Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2014

Open Access 01-12-2014 | Research

High glucose dephosphorylates serine 46 and inhibits p53 apoptotic activity

Authors: Alessia Garufi, Gabriella D’Orazi

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2014

Login to get access

Abstract

Background

In response to diverse genotoxic stimuli p53 is activated as transcription factor to exert its tumor-suppressor function. P53 activation requires protein stabilization, nuclear localization and posttranslational modifications in key residues that may influence p53 selection of target genes. Among them, serine 46 (Ser46) phosphorylation is considered specific for apoptotic activation. Hyperglicaemia, the high blood glucose condition, may negatively affect tumor response to therapies through several mechanisms, conferring resistance to drug-induced cell death. However, whether high glucose might modify p53Ser46 phosphorylation has never been addressed.

Methods and results

Here, we performed biochemical and molecular analyses in different cancer cell lines treated with chemotherapy in the presence or absence of high glucose condition. Analyses of p53 posttranslational modifications showed that drug-induced p53Ser46 phosphorylation was reduced by high glucose. Such reduction depended by high glucose-induced calyculin A-sensitive phosphatase(s), able to specifically target p53Ser46 phosphorylation. The specific effect on Ser46 phosphorylation was addressed by analysing Ser15 phosphorylation that instead was not modified by high glucose. In agreement, a constitutively phosphorylated Ser46D p53 mutant was resistant to high glucose. As a consequence of phosphoSer46 impairment, high glucose reduced the tumor cell response to drugs, correlating with reduced p53 apoptotic transactivation. The drug-induced apoptotic cell death, reduced by high glucose, was finally restored by the phosphatase inhibitor calyculin A.

Conclusions

These data indicate that high glucose specifically inhibited Ser46 phosphorylation thus reducing p53 apoptotic activity. These results uncover a new mechanism of p53 inactivation providing an interesting novel molecular link between metabolic diseases such as diabetes or obesity and tumor progression and resistance to therapies.
Appendix
Available only for authorised users
Literature
2.
go back to reference Vousden KH, Prives C: Blinded by the light: The growing complexity of p53. Cell. 2009, 137: 413-431. 10.1016/j.cell.2009.04.037.CrossRefPubMed Vousden KH, Prives C: Blinded by the light: The growing complexity of p53. Cell. 2009, 137: 413-431. 10.1016/j.cell.2009.04.037.CrossRefPubMed
3.
go back to reference Bode AM, Dong Z: Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer. 2004, 4: 793-805. 10.1038/nrc1455.CrossRefPubMed Bode AM, Dong Z: Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer. 2004, 4: 793-805. 10.1038/nrc1455.CrossRefPubMed
4.
go back to reference Attardi L, DePinho A: Conquering the complexity of p53. Nat Genet. 2004, 36: 7-8. 10.1038/ng0104-7.CrossRefPubMed Attardi L, DePinho A: Conquering the complexity of p53. Nat Genet. 2004, 36: 7-8. 10.1038/ng0104-7.CrossRefPubMed
5.
go back to reference Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell. 2011, 144: 646-674. 10.1016/j.cell.2011.02.013.CrossRefPubMed Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell. 2011, 144: 646-674. 10.1016/j.cell.2011.02.013.CrossRefPubMed
6.
go back to reference Brooks CL, Gu W: Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol. 2003, 15: 164-171. 10.1016/S0955-0674(03)00003-6.CrossRefPubMed Brooks CL, Gu W: Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol. 2003, 15: 164-171. 10.1016/S0955-0674(03)00003-6.CrossRefPubMed
7.
go back to reference Oda K, Arakawa H, Tanaka T, Matsuda K, Tanikawa C, Mori T, Nishimori H, Tamai K, Tokino T, Nakamura Y, Taya Y: p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell. 2000, 102: 849-862. 10.1016/S0092-8674(00)00073-8.CrossRefPubMed Oda K, Arakawa H, Tanaka T, Matsuda K, Tanikawa C, Mori T, Nishimori H, Tamai K, Tokino T, Nakamura Y, Taya Y: p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell. 2000, 102: 849-862. 10.1016/S0092-8674(00)00073-8.CrossRefPubMed
8.
go back to reference Mayo LD, Rok Seo Y, Jackson MW, Smith ML, Rivera Guzman JR, Koegaonkar CK, Donner DB: Phosphorylation of human p53 at serine 46 determines promoter selection and whether apoptosis is attenuated or amplified. J Biol Chem. 2005, 280: 25953-25959. 10.1074/jbc.M503026200.CrossRefPubMed Mayo LD, Rok Seo Y, Jackson MW, Smith ML, Rivera Guzman JR, Koegaonkar CK, Donner DB: Phosphorylation of human p53 at serine 46 determines promoter selection and whether apoptosis is attenuated or amplified. J Biol Chem. 2005, 280: 25953-25959. 10.1074/jbc.M503026200.CrossRefPubMed
9.
go back to reference D’Orazi G, Cecchinelli B, Bruno T, Manni I, Higashimoto Y, Saito S, Gostissa M, Coen S, Marchetti A, Del Sal G, Piaggio G, Fanciulli M, Appella E, Soddu S: Homeodomain-interacting protein kinase 2 phosphorylates p53 at Ser46 and mediates apoptosis. Nat Cell Biol. 2002, 4: 11-19. 10.1038/ncb714.CrossRefPubMed D’Orazi G, Cecchinelli B, Bruno T, Manni I, Higashimoto Y, Saito S, Gostissa M, Coen S, Marchetti A, Del Sal G, Piaggio G, Fanciulli M, Appella E, Soddu S: Homeodomain-interacting protein kinase 2 phosphorylates p53 at Ser46 and mediates apoptosis. Nat Cell Biol. 2002, 4: 11-19. 10.1038/ncb714.CrossRefPubMed
10.
go back to reference Di Stefano V, Rinaldo C, Sacchi A, Soddu S, D’Orazi G: Homeodomain-interacting protein kinase-2 activity and p53 phosphorylation are critical events for cisplatin-mediated apoptosis. Exp Cell Res. 2004, 293: 311-320. 10.1016/j.yexcr.2003.09.032.CrossRefPubMed Di Stefano V, Rinaldo C, Sacchi A, Soddu S, D’Orazi G: Homeodomain-interacting protein kinase-2 activity and p53 phosphorylation are critical events for cisplatin-mediated apoptosis. Exp Cell Res. 2004, 293: 311-320. 10.1016/j.yexcr.2003.09.032.CrossRefPubMed
11.
go back to reference Pistritto G, Puca R, Nardinocchi L, Sacchi A, D’Orazi G: HIPK2-induced p53Ser46 phosphorylation activates the KILLER/ DR5-mediated caspase-8 extrinsic apoptotic pathway. Cell Death Differ. 2007, 14: 1837-1839. 10.1038/sj.cdd.4402186.CrossRefPubMed Pistritto G, Puca R, Nardinocchi L, Sacchi A, D’Orazi G: HIPK2-induced p53Ser46 phosphorylation activates the KILLER/ DR5-mediated caspase-8 extrinsic apoptotic pathway. Cell Death Differ. 2007, 14: 1837-1839. 10.1038/sj.cdd.4402186.CrossRefPubMed
12.
go back to reference Smeenk L, van Heeringen SJ, Koeppel M, Gilbert B, Janssen-Megens E, Stunnenberg HG, Lohrum M: Role of p53 serine 46 in p53 target gene regulation. PLoS One. 2011, 6: e17574-10.1371/journal.pone.0017574.PubMedCentralCrossRefPubMed Smeenk L, van Heeringen SJ, Koeppel M, Gilbert B, Janssen-Megens E, Stunnenberg HG, Lohrum M: Role of p53 serine 46 in p53 target gene regulation. PLoS One. 2011, 6: e17574-10.1371/journal.pone.0017574.PubMedCentralCrossRefPubMed
13.
go back to reference Cecchinelli B, Lavra L, Rinaldo C, Iacovelli S, Gurtner A, Gasbarri A, Ulivieri A, Del Prete F, Trovato M, Piaggio G, Bartolazzi A, Soddu S, Sciacchitano S: Repression of the anti-apoptotic molecule Galectin-3 by HIPK2-activated p53 is required for p53-induced apoptosis. Mol Cell Biol. 2006, 26: 4746-4757. 10.1128/MCB.00959-05.PubMedCentralCrossRefPubMed Cecchinelli B, Lavra L, Rinaldo C, Iacovelli S, Gurtner A, Gasbarri A, Ulivieri A, Del Prete F, Trovato M, Piaggio G, Bartolazzi A, Soddu S, Sciacchitano S: Repression of the anti-apoptotic molecule Galectin-3 by HIPK2-activated p53 is required for p53-induced apoptosis. Mol Cell Biol. 2006, 26: 4746-4757. 10.1128/MCB.00959-05.PubMedCentralCrossRefPubMed
14.
go back to reference Thompson T, Tovar C, Yang H, Carvajal D, Vu BT, Xu Q, Wahl GM, Heimbrook DC, Vassilev LT: Phosphorylation of p53 on key serines is dispensable for transcriptional activation and apoptosis. J Biol Chem. 2004, 102: 53015-53022. 10.1074/jbc.M410233200.CrossRef Thompson T, Tovar C, Yang H, Carvajal D, Vu BT, Xu Q, Wahl GM, Heimbrook DC, Vassilev LT: Phosphorylation of p53 on key serines is dispensable for transcriptional activation and apoptosis. J Biol Chem. 2004, 102: 53015-53022. 10.1074/jbc.M410233200.CrossRef
15.
go back to reference Ichwan SJ, Yamada S, Sumrejkanchanakij P, Ibrahim-Auerkari E, Eto K, Ikeda MA: Defect in serine 46 phosphorylation of p53 contributes to acquisition of p53 resistance in oral squamous cell carcinoma cells. Oncogene. 2006, 25: 1216-1224. 10.1038/sj.onc.1209158.CrossRefPubMed Ichwan SJ, Yamada S, Sumrejkanchanakij P, Ibrahim-Auerkari E, Eto K, Ikeda MA: Defect in serine 46 phosphorylation of p53 contributes to acquisition of p53 resistance in oral squamous cell carcinoma cells. Oncogene. 2006, 25: 1216-1224. 10.1038/sj.onc.1209158.CrossRefPubMed
16.
go back to reference Nakamura Y, Futamura M, Kamino H, Yoshida K, Nakamura Y, Arakawa H: Identification of p53-46 F as super p53 with an enhanced ability to induce p53-dependent apoptosis. Cancer Sci. 2006, 97: 633-641. 10.1111/j.1349-7006.2006.00214.x.CrossRefPubMed Nakamura Y, Futamura M, Kamino H, Yoshida K, Nakamura Y, Arakawa H: Identification of p53-46 F as super p53 with an enhanced ability to induce p53-dependent apoptosis. Cancer Sci. 2006, 97: 633-641. 10.1111/j.1349-7006.2006.00214.x.CrossRefPubMed
17.
go back to reference Feng L, Hollstein M, Xu Y: Ser46 phosphorylation regulates p53-dependent apoptosis and replicative senescence. Cell Cycle. 2006, 5: 2812-2819. 10.4161/cc.5.23.3526.CrossRefPubMed Feng L, Hollstein M, Xu Y: Ser46 phosphorylation regulates p53-dependent apoptosis and replicative senescence. Cell Cycle. 2006, 5: 2812-2819. 10.4161/cc.5.23.3526.CrossRefPubMed
18.
go back to reference Duan W, Shen X, Lei J, Xu Q, Yu Y, Li R, Wu E, Ma Q: Hyperglycemia, a neglected factor during cancer progression. BioMed Res Inter. 2014, 2014: 461917-10.1155/2014/461917.CrossRef Duan W, Shen X, Lei J, Xu Q, Yu Y, Li R, Wu E, Ma Q: Hyperglycemia, a neglected factor during cancer progression. BioMed Res Inter. 2014, 2014: 461917-10.1155/2014/461917.CrossRef
19.
go back to reference Cebioglu M, Schild HH, Golubnitschaja O: Cancer predisposition in diabetics: risk factors considered for predictive diagnostics and targeted preventive measures. EPMA J. 2010, 1: 130-137. 10.1007/s13167-010-0015-4.PubMedCentralCrossRefPubMed Cebioglu M, Schild HH, Golubnitschaja O: Cancer predisposition in diabetics: risk factors considered for predictive diagnostics and targeted preventive measures. EPMA J. 2010, 1: 130-137. 10.1007/s13167-010-0015-4.PubMedCentralCrossRefPubMed
20.
go back to reference Meyerhardt JA, Sato K, Niedzwiecki D, Ye C, Saltz LB, Mayer RJ, Mowat RB, Whittom R, Hantel A, Benson A, Wigler DS, Venook A, Fuchs CS: Dietary glycemic load and cancer recurrence and survival in patients with stage III colon cancer: findings from CALGB 89803. J Natl Cancer Inst. 2012, 104: 1702-1711. 10.1093/jnci/djs399.PubMedCentralCrossRefPubMed Meyerhardt JA, Sato K, Niedzwiecki D, Ye C, Saltz LB, Mayer RJ, Mowat RB, Whittom R, Hantel A, Benson A, Wigler DS, Venook A, Fuchs CS: Dietary glycemic load and cancer recurrence and survival in patients with stage III colon cancer: findings from CALGB 89803. J Natl Cancer Inst. 2012, 104: 1702-1711. 10.1093/jnci/djs399.PubMedCentralCrossRefPubMed
21.
go back to reference Zeng L, Biernacka KM, Holly JMP, Jarret C, Morrison AA, Morgan A, Winters ZE, Foulstone EJ, Shield JP, Perks CM: Hyperglicaemia confers resistance to chemotherapy on breast cancer cells: the role of fatty acid synthase. Endocr Relat Cancer. 2010, 17: 539-551. 10.1677/ERC-09-0221.CrossRefPubMed Zeng L, Biernacka KM, Holly JMP, Jarret C, Morrison AA, Morgan A, Winters ZE, Foulstone EJ, Shield JP, Perks CM: Hyperglicaemia confers resistance to chemotherapy on breast cancer cells: the role of fatty acid synthase. Endocr Relat Cancer. 2010, 17: 539-551. 10.1677/ERC-09-0221.CrossRefPubMed
22.
go back to reference Biernacka KM, Uzoh CC, Zeng L, Persad RA, Bahl A, Gillatt D, Perks CM, Holly JMP: Hyperglicaemia-induced chemoresistance of prostate cancer cells due to IGFBP2. Endocrinol J. 2013, 20: 741-751. Biernacka KM, Uzoh CC, Zeng L, Persad RA, Bahl A, Gillatt D, Perks CM, Holly JMP: Hyperglicaemia-induced chemoresistance of prostate cancer cells due to IGFBP2. Endocrinol J. 2013, 20: 741-751.
23.
go back to reference Ma YS, Yang IP, Tsai HL, Huang CW, Juo SHH, Wang JY: High glucose modulates antiproliferative effect and cytotoxicity of 5-Fluorouracil in human colon cancer cells. DNA and Cell Biol. 2014, 33: 64-72. 10.1089/dna.2013.2161.CrossRef Ma YS, Yang IP, Tsai HL, Huang CW, Juo SHH, Wang JY: High glucose modulates antiproliferative effect and cytotoxicity of 5-Fluorouracil in human colon cancer cells. DNA and Cell Biol. 2014, 33: 64-72. 10.1089/dna.2013.2161.CrossRef
24.
go back to reference Shao Y, Ling CC, Liu XQ: High concentrations of glucose suppress etoposide-induced cell death of B-cell lymphoma through BCL-6. Biochem Biophys Res Commun. 2014, 450: 227-233. 10.1016/j.bbrc.2014.05.096.CrossRefPubMed Shao Y, Ling CC, Liu XQ: High concentrations of glucose suppress etoposide-induced cell death of B-cell lymphoma through BCL-6. Biochem Biophys Res Commun. 2014, 450: 227-233. 10.1016/j.bbrc.2014.05.096.CrossRefPubMed
25.
go back to reference Zhao Y, Coloff JL, Ferguson EC, Jacobs SR, Cui K, Rathmell JC: Glucose metabolism attenuates p53 and PUMA-dependent cell death upon growth factor deprivation. J Biol Chem. 2008, 283: 36344-36353. 10.1074/jbc.M803580200.PubMedCentralCrossRefPubMed Zhao Y, Coloff JL, Ferguson EC, Jacobs SR, Cui K, Rathmell JC: Glucose metabolism attenuates p53 and PUMA-dependent cell death upon growth factor deprivation. J Biol Chem. 2008, 283: 36344-36353. 10.1074/jbc.M803580200.PubMedCentralCrossRefPubMed
26.
go back to reference Mi J, Bolesta E, Brautigan DL, Larner JM: PP2A regulates ionizing radiation-induced apoptosis through Ser46 phosphorylation of p53. Mol Cancer Ther. 2009, 8: 135-140. 10.1158/1535-7163.MCT-08-0457.CrossRefPubMed Mi J, Bolesta E, Brautigan DL, Larner JM: PP2A regulates ionizing radiation-induced apoptosis through Ser46 phosphorylation of p53. Mol Cancer Ther. 2009, 8: 135-140. 10.1158/1535-7163.MCT-08-0457.CrossRefPubMed
27.
go back to reference Garufi A, D’Orazi V, Arbiser JL, D’Orazi G: Gentian violet induces p53 transactivation in cancer cells. Int J Oncol. 2014, 44: 1084-1090.PubMedCentralPubMed Garufi A, D’Orazi V, Arbiser JL, D’Orazi G: Gentian violet induces p53 transactivation in cancer cells. Int J Oncol. 2014, 44: 1084-1090.PubMedCentralPubMed
28.
go back to reference Nardinocchi L, Puca R, D’Orazi G: HIF-1α antagonizes p53-mediated apoptosis by triggering HIPK2 degradation. Aging-US. 2011, 3: 33-43. Nardinocchi L, Puca R, D’Orazi G: HIF-1α antagonizes p53-mediated apoptosis by triggering HIPK2 degradation. Aging-US. 2011, 3: 33-43.
29.
go back to reference Nardinocchi L, Puca R, Sacchi A, Rechavi G, Givol D, D’Orazi G: Targeting hypoxia in cancer cells by restoring homeodomain-interacting protein kinase 2 and p53 activity and suppressing HIF-1a. PLoS One. 2009, 4: e6819-10.1371/journal.pone.0006819.PubMedCentralCrossRefPubMed Nardinocchi L, Puca R, Sacchi A, Rechavi G, Givol D, D’Orazi G: Targeting hypoxia in cancer cells by restoring homeodomain-interacting protein kinase 2 and p53 activity and suppressing HIF-1a. PLoS One. 2009, 4: e6819-10.1371/journal.pone.0006819.PubMedCentralCrossRefPubMed
30.
go back to reference Di Stefano V, Mattiussi M, Sacchi A, D’Orazi G: HIPK2 inhibits MDM2 gene and protein by, respectively, p53-dependent and independent regulations. FEBS Lett. 2005, 579: 5473-5480. 10.1016/j.febslet.2005.09.008.CrossRefPubMed Di Stefano V, Mattiussi M, Sacchi A, D’Orazi G: HIPK2 inhibits MDM2 gene and protein by, respectively, p53-dependent and independent regulations. FEBS Lett. 2005, 579: 5473-5480. 10.1016/j.febslet.2005.09.008.CrossRefPubMed
31.
go back to reference Puca R, Nardinocchi L, Starace G, Rechavi G, Sacchi A, Givol D, D’Orazi G: Nox1 is involved in p53 deacetylation and suppression of its transcriptional activity and apoptosis. Free Rad Biol Med. 2010, 48: 1338-1346. 10.1016/j.freeradbiomed.2010.02.015.CrossRefPubMed Puca R, Nardinocchi L, Starace G, Rechavi G, Sacchi A, Givol D, D’Orazi G: Nox1 is involved in p53 deacetylation and suppression of its transcriptional activity and apoptosis. Free Rad Biol Med. 2010, 48: 1338-1346. 10.1016/j.freeradbiomed.2010.02.015.CrossRefPubMed
32.
go back to reference Soussi T, Beroud C: Assessing TP53 status in human tumors to evaluate clinical outcome. Nat Rev Cancer. 2001, 1: 233-240. 10.1038/35106009.CrossRefPubMed Soussi T, Beroud C: Assessing TP53 status in human tumors to evaluate clinical outcome. Nat Rev Cancer. 2001, 1: 233-240. 10.1038/35106009.CrossRefPubMed
33.
go back to reference Hoe KK, Verma CS, Lane DP: Drugging the p53 pathway: understanding the route to clinical efficacy. Nat Rev Drug Discov. 2014, 13: 217-236. 10.1038/nrd4236.CrossRefPubMed Hoe KK, Verma CS, Lane DP: Drugging the p53 pathway: understanding the route to clinical efficacy. Nat Rev Drug Discov. 2014, 13: 217-236. 10.1038/nrd4236.CrossRefPubMed
34.
go back to reference Selivanova G, Wiman KG: Reactivation of mutant p53: molecular mechanisms and therapeutic potential. Oncogene. 2007, 26: 2243-2254. 10.1038/sj.onc.1210295.CrossRefPubMed Selivanova G, Wiman KG: Reactivation of mutant p53: molecular mechanisms and therapeutic potential. Oncogene. 2007, 26: 2243-2254. 10.1038/sj.onc.1210295.CrossRefPubMed
35.
go back to reference Garufi A, Trisciuoglio D, Porru M, Leonetti C, Stoppacciaro A, D’Orazi V, Avantaggiati M, Crispini A, Pucci D, D’Orazi G: A fluorescent curcumin-based Zn(II)-complex reactivates mutant (R175H and R273H) p53 in cancer cells. J Exp Clin Cancer Res. 2013, 32: 72-10.1186/1756-9966-32-72.PubMedCentralCrossRefPubMed Garufi A, Trisciuoglio D, Porru M, Leonetti C, Stoppacciaro A, D’Orazi V, Avantaggiati M, Crispini A, Pucci D, D’Orazi G: A fluorescent curcumin-based Zn(II)-complex reactivates mutant (R175H and R273H) p53 in cancer cells. J Exp Clin Cancer Res. 2013, 32: 72-10.1186/1756-9966-32-72.PubMedCentralCrossRefPubMed
36.
go back to reference D’Orazi G, Marchetti A, Crescenzi M, Coen S, Sacchi A, Soddu S: Exogenous wt-p53 protein is active in transformed cells but not in their non-transformed counterparts: implications for cancer gene therapy without tumor targeting. J Gene Med. 2000, 2: 11-21. 10.1002/(SICI)1521-2254(200001/02)2:1<11::AID-JGM81>3.0.CO;2-K.CrossRefPubMed D’Orazi G, Marchetti A, Crescenzi M, Coen S, Sacchi A, Soddu S: Exogenous wt-p53 protein is active in transformed cells but not in their non-transformed counterparts: implications for cancer gene therapy without tumor targeting. J Gene Med. 2000, 2: 11-21. 10.1002/(SICI)1521-2254(200001/02)2:1<11::AID-JGM81>3.0.CO;2-K.CrossRefPubMed
37.
go back to reference Martins CP, Martins CP, Brown-Swigart L, Evan GI: Modeling the therapeutic efficacy of p53 restoration in tumors. Cell. 2006, 127: 1223-1234. 10.1016/j.cell.2006.12.007.CrossRef Martins CP, Martins CP, Brown-Swigart L, Evan GI: Modeling the therapeutic efficacy of p53 restoration in tumors. Cell. 2006, 127: 1223-1234. 10.1016/j.cell.2006.12.007.CrossRef
38.
go back to reference Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L, Newman J, Reczek EE, Weissleder R, Jacks T: Restoration of p53 function leads to tumor regression in vivo. Nature. 2007, 445: 661-665. 10.1038/nature05541.CrossRefPubMed Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L, Newman J, Reczek EE, Weissleder R, Jacks T: Restoration of p53 function leads to tumor regression in vivo. Nature. 2007, 445: 661-665. 10.1038/nature05541.CrossRefPubMed
39.
go back to reference Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, Cordon-Cardo C, Lowe SW: Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature. 2007, 445: 656-660. 10.1038/nature05529.PubMedCentralCrossRefPubMed Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, Cordon-Cardo C, Lowe SW: Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature. 2007, 445: 656-660. 10.1038/nature05529.PubMedCentralCrossRefPubMed
40.
go back to reference Mandinova A, Lee SW: The p53 pathway as a target in cancer therapeutics: obstacles and promise. Science. 2011, 3: 1-7. Mandinova A, Lee SW: The p53 pathway as a target in cancer therapeutics: obstacles and promise. Science. 2011, 3: 1-7.
41.
42.
go back to reference Li X, Dumont P, Della Pietra A, Shetler C, Mutphy ME: The codon 47 polymorphism in p53 is functionally significant. J Biol Chem. 2005, 280: 24245-24251. 10.1074/jbc.M414637200.CrossRefPubMed Li X, Dumont P, Della Pietra A, Shetler C, Mutphy ME: The codon 47 polymorphism in p53 is functionally significant. J Biol Chem. 2005, 280: 24245-24251. 10.1074/jbc.M414637200.CrossRefPubMed
43.
go back to reference Okoshi R, Ozaki T, Yamamoto H, Ando K, Koida N, Ono S, Koda T, Kamijo T, Nakagawara A, Kizaki H: Activation of AMP-activated protein kinase induces p53-dependent apoptotic cell death in response to energetic stress. J Biol Chem. 2008, 283: 3979-3987. 10.1074/jbc.M705232200.CrossRefPubMed Okoshi R, Ozaki T, Yamamoto H, Ando K, Koida N, Ono S, Koda T, Kamijo T, Nakagawara A, Kizaki H: Activation of AMP-activated protein kinase induces p53-dependent apoptotic cell death in response to energetic stress. J Biol Chem. 2008, 283: 3979-3987. 10.1074/jbc.M705232200.CrossRefPubMed
44.
go back to reference Garufi A, Ricci A, Trisciuoglio D, Iorio E, Carpinelli G, Pistritto G, Cirone M, D’Orazi G: Glucose restriction induces cell death in parental but not in homeodomain-interacting protein kinase 2-depleted RKO colon cancer cells: molecular mechanisms and therapeutical implications for tumor therapy. Cell Death Dis. 2013, 4: e639-10.1038/cddis.2013.163.PubMedCentralCrossRefPubMed Garufi A, Ricci A, Trisciuoglio D, Iorio E, Carpinelli G, Pistritto G, Cirone M, D’Orazi G: Glucose restriction induces cell death in parental but not in homeodomain-interacting protein kinase 2-depleted RKO colon cancer cells: molecular mechanisms and therapeutical implications for tumor therapy. Cell Death Dis. 2013, 4: e639-10.1038/cddis.2013.163.PubMedCentralCrossRefPubMed
45.
go back to reference Rodriguez OC, Choudhury S, Kolukula V, Vietsch EE, Catania J, Preet A, Reynoso K, Bargonetti J, Wellstein A, Albanese C, Avantaggiati ML: Dietary downregulation of mutant p53 levels via glucose restriction. Cell Cycle. 2012, 11: 4436-4446. 10.4161/cc.22778.PubMedCentralCrossRefPubMed Rodriguez OC, Choudhury S, Kolukula V, Vietsch EE, Catania J, Preet A, Reynoso K, Bargonetti J, Wellstein A, Albanese C, Avantaggiati ML: Dietary downregulation of mutant p53 levels via glucose restriction. Cell Cycle. 2012, 11: 4436-4446. 10.4161/cc.22778.PubMedCentralCrossRefPubMed
46.
go back to reference Pallavi R, Giorgio M, Pelicci PG: Insights into the beneficial effect of caloric/dietary restriction for a healthy and prolonged life. Front Physiol. 2012, 3: 318-10.3389/fphys.2012.00318.PubMedCentralCrossRefPubMed Pallavi R, Giorgio M, Pelicci PG: Insights into the beneficial effect of caloric/dietary restriction for a healthy and prolonged life. Front Physiol. 2012, 3: 318-10.3389/fphys.2012.00318.PubMedCentralCrossRefPubMed
47.
go back to reference Castermans D, Somers I, Kriel J, Louwet W, Wera S, Versele M, Janssens V, Thevelein JM: Glucose-induced posttranslational activation of protein phosphatases PP2A and PP1 in yeast. Cell Res. 2012, 22: 1058-1077. 10.1038/cr.2012.20.PubMedCentralCrossRefPubMed Castermans D, Somers I, Kriel J, Louwet W, Wera S, Versele M, Janssens V, Thevelein JM: Glucose-induced posttranslational activation of protein phosphatases PP2A and PP1 in yeast. Cell Res. 2012, 22: 1058-1077. 10.1038/cr.2012.20.PubMedCentralCrossRefPubMed
48.
go back to reference Saito S, Goodarzi AA, Higashimoto Y, Noda Y, Lees-Miller SP, Appella E, Anderson CW: ATM mediates phosphorylation at multiple p53 sites, including Ser(46), in response to ionizing radiation. J Biol Chem. 2002, 277: 12491-12494. 10.1074/jbc.C200093200.CrossRefPubMed Saito S, Goodarzi AA, Higashimoto Y, Noda Y, Lees-Miller SP, Appella E, Anderson CW: ATM mediates phosphorylation at multiple p53 sites, including Ser(46), in response to ionizing radiation. J Biol Chem. 2002, 277: 12491-12494. 10.1074/jbc.C200093200.CrossRefPubMed
49.
go back to reference Komiyama S, Taniguchi S, Matsumoto Y, Tsunoda E, Ohto T, Suzuki Y, Yin HL, Tomita M, Enomoto A, Morita A, Suzuki T, Ohtomo K, Hosoi Y, Suzuki N: Potentiality of DNA-dependent protein kinase to phosphorylate Ser46 of human p53. Biochem Biophys Res Commun. 2004, 323: 816-822. 10.1016/j.bbrc.2004.08.161.CrossRefPubMed Komiyama S, Taniguchi S, Matsumoto Y, Tsunoda E, Ohto T, Suzuki Y, Yin HL, Tomita M, Enomoto A, Morita A, Suzuki T, Ohtomo K, Hosoi Y, Suzuki N: Potentiality of DNA-dependent protein kinase to phosphorylate Ser46 of human p53. Biochem Biophys Res Commun. 2004, 323: 816-822. 10.1016/j.bbrc.2004.08.161.CrossRefPubMed
50.
go back to reference Yoshida K, Liu H, Miki Y: Protein kinase C δ regulates Ser46 phosphorylation of p53 tumor suppressor in the apoptotic response to DNA damage. J Biol Chem. 2006, 281: 5734-5740. 10.1074/jbc.M512074200.CrossRefPubMed Yoshida K, Liu H, Miki Y: Protein kinase C δ regulates Ser46 phosphorylation of p53 tumor suppressor in the apoptotic response to DNA damage. J Biol Chem. 2006, 281: 5734-5740. 10.1074/jbc.M512074200.CrossRefPubMed
51.
go back to reference Taira N, Nihira K, Yamaguchi T, Miki Y, Yoshida K: DYRK2 is targeted to the nucleus to control p53 via ser46 phosphorylation in the apoptotic response to DNA damage. Mol Cell. 2007, 25: 725-738. 10.1016/j.molcel.2007.02.007.CrossRefPubMed Taira N, Nihira K, Yamaguchi T, Miki Y, Yoshida K: DYRK2 is targeted to the nucleus to control p53 via ser46 phosphorylation in the apoptotic response to DNA damage. Mol Cell. 2007, 25: 725-738. 10.1016/j.molcel.2007.02.007.CrossRefPubMed
52.
go back to reference Puca R, Nardinocchi L, Sacchi A, Rechavi G, Givol D, D’Orazi G: HIPK2 modulates p53 activity towards pro-apoptotic transcription. Mol Cancer. 2009, 8: 85-10.1186/1476-4598-8-85.PubMedCentralCrossRefPubMed Puca R, Nardinocchi L, Sacchi A, Rechavi G, Givol D, D’Orazi G: HIPK2 modulates p53 activity towards pro-apoptotic transcription. Mol Cancer. 2009, 8: 85-10.1186/1476-4598-8-85.PubMedCentralCrossRefPubMed
53.
go back to reference D’Orazi G, Rinaldo C, Soddu S: Updates on HIPK2: a resourceful oncosuppressor for clearing cancer. J Exp Clin Cancer Res. 2012, 31: 63-10.1186/1756-9966-31-63.PubMedCentralCrossRefPubMed D’Orazi G, Rinaldo C, Soddu S: Updates on HIPK2: a resourceful oncosuppressor for clearing cancer. J Exp Clin Cancer Res. 2012, 31: 63-10.1186/1756-9966-31-63.PubMedCentralCrossRefPubMed
54.
go back to reference de la Vega L, Grishina I, Moreno R, Krüger M, Braun T, Schmitz ML: A redox-regulated SUMO/acetylation switch of HIPK2 controls the survival threshold to oxidative stress. Mol Cell. 2012, 46: 1-12. 10.1016/j.molcel.2012.03.022.CrossRef de la Vega L, Grishina I, Moreno R, Krüger M, Braun T, Schmitz ML: A redox-regulated SUMO/acetylation switch of HIPK2 controls the survival threshold to oxidative stress. Mol Cell. 2012, 46: 1-12. 10.1016/j.molcel.2012.03.022.CrossRef
55.
go back to reference Yu T, Robotham JL, Yoon Y: Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc Natl Acad Sci U S A. 2006, 103: 2653-2658. 10.1073/pnas.0511154103.PubMedCentralCrossRefPubMed Yu T, Robotham JL, Yoon Y: Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc Natl Acad Sci U S A. 2006, 103: 2653-2658. 10.1073/pnas.0511154103.PubMedCentralCrossRefPubMed
56.
go back to reference Niero EL, Rocha-Sales B, Lauand C, Araujo Cortez B, de Souza Medina M, Rezende-Teixeira P, Shiniti Urabayashi M, Martens AA, Neves JH, Machado-Santelli GM: The multiple facets of drug resistance: one history, different approaches. J Exp Clin Cancer Res. 2014, 33: 37-10.1186/1756-9966-33-37.PubMedCentralCrossRefPubMed Niero EL, Rocha-Sales B, Lauand C, Araujo Cortez B, de Souza Medina M, Rezende-Teixeira P, Shiniti Urabayashi M, Martens AA, Neves JH, Machado-Santelli GM: The multiple facets of drug resistance: one history, different approaches. J Exp Clin Cancer Res. 2014, 33: 37-10.1186/1756-9966-33-37.PubMedCentralCrossRefPubMed
Metadata
Title
High glucose dephosphorylates serine 46 and inhibits p53 apoptotic activity
Authors
Alessia Garufi
Gabriella D’Orazi
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2014
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-014-0079-4

Other articles of this Issue 1/2014

Journal of Experimental & Clinical Cancer Research 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine