
go back to reference Bossi G, Lapi E, Strano S, Rinaldo C, Blandino G, Sacchi A: Mutant p53 gain of function: reduction of tumor malignancy of human cancer cell lines through abrogation of mutant p53 expression. Oncogene. 2006, 25: 304-309. Bossi G, Lapi E, Strano S, Rinaldo C, Blandino G, Sacchi A: Mutant p53 gain of function: reduction of tumor malignancy of human cancer cell lines through abrogation of mutant p53 expression. Oncogene. 2006, 25: 304-309.
29.
go back to reference Mandinova A, Lee SW: The p53 pathway as a target in cancer therapeutics: obstacles and promise. Science. 2011, 3: 1-7. Mandinova A, Lee SW: The p53 pathway as a target in cancer therapeutics: obstacles and promise. Science. 2011, 3: 1-7.
30.
go back to reference Baker SJ, Markowitz S, Fearon ER, Willson JK, Vogelstein B: Suppression of human colorectal carcinoma cell growth by wild-type p53. Science. 1990, 249: 912-915. 10.1126/science.2144057.CrossRef Baker SJ, Markowitz S, Fearon ER, Willson JK, Vogelstein B: Suppression of human colorectal carcinoma cell growth by wild-type p53. Science. 1990, 249: 912-915. 10.1126/science.2144057.CrossRef
31.
go back to reference D’Orazi G, Marchetti A, Crescenzi M, Coen S, Sacchi A, Soddu S: Exogenous wt-p53 protein is active in transformed cells but not in their non-transformed counterparts: implications for cancer gene therapy without tumor targeting. J Gene Med. 2000, 2: 11-21. 10.1002/(SICI)1521-2254(200001/02)2:1<11::AID-JGM81>3.0.CO;2-K.CrossRef D’Orazi G, Marchetti A, Crescenzi M, Coen S, Sacchi A, Soddu S: Exogenous wt-p53 protein is active in transformed cells but not in their non-transformed counterparts: implications for cancer gene therapy without tumor targeting. J Gene Med. 2000, 2: 11-21. 10.1002/(SICI)1521-2254(200001/02)2:1<11::AID-JGM81>3.0.CO;2-K.CrossRef
32.
go back to reference Selivanova G, Wiman KG: Reactivation of mutant p53: molecular mechanisms and therapeutic potential. Oncogene. 2007, 26: 2243-2254. 10.1038/sj.onc.1210295.CrossRef Selivanova G, Wiman KG: Reactivation of mutant p53: molecular mechanisms and therapeutic potential. Oncogene. 2007, 26: 2243-2254. 10.1038/sj.onc.1210295.CrossRef
33.
go back to reference Beyersmann D, Haase H: Functions of zinc in signaling, proliferation and differentiation of mammalian cells. BioMetals. 2001, 14: 331-341. 10.1023/A:1012905406548.CrossRef Beyersmann D, Haase H: Functions of zinc in signaling, proliferation and differentiation of mammalian cells. BioMetals. 2001, 14: 331-341. 10.1023/A:1012905406548.CrossRef
34.
go back to reference Joerger AC, Fersht AR: Structure-function-rescue: the diverse nature of common p53 cancer mutants. Oncogene. 2007, 26: 2226-2242. 10.1038/sj.onc.1210291.CrossRef Joerger AC, Fersht AR: Structure-function-rescue: the diverse nature of common p53 cancer mutants. Oncogene. 2007, 26: 2226-2242. 10.1038/sj.onc.1210291.CrossRef
35.
go back to reference Shah MR, Kriedt CL, Lents NH, Hoyer MK, Jamaluddin N, Klein C, Baldassare J: Direct intra-tumoral injection of zinc-acetate halts tumor growth in a xenograft model. J Exp Clin Cancer Res. 2009, 28: 84-10.1186/1756-9966-28-84.CrossRef Shah MR, Kriedt CL, Lents NH, Hoyer MK, Jamaluddin N, Klein C, Baldassare J: Direct intra-tumoral injection of zinc-acetate halts tumor growth in a xenograft model. J Exp Clin Cancer Res. 2009, 28: 84-10.1186/1756-9966-28-84.CrossRef
36.
go back to reference Sheffer M, Simon AJ, Jacob-Hirsch J, Rechavi G, Domany E, Givol D, D’Orazi G: Genome-wide analysis discloses reversal of the hypoxia-induced changes of gene expression in colon cancer cells by zinc supplementation. Oncotarget. 2011, 2: 1191-1202.CrossRef Sheffer M, Simon AJ, Jacob-Hirsch J, Rechavi G, Domany E, Givol D, D’Orazi G: Genome-wide analysis discloses reversal of the hypoxia-induced changes of gene expression in colon cancer cells by zinc supplementation. Oncotarget. 2011, 2: 1191-1202.CrossRef
37.
go back to reference Cirone M, Garufi A, Di Renzo L, Granato M, Faggioni A, D’Orazi G: Zinc supplementation is required for the cytotoxic and immunogenic effects of chemotherapy in chemoresistant p53-functionally deficient cells. OncoImmunology. 2013, 2: e26198-10.4161/onci.26198.CrossRef Cirone M, Garufi A, Di Renzo L, Granato M, Faggioni A, D’Orazi G: Zinc supplementation is required for the cytotoxic and immunogenic effects of chemotherapy in chemoresistant p53-functionally deficient cells. OncoImmunology. 2013, 2: e26198-10.4161/onci.26198.CrossRef
38.
go back to reference Wong RSY: Apoptosis in cancer: from pathogens to treatment. J Exp Clin Cancer Res. 2011, 30: 87-10.1186/1756-9966-30-87.CrossRef Wong RSY: Apoptosis in cancer: from pathogens to treatment. J Exp Clin Cancer Res. 2011, 30: 87-10.1186/1756-9966-30-87.CrossRef
39.
go back to reference Vacchelli E, Senovilla L, Eggermont A, Fridman WH, Galon J, Zitvogel L, Kroemer G, Galluzzi L: Trial watch: Chemotherapy with immunogenic cell death inducers. OncoImmunol. 2013, 2: e23510-10.4161/onci.23510.CrossRef Vacchelli E, Senovilla L, Eggermont A, Fridman WH, Galon J, Zitvogel L, Kroemer G, Galluzzi L: Trial watch: Chemotherapy with immunogenic cell death inducers. OncoImmunol. 2013, 2: e23510-10.4161/onci.23510.CrossRef
40.
go back to reference Liu XL, Zhao D, Sun DP, Wang Y, Li Y, Qiu FQ, Ma P: Adenovirus-mediated delivery of CALR and MAGE-A3 inhibits invasion and angiogenesis of glioblastoma cell line U87. J Exp Clin Cancer Res. 2012, 31: 8-10.1186/1756-9966-31-8.CrossRef Liu XL, Zhao D, Sun DP, Wang Y, Li Y, Qiu FQ, Ma P: Adenovirus-mediated delivery of CALR and MAGE-A3 inhibits invasion and angiogenesis of glioblastoma cell line U87. J Exp Clin Cancer Res. 2012, 31: 8-10.1186/1756-9966-31-8.CrossRef
41.
go back to reference Ji-Yu L, Yu-Yang L, Wei J, Qing Y, Zhi-Ming S, Xing-Song T: ABT-737 reverses the acquired radioresistance of breast cancer cells by targeting Bcl-2 and Bcl-xL. J Exp Clin Cancer Res. 2012, 31: 102-10.1186/1756-9966-31-102.CrossRef Ji-Yu L, Yu-Yang L, Wei J, Qing Y, Zhi-Ming S, Xing-Song T: ABT-737 reverses the acquired radioresistance of breast cancer cells by targeting Bcl-2 and Bcl-xL. J Exp Clin Cancer Res. 2012, 31: 102-10.1186/1756-9966-31-102.CrossRef
Metadata
Title
A fluorescent curcumin-based Zn(II)-complex reactivates mutant (R175H and R273H) p53 in cancer cells
Authors
Alessia Garufi
Daniela Trisciuoglio
Manuela Porru
Carlo Leonetti
Antonella Stoppacciaro
Valerio D’Orazi
Maria Laura Avantaggiati
Alessandra Crispini
Daniela Pucci
Gabriella D’Orazi
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2013
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/1756-9966-32-72

Other articles of this Issue 1/2013

Journal of Experimental & Clinical Cancer Research 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine